THE PURSUIT GAME WITH THE INFORMATION LACK OF THE EVADING PLAYER

L.A.Petrosjan Leningrad State University, Leningrad, USSR

We consider zero-sum differential game with perscribed dura- T . The kinematic equations have the form tion P: $\dot{x} = f(x, u)$, $u \in U \subset Comp R^{\kappa}$, $E: \dot{y} = g(y, v)$, $v \in V \subset Comp R^{e}$. where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, $x(0) = x_0$, $y(0) = y_0$. We suppose that for every starting positions \mathbf{x}_{\bullet} , \mathbf{y}_{\bullet} and every pair of measurable open-loop controls U(t), v(t) there exists a unique solution of the system (1) with the initial conditions ∞_{\circ} , Yo . The state of information is defined in the following way. The player E (evader) at each instant $t \in [0, T]$ knows the time t , the initial position of P (pursuier), x_{\circ} , and his own position y(t). When $t \in [0, \ell]$, P at each moment t knows his position $\alpha(t)$, the time t and the initial state of the player E at t=0, Y_{\circ} ; when $t \in [\ell, T]$, P at each moment t knows his position x(t), the time t and the position of player E at moment $t - \ell$, $y(t - \ell)$., $-t \ell = 70$). The payoff of the player E is defined as M(x(T), y(T)),

where M(x, y) is a given continuous function on $R^n \times R^n$. The game is supposed to be zero-sum.

<u>Pure strategies.</u> Under pure strategy of the player in the considered game we shall understand the so called piecewise control strategies (PCS). Under the (PCS) of the player E, $v(\cdot)$, we shall understand the pair $\{T, \delta\}$, where T is a finite decomposition of the time interval [0, T], $o=t_1 \leq t_2 \leq \cdots \leq t_s = T$ and b-mapping which assigns to every state of information at the moment $t_k \in T$, t_c , x_o , $y(t_k)$, a measurable open-loop

control V(t) defined on the time interval $[t_{\kappa}, t_{\kappa+1})$. Under the (PCS) of the player P, $u(\cdot)$, we shall understand the pair $\{6, a\}$ where G is a finite decomposition of the time interval [0, T], $0 = t'_1 \leq t'_2 \leq \cdots \leq t'_q = T$ and a-mapping which assigns to every state of information at the moments $0 \leq t'_{\kappa} \leq C$ $(t'_{\kappa} \in G)$, t'_{κ} , y_0 , $\alpha(t'_{\kappa})$, a measurable open-loop control u(t) defined on the time interval $[t'_{\kappa}, t'_{\kappa+1})$; and at moments $\ell < t'_{\kappa} \leq T$ $(t'_{\kappa} \in G)$, it assigns to the t'_{κ} , $y(t'_{\kappa}-\ell)$, $\alpha(t'_{\kappa})$ a measurable open-loop control u(t) defined on the time interval $[t'_{\kappa}, t'_{\kappa+1}]$.

Every pair of (PCS) $\mathcal{U}(\cdot)$, $\mathcal{V}(\cdot)$ and the initial conditions \mathcal{X}_{\circ} , \mathcal{Y}_{\circ} uniquely determine the trajectories $\mathbf{x}(t), \mathbf{y}(t)$ as solutions of (1), $t \in [0, T]$, and the payoff $M(\mathbf{x}(T), \mathbf{y}(T))$.

Thus we can define the pay-off function, as functional of pure strategies (PCS) in the following way

$$K(x_{0}, y_{0}; u_{0}, y_{0}) = M(x_{0}, y_{0}),$$
 (3)

where x(t), y(t) are the trajectories corresponding to the strategy pair $u(\cdot)$, $v(\cdot)$ and initial conditions x_{\circ} , y_{\circ} .

The game under consideration is one with incomplete information for both players, as we well know from the general game theory, usually

$$Sup_{V(\cdot)} Jnf \quad K(x_{\circ}, y_{\circ}; u_{(\cdot)}, v_{(\cdot)}) \neq$$

$$\neq Jnf_{u(\cdot)} \quad Sup_{V(\cdot)} \quad K(x_{\circ}, y_{\circ}; u_{(\cdot)}, v_{(\cdot)}) .$$

In case (4) holds it is difficult to speak about the solution of the game in any sense. So we have to follow the von Neumann's approach (see [1]) and introduce the mixed strategies in hope of finding the saddle point in an enlarged class.

Mixed behaviour piecewise control strategies (MB PCS).Under the (MB PCS) of the player E , $\Im(\cdot)$, we shall understand the pair $\{\tau, d\}$, where τ is a finite decomposition of the time interval [0, T], $0=t_1 \le t_2 \le \cdots \le t_s = T$, and b is a mapping which assigns to every state of information at moments $t_{\kappa} \in \mathcal{T}$. $t_{\rm e}$, x., $y(t_{\rm k})$, a probability measure i concentrated on a finite set of open-loop measurable controls v(t), $t \in [t_{\kappa}, t_{\kappa+1})$. Under the (MB PCS) of the player ρ , μ () , we shall understand the pair $\{\sigma, c\}$, where σ is a finite decomposition of the time interval [0, T] , $0 = t'_1 \le t'_2 \le \cdots \le t'_q = T$, and c is a mapping which assigns to every state of information at the moments $0 \le t'_{k} \le l$ $(t'_{k} \in G), t'_{k}, y_{o}, x(t'_{k})$ a probability measure \mathcal{M} concentrated on a finite set of open-loop measurable controls u(t), $t \in [t_k, t_{k+1})$; and at the moments $l \leq t_k \leq T$ $(t_{k}' \in G)$ it assigns to the t_{k}' , $y(t_{k}' - l)$, $x(t_{k}')$ a probability measure μ concentrated on a finite set of open-loop measurable controls u(t), $t \in [t_k]$, t_{k+1}).

Every strategy pair of (MB PCS) $\mathcal{M}(\cdot)$, $\Im(\cdot)$ defines random trajectories $\mathfrak{X}(t)$, $\mathfrak{Y}(t)$ from the initial position \mathfrak{X}_{\circ} , \mathfrak{Y}_{\circ} . Thus the payoff $M(\mathfrak{X}(T), \mathfrak{Y}(T))$ becomes random reachable

and we have to consider its mathematical expectation. The latter is uniquely determined by the initial conditions ∞ ., Y. and (MB PCS) strategy pair $\mu(\cdot)$, $\hat{\lambda}(\cdot)$. We shall write it as a functional of $\mu(\cdot)$, $\hat{\lambda}(\cdot)$

$$\mathsf{E}(\mathbf{x}_{\circ}, \mathbf{y}_{\circ}; \boldsymbol{\mu}_{(\cdot)}, \boldsymbol{\nu}_{(\cdot)}) = \mathsf{E}_{\mathsf{X}_{\mathsf{P}}} \mathsf{M}(\mathbf{x}_{\mathsf{C}}(\mathsf{T}), \mathbf{y}_{\mathsf{C}}(\mathsf{T})), \qquad (5)$$

when the expectation is taken by the probability measure over the trajectories $\mathfrak{X}(t), \mathfrak{Y}(t)$ ($\mathfrak{X}(0) = \mathfrak{X}_{0}, \mathfrak{Y}(0) = \mathfrak{Y}_{0}$) corresponding to the (MB PCS) strategy pair $\mu(\cdot)$, $\hat{\mathcal{Y}}(\cdot)$.

We shall derive later some sufficient condition under which the equation (4) holds in the class of (MB PCS) strategies.

An auxiliary zero-sum game $\lceil y \rceil$. Let $C_p^{\dagger}(\mathbf{x})$, $C_E^{\dagger}(\mathbf{y})$ be reachable sets of positions for the players P and E from the starting positions ∞ , \mathbf{y} by the moment \mathbf{t} . We shall consider a simultaneous game $\lceil \mathbf{y} \rceil$, $\mathbf{y} \in C_E^{\intercal-\epsilon}(\mathbf{y}_0)$ over the sets of strategies $C_p^{\intercal}(\mathbf{x}_0)$, $C_E^{\epsilon}(\mathbf{y})$. The game proceedes as follows. The players P and E choose simultaneously and independently of each other the points $\boldsymbol{\xi} \in C_p^{\intercal}(\mathbf{x}_0)$ and corresponding ly $2 \in C_{E}^{e}(4)$. The payoff of player E is defined as $M(\xi, 2)$. If we suppose the compactness of the sets $C_{P}^{T}(4)$ and $C_{E}^{t}(4)$, the game Γ_{4} for every $4 \in C_{E}^{T-e}(4)$ (sec [1]) has the saddle point in mixed strategies, that means in the class of probability measures over the sets $C_{P}^{t}(4)$, $C_{E}^{e}(4)$ (the payoff $M(\xi, 2)$ is assumed to be continuous).

We shall pose the following conditions on the class of games \int_{Y} , $Y \in C_{E}^{7-e}(Y_{0})$.

1. For every $\xi > 0$, there exists such N, that in the game \lceil_y , P has an ξ -optimal mixed strategy μ_{ξ} , which prescribes equal probabilities 1/N, to N points $\xi_i(y) \in C_{\rho}^{T}(\infty)$ and the number of the points N does not depend on Y, when $y \in (\sum_{E}^{T-e}(y_0))$.

2. Let y(t) be any motion of E on the time interval $t_1 \le t \le t_2$, then there exists such N nonintersecting trajectories $\xi_i [y(t-\ell)] = \xi_i (t)$, that $\xi_i (y(t-\ell)) \in (\zeta_p^-(x_0))$, where every $\xi_i [y(t-\ell)]$ is a spectrum point of the strategy μ_{ξ} , which is ε -optimal in the game $\Gamma_y(t-\epsilon)$.

Now we can describe the construction of the ℓ -optimal (MB PCS) for both players in the previous game.

Theorem. Let the sets $C_p^T(x_0)$, $C_e^e(y)$, be compact for each $y \in C_e^{T-e}(y_0)$ and the conditions 1, 2 be satisfied. Suppose that for every $\varepsilon_1 > 0$ player P can guarantee ε_1 -capture at the moment T with any of the points ξ_i moving along the trajectories $\xi_i [y(t-e)] = \xi_i(t)$, when E moves along y(t).

Then the value of the game is equal to $V(\bar{y})$ (see (6)). The ϵ -optimal (MB PCS) for E includes the open-loop control transition to \bar{y} on the time interval $t \in [0, T-\epsilon]$, and further transfer to any point $y(T) \in C_{\epsilon}^{\ell}(\bar{y})$, which occurs after the realisation of the random device according to the $\ell/3$ optimal mixed strategy of the player E in the game $\Gamma_{\bar{y}}$ at the moment $t = T - \ell$.

The ϵ -optimal (MB PCS) for P randomly chooses at t=o with the probability 1/N any of the points ξ_i contained in the spectrum of his $\ell/3$ optimal strategy in the game Γ_{y_0} and prescribes the pursuit of this point to guarantee the $\ell/3$ capture with it at the terminal moment T.

When $M(\xi, \gamma) = f(\xi, \gamma)$, where f is an euclidean distance the value of the game, strategies mentioned in the theorem have an interesting geometric interpretation. The value $V(y) \circ f \nabla y$ is equal to the radius R(y) of the minimal sphere S(y) which contains the set $C_E^e(Y)$. The value of the previous game $V(\bar{y})$ is equal to the maximal radius $R(\bar{y}) = \max_{y \in C_E^{\tau, \ell}(y_0)} R(y)$. The optimal (NB PCS) of player P is pure and consists in the pursuing of the centre O(y) of the minimal sphere S(y).

The optimal strategy of the player E is (MB PCS). On the time interval [0, T-l) he moves to the point \bar{y} , for wich the radius R(y) of minimal sphere containing the set $C_{E}^{\ell}(y)$ reaches its maximal value. Let us consider now the auxilary game

 $\int \overline{q}$. The payoff function in this game is convex, so the maximising player has an optimal mixed strategy which prescribes positive probabilities to no more than n+1 points of the set $C_{\varepsilon} \left(\overline{q} \right)$, where n is a dimension of the space \mathbb{R}^{n} . One can prove that these points lie on the boundary of the minimal sphere containing $C_{\varepsilon} \left(\overline{q} \right)$. We denote them $\gamma_{1}, \cdots, \gamma_{n+1}$. Let $O(\overline{q})$ be the center of this minimal sphere, then there exist such

$$\lambda_i, \lambda_i \ge 0, \quad i = 1, \dots, n+1,$$

 $\sum_{i=1}^{n+1} \lambda_i = 1,$

that

$$\sum_{i=1}^{n+1} \lambda_i \, \mathcal{I}_i = O(\bar{y})$$

At the moment $t = T - \ell$, E chooses with the probability λ_i , i = 1, ..., n+1, the direction to one of the points \mathcal{N}_i , i = 1, ..., n+1 and on the interval $(T - \ell, T]$ moves to reach it at moment T.

REFERENCES

1. Karlin S. Mathematical methods and theory of games, programming and economics, Pergamon Press, 1953.