THE PURSUIT GAME WITH THE INFORMATION LACK OF
 THE EVADING PLAYER

$\frac{\text { L.A.Petrosjan }}{\text { Leningrad State University }}$ Leningrad, USSR
Len
We consider zero-sum differential game with perscribed durantion T. The kinematic equations have the form

$$
\begin{array}{ll}
P: \dot{x}=f(x, u) & \quad u \in U \subset \operatorname{Comp} R^{k} \\
E: \dot{y}=g(y, v) & v \in V \subset \operatorname{Comp} R^{e}
\end{array}
$$

where $x \in R^{n}, y \in R^{n}, x(0)=x_{0}, y(0)=y_{0}$. We suppose that for every starting positions x_{0}, y_{0} and every pair of measurable open-loop controls $u(t), v(t)$ there exists a unique soludion of the system (1) with the initial conditions x_{0}, y_{0}.

The state of information is defined in the following way.
The player E (evader) at each instant $t \in[0, T]$ knows the time t, the initial position of P (pursuier), x_{0}, and his own position $y(t)$. When $t \in[0, \ell], P$ at each moment
t knows his position $x(t)$, the time t and the initial state of the player E at $t=0, y_{0}$; when $t \in[\ell, T]$,
P at each moment t knows his position $x(t)$, the time t and the position of player E at moment $t-l, y(t-l),+l>0)$.

The payoff of the player E is defined as

$$
M(x(T), y(T)),
$$

where $M(x, y)$ is a given continuous function on $R^{n} \times R^{n}$. The game is supposed to be zero-sum.

Pure strategies. Under pure strategy of the player in the considered game we shall understand the so called piecewise control strategies (PCS). Under the (POS) of the player $E, v(\cdot)$, we shall understand the pair $\{\tau, f\}$, where τ is a finite decomposition of the time interval $[0, T], 0=t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{5}=T$ and b-mapping which assigns to every state of information at the moment $t_{k} \in \tau, t_{k}, x_{0}, y\left(t_{k}\right)$, a measurable open-loop
control $v(t)$ defined on the time interval $\left[t_{k}, t_{k+1}\right)$. Under the (PCS) of the player $P, u(1)$, we shall understand the pair $\{\sigma, a\}$ where σ is a finite decomposition of the time interval [$0, T]$, $0=t_{1}^{\prime} \leqslant t_{2}^{\prime} \leqslant \cdots \leqslant t_{q}^{\prime}=T \quad$ and a-mapping which assigns to every state of information at the moments $0 \leqslant t_{k}^{\prime} \leqslant l$ $\left(t_{k}^{\prime} \in \sigma\right), t_{k}^{\prime}, y_{0}, x\left(t_{k}^{\prime}\right)$, a measurable open-loop control $u(t)$ defined on the time interval $\left[t_{k}^{\prime}, t_{k+1}^{\prime}\right)$; and at moments $\ell<t_{k}^{\prime} \leqslant T \quad\left(t_{k}^{\prime} \in \sigma\right)$, it assigns to the $t_{k}^{\prime}, y\left(t_{k}^{\prime}-l\right)$, $x\left(t_{k}^{\prime}\right)$ a measurable open-loop control $u(t)$ defined on the time interval $\left[t_{k}^{\prime}, t_{k+1}^{\prime}\right)$.

Every pair of (PCS) $u(\cdot), V(\cdot)$ and the initial conditions x_{0}, Yo uniquely determine the trajectories $x(t), y(t)$ as solutions of (1), $t \in[0, T], \quad$ and the payoff $M(x(T), y(T))$,

Thus we can define the payoff function, as functional of pure strategies (PCS) in the following way

$$
\begin{equation*}
K\left(x_{0}, y_{0} ; u(\cdot), v(\cdot)\right)=M(x(T), y(T)) \tag{3}
\end{equation*}
$$

where $x(t)$, $y(t)$ are the trajectories corresponding to the strategy pair L(.) , $V(\cdot)$ and initial conditions x_{0}, y_{0}.

The game under consideration is one with incomplete information for both players, as we well know from the general game theory, usually

$$
\begin{align*}
& \operatorname{Sup}_{v(\cdot)} \operatorname{Inf}_{u(\cdot)} K\left(x_{0}, y_{0} ; u(\cdot), v(\cdot)\right) \neq \tag{4}\\
& \neq I_{n} \psi_{u(\cdot)} \operatorname{Sup}_{v(\cdot)} K\left(x_{0}, y_{0} ; u(\cdot), v(\cdot)\right) .
\end{align*}
$$

In case (4) holds it is difficult to speak about the solution of the game in any sense. So we have to follow the vo Newman's approach (see [1]) and introduce the mixed strategies in hope of finding the saddle point in an enlarged class.

Mixed behaviour piecewise control strategies (MB PCS).Under the (NB PCS) of the player $E, \forall(\cdot)$, we shall understand the $\operatorname{pair}\{\tau, d\}$, where τ is a finite decomposition of the time interval $[0, T], 0=t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{5}=T$, and b is a mapping which assigns to every state of information at moments $t_{k} \in \tau$,
$t_{k}, x_{0}, y\left(t_{k}\right)$, a probability measure \downarrow concentrated on a finite set of open-loop measurable controls $v(t), t \in\left[t_{k}, t_{k+1}\right)$. Under the (MB PCS) of the player P, $\mu(\cdot)$, we shall understand the pair $\{\sigma, c\}$, where σ is a finite decomposition of the time interval $[0, T], 0=t_{1}^{\prime} \leqslant t_{2}^{\prime} \leqslant \cdots \leqslant t_{q}^{\prime}=T$, and c is a mapping
which assigns to every state of information at the moments $0 \leqslant t_{k}^{\prime} \leqslant \ell \quad\left(t_{k}^{\prime} \in \sigma\right), t_{k}^{\prime}, y_{0}, x\left(t_{k}^{\prime}\right) \quad$ a probability measure
μ concentrated on a finite set of open-loop measurable controls
$u(t), t \in\left[t_{k}^{\prime}, t_{k+1}^{\prime}\right)$; and at the moments $l \leqslant t_{k}^{\prime} \leqslant T$
$\left(t_{k}^{\prime} \in \sigma\right)^{\prime}$ it assigns to the $t_{k}^{\prime}, y\left(t_{k}^{\prime}-l\right), x\left(t_{k}^{\prime}\right)$
a probability measure μ concentrated on a finite set of open-loop measurable controls $u(t), t \in\left[t_{k}^{\prime}, t_{k+1}^{\prime}\right)$.

Every strategy pair of (MB PCS) $\mu(\cdot), \lambda(\cdot)$ defines random trajectories $x(t)$, $y(t)$ from the initial position x_{0}, Yo . Thus the payoff $M(x(T), y(T))$ becomes random reachable and we have to consider its mathematical expectation. The latter is uniquely determined by the initial conditions x_{0}, y_{0} and (MB PCS) strategy pair $\mu(\cdot), ~ \lambda(\cdot)$. We shall write it as a functional of $\mu(\cdot), \nu(\cdot)$

$$
\begin{equation*}
E\left(x_{0}, y_{0} ; \mu(\cdot), \nu(\cdot)\right)=E_{x p} M(x(T), y(T)), \tag{5}
\end{equation*}
$$

When the expectation is taken by the probability measure over the trajectories $x(t), y(t)\left(x(0)=x_{0}, y(0)=y_{0}\right)$ corresponding to the (MB PCS) strategy pair $\mu(\cdot), ~ \nu(\cdot)$.

We shall derive later some sufficient condition under which the equation (4) holds in the class of (NB PCS) strategies.

An auxiliary zero-sum game Γ_{y}. Let $C_{p}^{t}(x), C_{E}^{t}(y)$ be reachable sets of positions for the players P and E from the starting positions x, y by the moment t. We shall consider a simultaneous game $\Gamma_{y}, y \in C_{E}^{T-e}\left(y_{0}\right)$ over the sets of strategies $C_{p}^{T}\left(x_{0}\right), C_{E}^{e}(y) \quad{ }_{E}$. The game proceedes as follows. The players P and E choose simultaneously and independently of each other the points $\xi \in C_{p}^{\top}\left(x_{0}\right)$ and corresponding
$1 \mathrm{y} \quad \eta \in C_{E}^{e}(y)$. The payoff of player E is defined as $M(\xi, \eta)$. If we suppose the compactness of the sets $C_{p}^{\top}\left(x_{0}\right)$ and $C_{E}^{+}(y)$, the game Γ_{y} for every $y \in C_{E}^{T \cdot e}\left(y_{0}\right)$ (see [1]) has the saddle point in mixed strategies, that means in the class of probability measures over the sets $C_{p}^{t}\left(x_{0}\right), C_{E}^{e}(y)$ (the payoff $M(\xi, \eta)$ is assumed to be continuous).

We shall pose the following conditions on the class of games $\Gamma_{y}, y \in C_{E}^{T-e}\left(y_{0}\right)$.

1. For every $\varepsilon>0$, there exists such N, that in the game Γ_{y}, P has an ε-optimal mixed strategy μ_{ε}, which prescribes equal probabilities $1 / N$, to N points $\xi_{i}(y) \epsilon$ $\in C_{p}^{\top}\left(x_{0}\right)$ and the number of the points N does not depend on y, when $y \in C_{E}^{T-e}\left(y_{0}\right)$.
2. Let $y(t)$ be any motion of E on the time interval
$t_{1} \leqslant t \leqslant t_{2}$, then there exists such N nonintersecting trajectories $\xi_{i}[y(t-e)]=\xi_{i}(t)$, that $\xi_{i}(y(t-e)) \in$ $\epsilon C_{p}^{\top}\left(x_{0}\right)$; where every $\xi_{i}[y(t-l)]$ is a spectrum point of the strategy μ_{ε}, which is ε-optimal in the game $\Gamma_{y(t-\varepsilon)}$.

Let $V(y)$ be the value of the game Γ_{y} and

$$
V(\bar{y})=\max _{y \in C_{E}^{T-e}\left(y_{0}\right)} V(y)
$$

Now we can describe the construction of the ε-optimal (MB PCS) for both players in the previous game,

Theorem. Let the sets $C_{P}^{T}\left(x_{0}\right), C_{E}^{e}(y)$, be compact for each $y \in C_{E}^{T-e}\left(y_{0}\right)$ and the conditions 1,2 be satisfied. Suppose that for every $\varepsilon_{1}>0$ player P can guarantee
ε_{1}-capture at the moment T with any of the points ξ_{i} moving along the trajectories $\xi_{i}[y(t-e)]=\xi_{i}(t)$, when E moves along $y(t)$.

Then the value of the game is equal to $V(\bar{y})(\operatorname{see}(6))$. The ε-optimal (MB PCS) for E includes the open-loop control transition to \bar{y} on the time interval $t \in[0, T-\ell]$, and
further transfer to any point $y(T) \in C_{E}^{e}(\bar{y})$, which oocurs after the realisation of the random device according to the $\varepsilon / 3$ optimal mixed strategy of the player E in the game $\Gamma_{\bar{y}}$ at the moment $t=T-e$

The ε-optimal (MB PCS) for P randomly chooses at $t=0$ with the probability $1 / \mathrm{N}$ any of the points ξ_{i} contained in the spectrum of his $\mathcal{E} / 3$ optimal strategy in the game $\Gamma_{y_{0}}$ and prescribes the pursuit of this point to guarantee the $\varepsilon / 3$ capture with it at the terminal moment T.

When $M(\xi, \eta)=\rho(\xi, \eta)$, where ρ is an euclidean distance the value of the game, strategies mentioned in the theorem have an interesting geometric interpretation. The value $V(y)$ of Γ_{y} is equal to the radius $R(y)$ of the minimal sphere $S(y)$ which contains the set $C_{E}^{e}(y)$. The value of the previous game $V(\bar{y})$ is equal to the maximal radius $R(\bar{y})=\max y \in C_{E}^{T-\ell}\left(y_{0}\right) \quad R(y)$. The optimal (NB PCS) of player P is pure and consists in the pursuing of the centre $O(y)$ of the minimal sphere $S(y)$.

The optimal strategy of the player E is (MB PCS). On the time interval $[0, T-\ell)$ he moves to the point \bar{y}, for wich the radius $\quad R(y)$ of minimal sphere containing the set $C_{E}^{e}(y)$ reaches its maximal value. Let us consider now the auxilary game
$\Gamma_{\bar{y}}$. The payoff function in this game is convex, so the maximising player has an optimal mixed strategy which prescribes positive probabilities to no more than $n+1$ points of the set $C_{E}^{e}(\bar{y})$, where n is a dimension of the space R^{n}. One can prove that these points lie on the boundary of the minimal sphere containing $C_{E}^{e}(\bar{y})$. We denote them $\eta_{1}, \cdots, \eta_{n+1}$. Let $O(\bar{y})$ be the center of this minimal sphere, then there exist such

$$
\begin{aligned}
& \lambda_{i}, \lambda_{i} \geqslant 0, \quad i=1, \ldots, n+1, \\
& \sum_{i=1}^{n+1} \lambda_{i}=1,
\end{aligned}
$$

that

$$
\sum_{i=1}^{n+1} \lambda_{i} \eta_{i}=O(\bar{y})
$$

At the moment $t=T-\ell, E$ chooses with the probability

```
\lambdai,i=1,\ldots,n+1,
        i=1,\ldots,n+1
moves to reach it at moment T .
    the direction to one of the points }\mp@subsup{\eta}{i}{}\mathrm{ ,
    and on the interval (T-l,T]
```


REFERENCES

1. Karlin S. Mathematical methods and theory of games, programming and economics, Pergamon Press, 1953.
