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PREFACE

It is not necessary to start with a definition of Software Engineering:
the present book, a consolidated effort of a group of experts, care-
fully prepared in a two-week seminar in Garmisch, Dec. 71/dan. 72, and
presented at a EEC sponsored course in Febr.~-March 72, illustrates the
use of the term.

In 1967 and 1968, the word 'Software Engineering' has been used in a
provocative way, in order to demonstrate that something was wrong in
the existing design, production and servicing of software. The situa-
tion has considerably changed since then; many people show concern
about the problems of software engineering and some of the manufactur-
ers, to which the provocation was mainly addressed, claim that they
already obey the principles of software engineering, whatever this may
mean. Soon ‘'software engineering’' will turn up in the advertisements.
But although the problems are indeed much better understood, the mate-
rial is stiil not concentrated and systematized. The reports of the
NATO Science Committee sponsored conferences of Garmisch and Rome are
a useful collection of material, but not much more. In order to have
teaching material available, more has to be done. This book brings a
first step in this direction.

Our intention in the planning of this course was to cover as much as we
can at the moment of all the aspects of the theme, and to contribute
further to the systematization of the field. We do not actually debate
whether there is a need for software engineering. Instead, we think it
is essential to point out where the ideas of software engineering should
influence Computer Science and should penetrate in its curricula.

Thus we will try to find out as much as possible whether a topic of
software engineering is something you can mention as a kind of a theme
to your students in an academic environment.

In this respect, my major concern was that today one still finds it

extremely difficult, as many people told to me, to digest the material
at hand so that it could be used in a course. Therefore, we envisaged
publication of the lecture notes despite their somewhat tentative na-

ture.



In selecting the participants we took some effort to assure that what-
ever they may learn here is spread out, in particular is propagated in
the universities and the major manufacturers.

It is not quite accidental that efforts on 'Software Engineering' have
been carried on to a large extent outside the United States. The pover-
ty of the computer situation in Europe, at least on the continent, which
is in sharp contrast to the affiuent US computer community, leads to
the demand for the most economical solution. But the roots of the soft-
ware misery go deeper. It comes from the fact that people are forced

to live with machines that they do not want. They have not constructed
them, they simply receive them and have to make the best out of it.
Sometimes, with the chance of buying a new machine, there is some hope
that the situation will improve, but for simple market consideration,
the manufacturer does everything he can do to make the customer stay
with the product, and this usually ends all hopes for improvements.
Thus, software engineering, for the time being, is partly a defense
stratagem. But I hope that some day this situation will turn around,

I hope one day software engineering considerations will dictate how
machines are to be built and then to be used. Thus, what we have to
work for is also preparing the ground for our future 1ife. On the other
hand, failure in mastering the software crisis may lead to strangula-
tion of scientific users that depend on the computer today, in parti-
cular in 'Big Science', and may thus do harm also to science and eco-
nomy in a rich nation.

In the preparation of the Advanced Course, I enjoyed the advice and
help of colieagues and friends. I owe thanks to the co-director,
Prof.L.Bolliet, and to the lecturers for their encouraging support. In
particular, I am obliged to the German representative in the subgroup
for education in informatics of group PREST of the EEC, Dr.R.Gnatz, for
his help; in this connection the moral support from Mr.J.Desfosses (EEC)
and the financial support from the Ministry of Education and Science of
the Federal Republic of Germany should be gratefully acknowledged.The
Conference Staff will forgive me for not mentioning all of them, my
thanks to them go by the name of Mr.Hans Kuss of the Mathematics Insti-
tute of the Technical University Munich, who also was the responsible
redactor of this publication.

Munich, June 1972 Friedrich L.Bauer



