Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

30

F. L. Bauer - J. B. Dennis - G. Goos - C. C. Gotlieb
R. M. Graham - M. Griffiths - H. J. Helms - B. Morton
P. C. Poole - D. Tsichritzis - W. M. Waite

Software Engineering

An Advanced Course

Reprint of the First Edition

Edited by F. L. Bauer

Springer-Verlag
Berlin - Heidelberg - New York 1975



Editorial Board: P. Brinch Hansen - D. Gries
C. Moler - G. Seegmdiller - N. Wirth

Prof. Dr. Dr. h. c. F. L. Bauer
Institut fiir Informatik der TU Miinchen
8 Miinchen 2

ArcisstraBe 21
BRD

Formerly published 1973 as Lecture Notes in Economics and
Mathematical Systems, Vol. 81

ISBN 8-540-06185-1 1. Auflage Springer-Verlag
Berlin Heidelberg New York

ISBN 0-387-06185-1 1st edition Springer-Verlag
New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data

Advanced Course on Software Engineering, Munich, 1972.
Software engineering.

{Lecture notes in computer science ; 30)

First published in 1973 under title: Advanced Course
on Software Engineering.

"The advanced course took place February 21-March 3,
1972, organized by the Mathematical Institute of the
Technical University of Munich and the Leibnitz Com-
puting Center of the Bavarian Academy of Sciences, in
cooperation with the Ministry of Education and Science of
the Federal Republic of Germany."”

Includes bibliographies and index.

1. Electronic digital computers--Programming--Con-

gresses. 2. Programming languages (Electronic com-

puters)--Congresses. I. Baver, Friedrich Ludwig,

1925 II. Monich. Technische Universitit. Mathe-

matisches Institut. III. Akademie der Wissenschaften,

Munich. Leibnitz Rechenzentrum. IV, Title. V. Series.

QAT6.6.A33 19722 0016425 75-14409

AMS Subject Classifications (1970): 68 A05
CR Subject Classifications (1974): 4.

ISBN 3-540-07168-7 Nachdruck der 1. Auflage

Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-07168-7 1st edition, 2nd printing

Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of transiation,
reprinting, re-use of illustrations, broadcasting, reproduction by photo-
copying machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
han nrivate s1ea a faa o mavahla 30 the raihlichor tha amini it of the Yoo $+m



Contents

PREFACE
F.L. Bauer
CHAPTER 1: INTRODUCTION
K.W. Morton WHAT THE SOFTWARE ENGINEER CAN DO
FOR THE COMPUTER USER
1. Introduction
2. Program Duplication
3. User Images
4. Application Program Suites
5. Conclusion
6. References
J.B. Dennis THE DESIGN AND CONSTRUCTION

o D D Do

[N LY

OF SOFTWARE SYSTEMS

1. Introduction

Terminology

Computer Systems

Software Systems

Hierarchy

System and Application Software
Deseription of Software Systems

W R W D kD
LS

Funetion, Correctness, Performance
and Reliability

Function
Correctness
Performance
Reliability
Software Projects
Acknowledgement

ST R B A L
e e e e e

References

(52 B~ T~

11
11

12
12
13
13
15
15
17
19
19

20
22
23
24
25
27
27



CHAPTER 2:
G. Goos
G. Goos

v

DESCRIPTIONAL TOOLS

HIERARCHIES
0. Introduction

1. Hierarchical Ordering as a
Design Strategy

1.1. Levels of Abstraction
1.2. The Order of Design Decisions
2. Hierarchical Ordering and Languages

2.1. Abstract Machines and
the Production Process

2.2. Hierarchies of Languages
3. Protection by Hierarchical Ordering

4. References

LANGUAGE CHARACTERISTICS
Programming Languages as a Tool in
Writing System Software

0. Introduction

1. The Influence of Language Properties
on Software Creation

1.1. Language Constructs as Models for
Program Behavior

1.2. Influence on Programming Style and
Program Documentation

1.3. Machine Independence and Portability
Portability Versus Efficiency

1.8, Limitatione of Programming Languages

2. Requirements for Structured Programming
and Program Modulavity

2.1. Modularity

.2, Hierarchies, Nesting and Scope Rules
2.3. Concurrent Processes

3. Data Structures in System Programming
3.1, Simple Values
3.2. Records
3.3. Storage-Allocation for Records

4. System—-Dependent Language Features

and Portability
Some open Problems

6. References

29

29
36
38
41

41
42
44
46

47

47
47

48

49
51
52
53

54
54
56
58
59
61
62
64
66

67
69



M. Griffiths LOW LEVEL LANGUAGES

SUMMARY OF A DISCUSSION SESSION 70
1. Introduction 70
2. Justification 70
3. Features 71
4. Machine Dependence 72
5. Effieciency 73
6. Style and Education 73
7. Conclusion 74
8. Acknowledgement 74
9. References 74

M. Griffiths RELATIONSHIP BETWEEN DEFINITION
AND IMPLEMENTATION OF A LANGUAGE 76
1. Introduction 77
1.1. Requirements of Different People 77
1.2. Design of Language for good Programming 80
1.3. Design for Testing 82
2. Language Definition 83
2.1. Syntax 83
2.2. Static Semantics 85
2.3. Dynamic Semantics 85
2.4. Example takewn from ALGOL 6o 85
2.4.1. Syntax 86
2.4.2. S8tatic Semantics 88
2.4.3. Dynamic Semantics 92
2.4.4. Comments on the Example 95
3. From Definition to Implementation 96
3.1. Semantic Functions 96
3.2. Implementation Languages 98
3.3. Execution Model 98
3.4. Final Comments on Implementation 99
4. A Look at some Definitions loo
4.1. ALGOL 68 loo
. 2. Vienna Definitions 102
. 3. Extensible Languages 105
5. Conclusion lo6
6. Acknowledgements lo7
7. References lo8



J.B.

Dennis

CHAPTER 3: TECHNIQUES

J.B.

Dennis

2.

3.1.
3.1.
3.1.
3.1.
3.1.

3.
3.3.
3.

4.
4.
4.
4.
4.

. 2.

VI

CONCURRENCY IN SOFTWARE SYSTEMS 111
1. Introduction 111
2. Petri Nets 112
3. Systems 115
4. Determinacy 119
5. Interconnected Systems 121
6. Interprocess Communication 125
7. References 127
128
MODULARITY 128
1. Introduction Concepts 128
1. Definition of Modularity 129
2. Modularity in Fortran 131
. 3. Modularity in ALGOL 6o 134
.4. Substitution 136
.5. References 137
2. Data Structures in Modular Programming 139
.1. Address Space and Modularity 139
2. Representation of Program Modules l4o
. 3. Linguistic Levels for Modular
Programming 144
.1. PL/I 145
.2, ALGOL 68 146
.3. LISP 147
.4. Discussion 149
.4. References 149
3. Modularity in Multics 151
1. The Model 151
1. The File System 151
2. Processes and Address Spaces 152
3. Making a Segment known to a Process 154
4. Dynamic Linking 157
5. Seareh Rules and the Working Directory 160
Accomplishments 161
3. Unresolved Issues 162
1. Treatment of Reference Names 162
4. References 165
4. A Base Linguistic Level for Modular
Programming 166
1. Objects 166
2. Structure of a Base Language Interpreterl6]
3. State Trangitions of the Interpreter 170
4. Representation of Modular Programs 177
5. Use of the Model 180
5. References 182



P.C. Poole
W.M. Waite
P.C. Poole

VII

PORTABILITY AND ADAPTABILITY

1.
I.1.
1.2.

7.1.
7.2,
7.8,

8.

Introduction
The Bastic Principles
What we can expect to achieve

Portability Through High Level
Language Coding

The Need for Extensions

Extension by Embedding

Portability through Abstract Machine

Modelling
Background

183
184
185
185

187
187
188

192
193

Relating the Model to Existing Computersl9b

Relating the Model to the Problem

Realization of Abstract Machine Models

Translator Characteristics
Obtaining the Translator

A Case Study of some early Abstract

Machines

Machine and Language Design
Porting and Adapting

Review and Evaluation

203
205
205
209

211
211
222
233

Low Level Languages for Abstract Machines

The Basic Hardware Model

A Framework for Low Level Languages
An Example of a Low Level Language

A Hierarchy of Abstract Machines
Need for the Hierarchy

A Standard Base for the Hierarchy
A Case Study

References

DEBUGGING AND TESTING

Introduction

Planning for the Testing and
Debugging Phases

Documentation

Debugging Code

Generation of Debugging Code
Modularity

Parameterisation

Testing and Debugging Techniques
Classical Debugging Techniques

234

239
250
262
262
267
272
275
278
278

281
282
284
287
289
292
294
295



VIIT

3.2, Online Debugging 30l
3.3, Testing Strategies and Techniques 3lo
4. References 317
D. Tsichritzis RELIABILITY 319
1. Design and Construction of Reliable 319
Software
1.1. Introduction 319
1.2. Influence of the Language 320
1.3, Semantie Checking 322
1.4. Programming Style 323
1.5. Influence of Protection 325
1.6. Program (Correctness 325
1.6.1. Informal Proof 326
1.8.2. Formal Proof 327
1.7. Design for Reliability 328
1.8. Reliability during the Life Cycle
of the Software 329
1.9. Summary and Conclusions 330
2. Protection 332
2.1. Introduction 332
2.2. Domains and Objects 333
2.3. Protection Walls and Monitors 335
2.4. Identity Cards and Capabilities 336
2.5. Policing 338
2.6. Describing the Protection Status 340
of a System
2.7. Implementation 342
2.8. A Capability Based File System 344
2.8.1. Introduction 344
2.8.2. Capability Format 345
2.8.3. Packing Capabilities 346
2.8.4. Kernel System Facilities 348
2.8.5. Passing Capabilities 349
2.8.8. Outline of the File System 351
2.8.7. Facilities of the File System 351
2.8.8. Organization of the File System 354
3. Security 357
3.1. Introduction 357
3.2, Information System Approach 358
3.2.1. Integrity of Personnel 359

3.2.2., Authentication of Users Identity 360



3.

3.
3.
3.

CHAPTER 4: PRACTICAL

IX

D. Tsichritzis

G. Goos

R.M. Graham

Steady State, Transient, and cverload
Behavior

.2.3. Protection of Data Off Line and 360
in Transmission
2.4. Threat Monitoring 361
3.3. Data Dependence and Data Trane formatione362
3.1. Data Transformations 362
3.2. Data Dependent Access 363
3.3. Program Certification 363
3.4. Summary‘of Current Practices 364
4. References 371
ASPECTS 374
PROJECT MANAGEMENT 374
1. Introduction 374
2. Project Communication, Organization 376
and Control
3. Project Phase 378
3.1. Proposal 378
3.2. Survey Phase 379
3.8. Design and Implementation Phase 381
4. Managing "Large"” Projects 382
5. References 383
DOCUMENTATION 385
0. Introduction 385
1. The Needs for Documentation 386
1.1. The User's Gutde 387
1.2. The Conceptual Description 388
1.3. Design and Product Documentation 390
2. Special Problems 391
2.1. Deseription of Data and Algorithms 391
2.2, Crossreferencing between Documentation
and Program 392
2.3. Maintaining the Documentation 393
PERFORMANCE PREDICTION 385
1. Performance: Definition, Measurement
and Limitations 396
1.1. What ig Performance? 396
. 2. Measurement of Performance 397
1. Performance as a Function of Input 397
Metrics 398

400



c.

cC.

Gotlieb

1.3.
1.3.1.
1.3.2.

1.4.

2.1.
2.1.1.
2.1.2.
2.1.3.

2.2.

3.1,
3.2.
3.3.

4,
4.1.
4.2.
4.3.

Limitations of Performance
Inherent Limitations
Economiec Limitations
Summary

System Modeling

Types of Models

Analytical Models

Directed Graph Models
Simulation Models

Problems in Modeling

Use of models in Performance Prediction

Problems in using Models

Prediction using an Analytical Model
Prediction using a Directed Graph Model

Simulation

Major Methods

Specification of Job Properties
Data Collection

Simulation Languages

An Example Simulation Model

Integrated Performance Prediction,
Design, and Implementation

The Problems with Non-Integrated
Prediction

Single Language Approach

Interaction with the Designer-
Implementer

Aide to Project Management

References

PERFORMANCE MEASUREMENT

5.
5.1.
5.2.
5.3,

Introduction
Figures of Merit

Kernels, Benchmarks and Synthetic
Programs

Data Collection and Analysis
Hardware Monitors

One Computer Monitoring Another
Monitor Logiec

Examples of Currently Available Hardware

Monitors

4ol
4ol
402
4o3
403
404
405
407
412
416
418
418
422
427
437
437
439
443
444
452

455

456
457

460
461
462

464
464
464

467
470
471
472
472

474

Analysis of Output of Hardware Monitors 475



XI

6. Software Monitors 478
.1. Monitoring form Job-Accounting Data 478
. 2. Packaged Software Monitors 480
.38. Special Monitor and Trace Programs 481

.4. Estimating Monitor Statistics from the
Observations 486
7. References 488
C.C. Gotlieb PRICING MECHANISMS 492
1. The Rationale of Priecing 492
2. Determining Factors 493
3. Costs 493
4, The Factory Model 495
5. Pricing a Service 495
6. Software Hequirements 497
7. Examples for Pricing Mechanisms 4598

7.1. Rate Schedule for the University of
Toronto, 1 Jan 1972 498
7.82. Digk Pack Rental (0ff-Line) 500
7.3. Disk Pack Storage 500
7.4. Disk to Tape Backup 500
7.5. Tape Rental 500
7.6. Tape Storage 500
7.7. Tape Cleaning and Testing 500
7.8. Negotiated Contract Services 500
7.9. Calcomp Plotting 501
7.10. Card Processing 501
8. References 502
H.Jd. Helms EVALUATION IN THE COMPUTING CENTER ENVIRONMENT
1. Introduction 503
2. The Usger and his Needs 505
3. Software and the Computing Center 51o
4. Inegtallation and Maintenance of a
Piece of Software 517
5. Conelusion 520
References 521
APPENDIX

F.L. Bauer SOFTWARE ENGINEERING 522
1. What <s 1t? 523
1.1. The Common Complaint 523



1.

2.

1.3
1.4

2.

2.

1.
2.2.
3.

X1l

The Aim
The Paradox of Non-Hardware Engineering
The Role of Education

Software Design and Production ig an
Industrial Engineering Field

Large Projects
Division into Managable Parts

Division into Distinct Stages of
Development

Computerized Survetillance
Marnagement

The Role of Structured Programming
A Hierarechy of Conceptual Layers
Communication between Layers
Software Engineering Aspects

Flexibility: Portability and
Adaptability

Some existing Examples
The Trade-O0ffs
Coneluding Remarks
Acknowledgements

References

524
524
525

528
528
529

530
531
532
532
532
534
537
538

539
541
541
543
543



S0FTWARE ENGINEERING

An Advanced Course

by J.B.Dennis (Cambridge, Mass.)
G.Goos _ (KarTsruhe)
C.C.Gotlieb (Toronto)
R.M.Graham (Berkeley, Cal.)
M.Griffiths {Grenoble)
H.Jd.Helms {Copenhagen)
B.Morton {Reading, England)
P.C.Poole (Abingdon, England)
D.Tsichritzis (Toronto)
W.M.Waite (Boulder, Colo.)

edited by F.L.Bauer (Munich)

The Advanced Course took place February 21 - March 3, 1972,
organized by the Mathematical Institute of the Technical
University of Munich and the Leibniz Computing Center of
the Bavarian Academy of Sciences,

in cooperation with the European Communities,

sponsored by the Ministry of Education and Science of the
Federal Republic of Germany.



PREFACE

It is not necessary to start with a definition of Software Engineering:
the present book, a consolidated effort of a group of experts, care-
fully prepared in a two-week seminar in Garmisch, Dec. 71/dan. 72, and
presented at a EEC sponsored course in Febr.~-March 72, illustrates the
use of the term.

In 1967 and 1968, the word 'Software Engineering' has been used in a
provocative way, in order to demonstrate that something was wrong in
the existing design, production and servicing of software. The situa-
tion has considerably changed since then; many people show concern
about the problems of software engineering and some of the manufactur-
ers, to which the provocation was mainly addressed, claim that they
already obey the principles of software engineering, whatever this may
mean. Soon ‘'software engineering’' will turn up in the advertisements.
But although the problems are indeed much better understood, the mate-
rial is stiil not concentrated and systematized. The reports of the
NATO Science Committee sponsored conferences of Garmisch and Rome are
a useful collection of material, but not much more. In order to have
teaching material available, more has to be done. This book brings a
first step in this direction.

Our intention in the planning of this course was to cover as much as we
can at the moment of all the aspects of the theme, and to contribute
further to the systematization of the field. We do not actually debate
whether there is a need for software engineering. Instead, we think it
is essential to point out where the ideas of software engineering should
influence Computer Science and should penetrate in its curricula.

Thus we will try to find out as much as possible whether a topic of
software engineering is something you can mention as a kind of a theme
to your students in an academic environment.

In this respect, my major concern was that today one still finds it

extremely difficult, as many people told to me, to digest the material
at hand so that it could be used in a course. Therefore, we envisaged
publication of the lecture notes despite their somewhat tentative na-

ture.



In selecting the participants we took some effort to assure that what-
ever they may learn here is spread out, in particular is propagated in
the universities and the major manufacturers.

It is not quite accidental that efforts on 'Software Engineering' have
been carried on to a large extent outside the United States. The pover-
ty of the computer situation in Europe, at least on the continent, which
is in sharp contrast to the affiuent US computer community, leads to
the demand for the most economical solution. But the roots of the soft-
ware misery go deeper. It comes from the fact that people are forced

to live with machines that they do not want. They have not constructed
them, they simply receive them and have to make the best out of it.
Sometimes, with the chance of buying a new machine, there is some hope
that the situation will improve, but for simple market consideration,
the manufacturer does everything he can do to make the customer stay
with the product, and this usually ends all hopes for improvements.
Thus, software engineering, for the time being, is partly a defense
stratagem. But I hope that some day this situation will turn around,

I hope one day software engineering considerations will dictate how
machines are to be built and then to be used. Thus, what we have to
work for is also preparing the ground for our future 1ife. On the other
hand, failure in mastering the software crisis may lead to strangula-
tion of scientific users that depend on the computer today, in parti-
cular in 'Big Science', and may thus do harm also to science and eco-
nomy in a rich nation.

In the preparation of the Advanced Course, I enjoyed the advice and
help of colieagues and friends. I owe thanks to the co-director,
Prof.L.Bolliet, and to the lecturers for their encouraging support. In
particular, I am obliged to the German representative in the subgroup
for education in informatics of group PREST of the EEC, Dr.R.Gnatz, for
his help; in this connection the moral support from Mr.J.Desfosses (EEC)
and the financial support from the Ministry of Education and Science of
the Federal Republic of Germany should be gratefully acknowledged.The
Conference Staff will forgive me for not mentioning all of them, my
thanks to them go by the name of Mr.Hans Kuss of the Mathematics Insti-
tute of the Technical University Munich, who also was the responsible
redactor of this publication.

Munich, June 1972 Friedrich L.Bauer



