
FORMAL LANGUAGE THEORY AND THEORETICAL COMPUTER SCIENCE t

Ronald V. Book

Department of Computer Science
Yale University
i0 Hillhouse Avenue
New Haven, Conn. 06520, U.S.A.

In the last fifteen years the area of formal language theory and abstract automata

has enjoyed a great deal of attention from the research community in theoretical com-

puter science. However, in the last few years the main interest in theoretical computer

science has been directed elsewhere. In these notes I shall consider the role of formal

language theory in theoretical computer science by discussing some areas in which formal

language theory may find applications.

Behind the activities in theoretical computer science lie the major problems of

understanding the nature of computation and its relationship to computing methodology.

While this area is mathematical and abstract in spirit, it is not pure mathematics:

indeed, theoretical computer science derives much of its motivation from the abstraction

of the practical problems of computation.

Abstraction for the sake of abstraction and beauty is one of the goals of modern

pure mathematics [i]. However, as part of theoretical computer science, formal lan-

guage theory must speak to problems concerning the nature of computation. In Part I of

these notes I point to results of language theory which stem from or lend insight to the

more general study of computability and computational complexity. In Part III discuss

several problem areas where formal language theory may find interesting and fruitful

application. In this context I urge the reader to consult the paper "Programming lan-

guages, natural languages, and mathematics" by Peter Naur [2].

The preparation of this paper was supported in part by the National Science Founda-
tion under Grant GJ-30409 and by the Department of Computer Science, Yale University.

Part I

Formal language theory is concerned with the specification and manipulation of sets

of strings of symbols, i.e., languages. It is my thesis here that as an area of inte-

rest within theoretical computer science formal language theory should be closely tied

to the study of computability theory and computational complexity. Computability theory

is concerned with the representation of algorithms and languages, and computational

complexity considers the inherent difficulty of evaluating functions and deciding pre-

dicates. Within the scope of these studies are the questions of determinism versus non-

determinism, trade-offs between measures and representations, differences in computa-

tional power stemming from different choices of atomic operations, and the existence of

hierarchies.

We shall explore two topics in order to illustrate how the common features and the

differences between formal language theory and computability theory can interact fruit-

fully. In both cases it is shown that the questions and results of formal language

theory take on new significance when reconsidered in terms of computability theory and

computational complexity.

A. Universal Sets

One of the most basic notions in computability theory is the notion of a "universal

machine." This notion allows a representation of the concept of "self-reference" in

terms of a class of algorithms. It is particularly useful when one wishes to establish

that some question is undecidable by working from first principals.

In formal language theory there are concepts that are related to the notion of

universal machine. Consider the specification of a class of languages by means of an

algebraic definition: the smallest class containing some specific language (the gene-

rator) and closed under specified operations. One example of this is the concept of

principal AFL [3]: the smallest class of languages containing the generator and closed

under union, concatenation, Kleene *, intersection with regular sets, homomorphic map-

pings, and inverse homomorphism. Many classes of languages studied in traditional

formal language theory are principal AFLs; e.g., the context-free languages, the regular

sets, the context-sensitive languages. These structures have representation theorems

which are generalizations of the Chomsky-Schutzenberger Theorem for context-free lan-

guages: A language L is context-free if and only if there exists a regular set R,

a nonerasing homomorphism hl, and a homomorphism h 2 such that

L = hl(h2-1(D2) n R), where D 2 is the Dyck set on two letters. Besides providing

certain information regarding the algebraic structure of these classes, the existence

of this type of generator can be identified with a characteristic of an appropriate

class of abstract automata that accept the languages involved: finitely encodable ab-

stract families of acceptors [3].

From the standpoint of computability and computational complexity, the notion of

generator with respect to some algebraic structure can be useful [31] but the more

general notion of a language being "complete" for a class with respect to some type of

"reducibility " is more important when considering the inherent computational complexi-

ty of the membership problem for languages in the class. However Greibach [4] has

shown that in certain classes of languages the algebraic structure yields information

about questions such as the complexity of the membership problem.

There exists a "hardest" context-free language [4]: a language with the property

that the inherent time complexity of the membership problem for this language yields

the order of the achievable least upper bound for the time necessary for the general

context-free membership problem. Formally, there is a context-free language L 0 with

the property that for any context-free language L there exists a homomorphism h such

that for all strings w, w £ L if and only if h(w) ~ LO.% Thus if one has an algo-

rithm @ for deciding membership in L0, then for any context-free language L one

can obtain an algorithm @L for deciding membership in L and the order of the running

time of @L is the order of the running time of @. In this sense L 0 is a "hardest"

context-free language. Similar considerations hold for space bounds.

Greibach's result says something further regarding the algebraic structure of the

class CF of context-free languages, in particular that

= {h-l(L0) I h a homomorphism} . Following [5], let us call a class C a prin-

cipal cylinder if there is some L 0 £ C such that C = {h-l(L0) I h a homomorphism} .

Thus if C is a principal cylinder with generator L 0, then for every L e C there

exists a function f such that for all w, w e L if and ~nly if f(w) ~ L O, and f

is very simple to compute (being a homomorphism). In this way a class of languages is

a principal cylinder if and only if it has a language which is complete with respect to

homomorphic mappings (viewed as a type of many-one reducibility) and closed under in-

verse homomorphism.

There are a number of classes of languages which are principal cylinders, and view-
l

ing them as such is useful when one considers these classes as complexity classes [6].

For example, each of the following classes is a principal cylinder:

(i) For any ~ > 0, the class of languages accepted in space n E by deterministic

(nondeterministic) Turing machines;

(ii) For any k e i, the class of languages accepted in time n k by nondeterministic

Turing machines;

(iii) The class of languages accepted in exponential time hy deterministic (nondetermi-

nistic) Turing machines.

If we consider the notion of a principal cylinder, then we have an example of the

algebraic structure of a class of languages yielding insight into the computational

complexity of the class. However we can discuss the notion of a class having a hardest

language without reference to the algebraic structure.

Let C be a class of languages and let B c C. Then B is a hardest language

+ For the purpose of this discussion, the empty word is ignored.

for C (B is C -hardest) if the following condition is satisfied: if there exists

an algorithm @ for deciding membership in L 0 and @ has running time t(n), then

for every L e C there exists a modification @L of @ and constants c I, c 2 such

that @L is an algorithm for deciding membership in L and @L has running time

clt (c2n) •

In this way the complexity of recognition of a C -hardest language is at least

as great as the least upper bound of the complexity of recognition of all languages in

C and thus the inherent time complexity of the recognition problem for this language

yields the order of the achievable least upper bound for the inherent time complexity

of the general recognition problem for the class C.

If C is a principal cylinder with generator L0, then L 0 is a C -hardest lan-

guage -- this is in the spirit of Greibach's result on the context-free languages [4].

However there are classes which are not principal cylinders hut do have hardest lan-

guages ~ 7]: the deterministic context-free languages, the languages accepted in real

time by deterministic multitape Turing machines, the intersection closure of the class

of context-free languages. Thus the notion of a class having a hardest language is

distinct from the notion of a class being a principal cylinder.

While the definition of hardest language is fairly broad, one can use elementary

techniques to show that certain well-studied classes do not have hardest languages. For

example, the class P of languages accepted in polynomial time by deterministic Turing

machines (or random-access machines or string algorithms) does not have a hardest lan-

guage. The proof of this fact depends on a simple property of algebraic structures.

The class P can be decomposed into an infinite hierarchy of classes of languages: if

DTIME (n k) k for each k ~ i, denotes the class of languages accepted in time n by

deterministic Turing machines, then for every j e 1 DTIME(n j) ~ DTIME(n j+l) and

P = ~ DTIME(nJ). If P has a hardest language L0, then there is some least k such

that L 0 ~ DTIME(nk). From the properties of the class DTIME(n k) and the definition

of hardest language, this implies that p c DTIME(n k) so that the hierarchy

DTIME(n) ~ DTIME(n 2) ~ ... is only finite ending with DTIME(nh, a contradiction.

One should note the difference between the fact that P does not have a hardest

language and the results in ~ 8] showing that there are certain languages which are

complete for P with respect to the class of reducibilities computed in log space (that

is, there are languages L 0 £ P with the property that for every L e P there is a

function f which can be computed by a deterministic Turing machine using only log n

space such that for all w, w £ L if and only if f(w) c L0). A function computed

in log space can be computed in polynomial time. ~owever the result presented above

shows that not all of the reducibilities used in ~ 8] can be computed in linear time.

The argument used above shows even more: the reducibilities used in ~ 8] cannot all be

computed in time n k for any fixed k.

The concept of a universal element is central to computability theory. Studies

of generators and complete sets play important roles in formal language theory and in

computational complexity. These closely related notions each represent some aspects

of the self-referential properties of a class. The results described here suggest that

attention be given to the comparative power of the basis operations needed for these

representations, as part of the development of a conceptual framework to provide

a unified view of results of this type.

B. ~ondeterminism

The mathematical construct of nondeterminism has surfaced periodically in the

forefront of activity in formal language theory. It arises when acceptance of lan-

guages by automata and their generation by grammars, and closure properties of classes

of languages are considered. While nondeterminism is essential for presentation of

certain classes of languages, e.g., the context-free languages, it is not clear what

role this construct plays in computability theory and computational complexity - in-

deed, the underlying notion of nondeterminism is not well understood.

Abstract automata are said to operate nondeterministically if the transition func-

tion (which specifies what to do at each step) is multi-valued -- there is not a unique

move to be performed at each step but rather a finite set of possible next moves. The

automaton arbitrarily chooses (guesses) which move to perform and any choice is valid.

In this way computations of a nondeterministic automaton on a given input may be rep-

resented as a tree in which each node has branches corresponding to the possible next

steps. Such a device is said to accept an input if there exists some path through the

tree ending in a node that indicates an accepting configuration of the automaton.

A nondeterministic automaton may be considered as a representation of a nondeter-

ministic algorithm [32], an algorithm in which the notion of choice is allowed. Row-

ever in this case all the branches of the tree must be explored and all choices fol-

lowed, so that the entire tree must be searched. All configurations resulting from the

data underlying the algorithm must be generated until either a solution is encountered

or all possibilities are exhausted. The implementation of such algorithms is usually

carried out by means of backtracking, and these nondeterministic algorithms are a use-

ful design tool for parsing [33] and for programs to solve combinatorial search prob-

lems, and nondeterministic algorithms provide an efficient specification for algorithms

which deterministically simulate nondeterministic processes.

It was once thought that nondeterminism was a mathematical construct that arose

in the study of automata theory and formal languages but had nothing to do with other

aspects of computer science. This view has changed since the observation by Cook [34]

of the importance of the class NP of languages accepted in polynomial time by nondeter-

ministic Turing machines (or random-access machines or programs written in some general

purpose language). It has been shown by Cook, Karp [35], and others (see [36]) that a

wide variety of important computational problems in combinatorial mathematics, mathe-

matical programming, and logic can be naturally represented so as to be in NP. It is

not known whether these problems are in the class P of languages accepted in polynomial

time by deterministic algorithms. While every language in NP can be accevted by some

deterministic algorithm, the known results force the deterministic algorithm to operate

in exponential instead of polynomial time. In computational complexity, it is widely

accepted that a computational problem is tractable if and only if there is an algorithm

for its solution whose running time is bounded by a polynomial in the size of the input.

Thus it is not known if some of the problems in NP are tractable. Any proof of their

tractability is likely to yield some fundamental insights into the nature of computing

since it would show that the results of backtracking and of combinatorial searching

can be obtained efficiently. See [37, 38] for results in this area and for some inter-

pretations of the role of the question "does P equal NP?" plays in theoretical computer

s cien ce.

Let us consider the known results regarding nondeterminism in resource bounded or

restricted access automata. For the two extreme cases of finite-state acceptors and

arbitrary Turing machines, nondetermlnism adds nothing to the power of acceptance; both

deterministic and nondeterministic finite-state acceptors characterize the class of all

regular sets, and both deterministic and nondeterministic Turing acceptors characterize

the class of all recursively enumerable sets. Between these extremes there is just one

case for which it is known that the deterministic and nondeterministic modes of opera-

tion are equivalent: auxiliary pushdown acceptors. An auxiliary pushdown acceptor

[39] has a two-way read-only ii~put tape, and auxiliary storage tape which is bounded in

size (as a function of the length of the input), and an auxiliary storage tape which is

a pushdown store and is unbounded. If f is a well-behaved space bound, then a lan-

guage is accepted by a deterministic auxiliary pushdown accepter which uses at most

f(n) space on its auxiliary storage tape if and only if that language is accepted by

a nondeterministic auxiliary pushdown acceptor which operates in time 2 cf(n) for some

c>0.

There are a few cases where it is known that a language can be accepted by a non-

deterministic device with certain characteristics but cannot be accepted by any deter-

ministic device with those characteristics. Some examples of this include the follow-

ing:

(i)

(ii)

(iii)

pushdown store acceptors (nondeterministic pushdown store acceptors accept all

and only context-free languages while deterministic pushdown store acceptors ac-

cept only deterministic context-free languages, the languages generated by

L R(k) grammars);

on-line one counter accaptors (the language {w c Yl w,y ~ {a,b}*, w # y} is

accepted in real time by a nondeterministic on-line one counter acceptor but is

not accepted by any deterministic on-line one counter acceptor);

multitape Turing acceptors which operate in real time (the class of languages

accepted in real time by nondeterministic multitape Turing acceptors are the

quasi-realtime languages of [40] while the class of languages accepted in real

time by deterministic multitape Turing accepters are the real--time definable lan-

guages [41, 42]; the former is closed under linear erasing and can 5e decomposed

into only a finite hierarchy based on the number of storage tapes while the lat-

ter is not closed under linear erasing and can be decomposed into an infinite

hierarchy based on the number of tapes);

(iv) multitape Turing acceptors which operate in real time and are reversal-bounded

(the class of languages accepted in real time by deterministic multitape Turlng

acceptors which are reversal-bounded have the property that if a language L is

accepted by such a device and for every x,y ~ L, either x is a prefix of y

or y is a prefix of x, then L is regular; the class of languages accepted by

the nondeterministic devices operating in this way do not have this property

[43]) ;

(v) on-line multitape Turing acceptors which are reversal-bounded (the class of lan-

guages accepted by deterministic reversal-bounded Turing acceptors is a subclass

of the recursive sets while every recursively enumerable set is accepted by a

nondeterministic reversal-bounded acceptor [44]).

In each of the cases (i) - (v), each language L 1 accepted by a nondeterministic

device of the class in question can be represented as the homomorphic image of a lan-

guage L 2 accepted by a deterministic device of that class. When the nondeterministic

device is forced to operate in real time, then the corresponding homomorphic mappings

are n~nerasing (i.e., h(w) = e if and only if w = e), and the class of languages

accepted by the nondeterministic devices is closed under nonerasing homomorphism while

the class corresponding to the deterministic devices is not.

Generally, a class of languages accepted by nondeterministic devices which are

on-line and have finite-state control are closed under nonerasing homomorphism. In

such a setting the operation of nonerasing homomorphism corresponds to the notion of

bounded existential quantification. Thus in the cases above, the homomorphism (or

existential quantifier) chooses (a representation of) an accepting computation of the

device on the input given. The deterministic device is able to check if indeed the

choice is a representation of an accepting computation. In this way an accepting com-

putation of an on-line nondeterministic device can be viewed as having two distinct

phases, one which allows a choice or "guess" and one which checks to see if the choice

has the appropriate qualities. This view of nondeterministic operation is brought forth

strongly in the proofs in [40, 45] where a machine first "guesses" what the input will

be and performs a computation on this guess before checking whether the guess is cor-

re ct.

Representing languages accepted by on-line nondeterministie devices in terms of

homomorphisms or existential quantifiers and languages accepted by deterministic de-

vices is consistent with Karp's presentation of NP-complete problems (languages) [35].

Further, the strategy of "guessing" and then "checking" is fundamental to the structure

of the specific "hardest context-free language" presented by Greibach in [4].

When one considers devices which have two-way input tapes, then the above repre-

sentation does not seem applicable. For example, we see no way of representing the

languages accepted by nondeterministic linear bounded automata in terms of the lan-

guages accepted by deterministic linear bounded automata. While the question of deter-

minism vs. nondeterminism can be treated in terms of complete sets and reducibilities

in this case as well as in the case of on-line devices [46], the role of nondeterminism

is even less understood in the case of two-way devices.

One area where nondeterminism appears to be a useful tool but where it has pre-

viously played little role is in the representation and analysis of logical predicates.

Recently the class of rudLmentar~relations of Smullyan -- the smallest class of string

relations containing the concatenation relations and closed under the Boolean opera-

tions, explicit transformation, and a form of bounded (existential and universal) quan-

tification -- has been studied as a class RUD of formal languages f47]. This class

contains all context-free languages, all languages accepted in real time by nondeter-

ministic multitape Turing machines, and all languages accepted in log(n) space by non-

deterministic Turing machines. On the other hand, every language in RUD is accepted

in linear space by a deterministic Turing machine.

This class is of interest for various reasons. It is closed under most of the

operations associated with classes specified by nondeterministic devices -- union, con-

catenation, Kleene *, nonerasing homomorphism, inverse homomorphism, linear erasing,

reversal -- as well as under complementation, a property usually associated with a

class specified by deterministic devices. Wrathall [47] has shown that RUD can be rep-

resented in terms of nondeterministic devices: RUD is the smallest class of languages

containing the empty set and closed under the operation of relative acceptance by non-

deterministic linear time-bounded oracle machines. This class can be decomposed into

a hierarchy based on the number of applications of the oracle machine. It is not known

whether this hierarchy is infinite and this question is closely tied to the questions

of determinism vs. nondeterminism in automata based on computational complexity. The

results presented in [47] show that the study of closure operations usually associated

with classes of formal language theory can yield insight into the questions arising

in computational complexity.

The study of nondeterminism takes on an extremely important role in theoretical

computer science when it is removed from the context of formal language theory and con-

sidered in terms of computability and computational complexity. The techniques, re-

suits, and insights provided by the previous (and ongoing) work in language theory are

extremely valuable when considering this problem. It is hoped that a healthy interac-

tion between formal language theory and computational complexity will lead to a com-

plete understanding of this important construct.

C. Reprise

In this section I have discussed two examples of notions that can be studied in

formal language theory and in computability and computational complexity. I have at-

tempted to show that studying these notions in terms of the interplay between these

areas will lead to a better understanding of the problems they reflect than studying

them from either area exclusively. It is in this spirit that the role of formal lan-

guage theory in theoretical computer science may find renewal. ~

In this light the reader should find [48] of interest.

10

Part II

In this portion of the paper, several problem areas are discussed. These areas

are not part of the "classical" theory of formal languages and abstract automata. How-

ever each may prove to be an area where formal language theory may find interesting

and fruitful application.

A. L Systems

In the last few years a new area of activity has excited many researchers in auto-

mata and formal language theory. This is the study of L (for Lindenmayer) systems.

Originally L systems were put forth as an attempt to model certain phenomena in devel-

opmental biology, and this motivation continues to provide a robust quality to the

work in this field. However current activity has drawn researchers from cellular auto-

mata and tessellation structures, self-reproducing automata and systems, graph genera-

ting and graph recognition systems, as well as from classical automata and formal lan-

guage theory.

From the biological point of view, L systems provide mathematical tools for build-

ing models of actual individuals or species in order to investigate and predict their

behavior. Further, it is possible to use the machinery of L systems to express general

statements about non-specific organisms and to precisely express hypotheses concerning

the mechanisms behind certain phenomena. To what extent this area will affect the study

of cellular behavior in development depends largely on how fully the analogy between L

systems and the developing organisms they model can be exploited [i0].

From the mathematical point of view, L systems have provided an entirely new per-

spective on languages, grammars, and automata. While the definition of application of

rewriting rules varies from the Chomsky-type model discussed in the classical theory,

many of the questions pursued are the standard ones: characterization of weak and

strong generative capacity, decidability of properties of systems and languages, closure

properties, etc. However a number of questions which are not particularly meaningful

in the classical theory play a prominent role in the study of this new model. For ex-

ample, while the notion of derivational complexity is of interest when studying context-

sensitive and general phrase-structure grammars, it is of little interest when studying

context-free grammars; however, the study of growth functions (closely related to the

"time functions" of 212]) plays an important role in the study of L systems.

Some of the questions arising in the study of L systems are closely related to the

questions regarding extensions of context-free grammars. It appears that there are many

possibilities for these two activities to affect one another, both in terms of tech-

niques (such as the study of recursion, fixed-point theorems, and tree-manipulating

systems) and actual results. Further the techniques used in the study of L systems can

provide interesting tools for studying problems such as synchronization in general al-

gorithnic systems and discrete pattern recognition.

Just as much of the work in classical automata and formal language theory has

11

strayed from the central questions (of computer science) regarding models for computa-

tion and should be regarded as a part of applied mathematics, much of the research in

L systems should be viewed as an exciting new aspect of modern applied mathematics.

The literature in the area of L systems appears to grow without bound (or at least

at the same rate that cells interact and grow). The interested reader can find a brief

introduction in [9] and there is an excellent book 213] by G.T. Herman and G. Rozenberg

which will introduce the mathematically sophisticated reader to most problem areas cur-

rently studied. There are three recent conference proceedings [ii, 14, 15] which will

help the reader to learn a~out relatively current research.

B. Program Schemes

Many results and techniques from automata and formal language theory have found

app±ication in the study of the mathematical theory of computation. This has been par-

ticularly true in the study of the comparative power of different types and features of

programming languages when explicit functions are banished and abstract uninterpreted

programs are considered. This is the realm of program schemes.

Program schemes can be viewed as abstract models of programs where assignment

statements use unspecified functions and the test statements that control the direction

of flow through a program during a computation make use of unspecified predicates.

Thus, a single program scheme is an abstract model of a family of different programs,

each program arising from the program scheme through a specific interpretation of the

function and predicate symbols used to define the scheme. In this way the scheme rep-

resents the control structure of the program and the interpretation represents the

meaning of its instructions.

Many of the results concerning flowchart schemes and recursion schemes depend on

the type of "syntactic" arguments used in the study of acceptance of formal languages

by abstract automata. Also, many results in language theory can be applied to problems

after some rephrasing. This is particularly true when considering problems regarding

the decidability of questions such as weak and strong equivalence, inclusion, and trans-

lation.

Here we point out only a few of the results that directly connect the study of

schemes to formal language theory. Friedman ~ 23] has shown that the inclusion problem

for simple deterministic languages is undecidable and has applied this result to show

that the inclusion problem for monadic recursion schemes is undecidable. Further,

Friedman [24] has reduced the question of equivalence of deterministic pushdown store

acceptors to the question of strong equivalence of monadic recursion schemes, a result

that is quite surprising in that it shows the two questions to be reciprocally reduci-

b le.

Nivat [21] and his students and colleagues in Paris have made some interesting

connections among questions of semantics, polyadic recursion schemes, and general re-

writing systems. Downey [19] has also used general rewriting systems to study recur-

sion in language definition. Rosen [18] has used techniques involving context-free

12

grammars to study the structure of confutations by recurs[on schemes. Engelfriet [20]

has made an explicit attempt to exploit the connections between language theory and

schemes.

Finally, it should be noted that the fundamental paper [17] of Luckham, Park, and

Paterson on flowchart schemes makes frequent use of concepts from automata and language

theory as do others [16, 20].

C. Pattern Rocogn~tion

Many constructs from formal language theory have been used in the study of auto-

matic recognition and generation of patterns, particularly in the case of picture pro-

cessing techniques. This application of language theoretic notions is particularly

fruitful when the approach to pattern recognition is syntactic or structural as opposed

to decision-theoretic. Some of this work is surveyed in [25].

Recently it has been shown that techniques from formal language theory are ex-

tremely useful in certain problems of automatic speech recognition. Lipton and Snyder

[26] have treated the parsing of speech as a problem of parsing probabilistic input and

have presented an efficient optimal algorithm for this problem. The algorithm they use

is a generalization of a well known parsing algorithm for context-free grammars. Levin-

son [27] has taken a similar approach and his work indicates that the area of automatic

speech recognition may be an extremely fruitful area for the application of notions of

automata and formal language theory.

D. Parallel Computation

One area in which notions from automata and formal language theory may find appli-

cation is that of parallel computation. A wide variety of models of parallel computa-

tion have been presented in the literature. Most models have been motivated by problems

arising in the study of operating systems and these models have properties that reflect

the characteristics of certain systems. Some of these models have been explored by

researchers in theoretical computer science because of their ability to express general

problems of sequencing, synchronization, and communication and interaction between pro-

cesses. In particular, Petri nets and vector addition systems have received a great

deal of attention.

Some of the questions modeled in these systems (e.g., deadlock, liveness) have

been represented in terms of abstract automata in order to determine whether or not

they are decidable and, if so, to determine the inherent complexity of the decision

problem. In this area language theory may be useful since many of the properties stu-

died can be represented by means of language-theoretic notions. Examples of this may

be found in 128, 29, 30].

13

qeferenges

il] G.H. Hardy. A Mathersatia6anrs Apology. Cambridge Univ. Press, 1940, reprinted
1967.

[23 P. Naur. Progr~ng languages, natural languages, and mathematics. Conference
Record, 2nd ACMSymp. Principles of Progran~ing Languages. Palo Alto, Calif.,
1975, 137-148.

[3J S. Ginshurg and S.A. Greibach. Principal AFL. J. Computer System S~J. 4 (1970),
308-338.

[4] S.A. Greibach. The hardest context-free language. SIAM J. Computing 2 (1973),
304-310.

Is] L. Boasson and M. Nivat. Le cylindre des langages lineaires n'est pas principal.
Proc. 2nd GI - Profession Conf. Automata Theory and Formal Languages. Springer
Verlag, to appear.

[6] R. Book. Comparing complexity classes. J. Computer System Sc/. 9 (1974), 213-
229.

[7] R. Book. On hardest sets. In preparation.

[8] N. Jones and W. Laaser. Complete problems for deterministic polynomial time re-
cognizable languages. Proc. 6th ACMSyr~. Theory of Computing. Seattle, Wash.,
1974, 40-46.

[9] A. Salomaa. Formal Languages. Academic Press. New York, 1973.

[i0] P.G. Doucet. On the applicability of L-systems in developmental biology. In [ii].

[Ii] A. Lindenmayer and G. Rozenberg (eds.). Abstract of papers presented at a Con-
ference on Formal Languages, Automata, and Development. Univ. Utrecht, Utrecht,
The Netherlands, 1975.

[12] R. Book. Time-bounded grammars and their languages. J. Co,outer System S~J. 4
(1971), 397-429.

[13] G.T. Herman and G. Rozenberg. Developmental Systems and Languages. North-~olland
Publ. Co. Amsterdam, 1974.

[14] G. Rozenberg and A. Salomaa (eds.). L Systems. Lecture Notes in Computer Science,
Vol. 15. Springer-Verlag, 1974.

[15] Proceedings of the 1974 Conference on Biologically Motivated Automata Theory.
McLean, Vs. Published by the IEEE Computer Society.

[16] S. Garland and D. Luckham. Program schemes, recursion schemes, and formal lan-
guages. J. Computer System Sc/. 7 (1973), 119-160.

[17] D. Luckham, D. Park, and M. Paterson. On formalized computer programs. J. Com-
puter System Sci. 4 (1970), 220-249.

[18] B.K. Rosen. Program equivalence and context-free grammars. Proc. 13th IEEE Sym-
posium on Switching and Automata Theory. College Park, Md. , 1972, 7-18.

[19] P.J. Downey. Formal languages and recursion schemes. Proc. 8th Princeton Con-
ference on Information Science and Systems. Princeton, N.J., 1974.

[20] J. Engelfriet. Simple Program Schemes and Eormal Languages. Lecture Notes in
Computer Science, Vol. 20. Springer-Verlag, 1974.

14

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

[41]

M Nivat. On the interpretation of recursive program schemes. IRIA Technical
Report, 1974.

E. Ashcroft, Z. Manna, and A. Pnueli. Decidable properties of monadic functional
schemes. J. Assoc. Comput. Mach. 20 (1973), 489-499.

E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer
Science 1 (1975). To appear.

E.P. Friedman. Relationships between monsdic recursion schemes and deterministic
context-free languages. Proc. 15th IEEE Symposium on Switching and Automata
Theory. New Orleans, La., 1974, 43-51.

K. Fu. Syntactic Methods in Pattern Recognition. Academic Press. New York,
1974.

R. Lipton and L. Snyder. On the parsing of speech. Technical Report Number 37,
Department of Computer Science, Yale University, 1975.

S. Levinson. An Artificial Intelligence Approach to Automatic Speech Recogni-
tion. Doctoral Dissertation, U. Rhode Island, 1974.

J.L. Peterson. Computation sequence sets. Unpublished manuscript.

W.H. Byrn. Sequential Processes, Deadlocks, and Semaphore Primitives. Doctoral
Dissertation, Harvard University, 1974.

W.E. Riddle. Modeling and Analysis of Supervisory Systems. Doctoral Disserta-
tion, Stanford University, 1972.

R. Book.
281-287.

R. Floyd.
644.

On languages accepted in polynomial time. SIAM J. Computing 1 (1972),

Nondeterministic algorithms. J. Assoc. Comput. Mach. 14 (1967), 636-

A. Aho and J. Ullman. The Theory of Parsing, Translating, and Compiling, Vol. £.
Prentice-Hall Publ. Co., 1972.

S. Cook. The complexity of theorem-proving procedures. Proc. 3rd ACM Symp.
Theory of Computing. Shaker Hts., Ohio, 1973, 343-353.

R. Karp. Reducibilities among combinatorial problems. In Comple~ of Computer
Computation (R. Miller and J. Thatcher, eds.). Plenum, N.Y., 1972, 85-104.

A. Aho, J. Kopcroft, and J. Ul!man. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

R. Karp (ed.). Complexity of Computation. SIAM-AMS Proc. VII, Amer. Math. Soe.
Providence, R.I., 1974.

J. Hartmanis and J. Simon. Feasible computations. Proc. Gf-Jahrestagu~g 74.
Springer-Verlag, to appear.

S. Cook. Characterizations of pushdown machines in terms of time-bounded com-
puters. J. Assoc. Comput. Mach. 18 (1971), 4-18.

R. Book and S.A. ~reibach. Quasi-realtime languages. Math. Systems Theory 4
(1970), 97-111.

A. Rosenberg. Real-time definable languages. J. Assoc. Comput. Mach. 14 (11967),
645-662.

15

[42] S. Aanderaa. On k-tape versus (k+l)-tape real time computation. In [37].

[43] R. Book and M. Nivat. On linear languages and intersections of classes of lan-
guages. In preparation.

[44] B. Baker and R. Book. Reversal-bounded multi-pushdown machines. J. Computer
System Sc/. 8 (1974), 315-332.

[45] R. Book, M. Nivat, and M. Paterson. Reversal-bounded acceptors and intersec-
tions of linear languages. SIAM J. Computing 3 (1974), 283-295.

[46] J. Hartmanis and H. Hunt. The LBA problem and its importance in the theory of
computing. In f37].

[47] C. Wrathall. Rudimentary predicates and relative computation. In preparation.

148] H. Hunt, D. Rosenkrantz, and T. Szymanski. On the equivalence, containment, and
covering problems for the regular and context-free languages. J. Co~puter Sys-
tem Sci. , to appear.

