
The Network-Complexity of Equiyalence and

Other Applications of hhe Network Complexity

(Extended Abstract)

C. P. Schnorr

Fachbereich Mathematik

Universit~t Frankfurt

I. Introduction

Let B = {O,1} be the set of Boolean values, let V = {xili~N} be a

countable set of Boolean variables and let ~ be the set of Boolean

polynomials with variables in V.

We consider Boolean computations (i.e. logical networks) that are based

on the set of all 16 binary Boolean operations o:B 2 ÷ B.

A logical network B is a finitet directed, acyclic graph with labelled

nodes such that

(I) every node ~ has either O (i.e.~ is an entry) or

2 (i.e.~ is a non-entry) entering edges~

(2) every entry ~ is labelled either with a variable or with a

constant Boolean function

(3) every non-entry ~ is labelled with some binary Boolean operation

op(~) such that the entries of ~ correspond to the arguments of

op(~).

84

In a natural way we associate with every node m of B an output function

~. We say B computes res~ for all ~ ~ B. Let cost(B) be the resB~

number of non-entries of B. We define the Network-Complexity of a set

FC ~ of Boolean functions as

L(F) = rain {cost(B) I B computes F}.

We believe that the network complexity is a natural measure for the

complexity of Boolean functions. Observe that the asymptotical be-

haviour of the network complexity does not depend on the choice of the

finite base of Boolean operations provided that this base is complete

in the sense that every Boolean function can be computed from this base.

The choice of the complete finite base only influences the network

complexity up to a constant factor.

2. Network Complexity and Turing Machine Complexity

We compare the network complexity and the Turing Machine complexity of

finite functions. In the following we consider programs on multitape

Turing machines with binary input-output alphabet. In an efficient

program p for a function f at least some of the following complexity

measures should be rather small with respect to all other programs for f:

I) the time bound Tp of the program

2) the storage requirement S of the program, ioe.
P

the total number of all tape squares that are handled by the heads

during the computation on inputs of f.

3) the size IIPlI, i.e. the number of instructions of the program p.

Experience indicates that we cannot always minimize each of these

measures by a unique program. So we expect some trade-off's between

85

these measures. Much attention has been paid to the asymptotical be-

haviour of S and T for large inputs. However, the size of the pro-
P P

gram might also be considerably interesting for the computation of

finite functions. It is usually rather hard to write and to check

large programs. Therefore, a "table look up"-program for a finite

function might be fast and might use little space but it might never-

theless be inefficient. In particular it might be very difficult to

find such a "table look up"-program.

In the following we relate the above complexity measures for programs p

to the network complexity of the Boolean functions that are computed

by p. M~Fischer [~3 proved that the network complexity L(f) of f ~

yields a lower bound on the product c T ig T for every Turing pro-
P P P

gram p for f. However, his proof gives no information on the constant

c that obviously depends on the program p. We improve this result by
P

involving the size llPll and the space requirements Sp of program p.

We shall also generalize previous results in that we consider Turing-

Machines with oracles. Our concept of an oracle-Turing-Machine is as

follows. There is an additional input tape with some finite or in-

finite inscription A. A is called the oracle. Relative to a fixed

oracle A a Turing program acts like a standard Turing program. There

are no special oracle-instructions. Let A be an oracle and let p be a

Turing-program then we use the following notations:

A B~'~ B is the partial 0-1 valued function which is computed by reSp :

program p with oracle A. Let reSp(n) be the restriction res B n.

T A (n)
P

is the minimal running time of program p with

oracle A on inputs x6Bn

86

A(n) is the total number of tape squares that are used in the sp
computation of p on inputs x ~B n

IlPll is the number of instructions of program p.

Theorem I [~]

3C~N: Vprograms p: Voracles A: Vn:

L(res~(n)) ~C-,Ip,I~T~(n) ~ lg (S~(n))

Hereby ~ depends on the number of tapes and the size of the alphabet.

C also depends on how the set of possible Turing-instructions is de-

fined.

There is a converse to Theorem I:

Theorem 2 K~]

f ~ ~ (depending on n variables):~program p with oracle A for f:

llpll'TA(n).ig sA(n) & 0(L(f) ig L(f)) 2
P P

The complete proofs of Theorems 1,2 can be found in [7]-

3. The Network Complexity of Equivalence

n n
Consider the functions and(n) : /~ x i, nor(n) = /~x i,

i=I i=1
E q (n) = a n d (n) V n o r (n)

Theorem 3

L(Eq(n)) = 2n-3

L{and(n) ,nor(n))} = 2n-2 : L (and (n)) +L (nor (n))

(i.e. and(n) ,nor(n) are independent).

87

One interesting feature of this theorem is that there exist many

structurally different optimal computations for Eq(n) as for instance

n-1 n-1

/% [xi=xi+ I] , /~ [xi=x n]
i=I i=I

We believe that in such a case there are particular difficulties to

evaluate the exact value of the network complexity.

Theorem 3 also implies that the operations ~ and ~ do not help in
n n

the computation of {and(n),nor(n)} since /~x i , ATX i is an optimal
i=I i=I

computat ion.

The proof of Theorem 3 uses an inductive argument. The different cases

of the induction step are covered by 3 Lemmata. The complete proof of

these Lemmata will appear in [~ 3.

Lemma I

Let B be an optimal computation for Eq(n). Suppose that there is a

variable x i in B which is input to exactly one gate v and this gate is

either a O -gate or a (~ -gate. Then we can compute Eq(n-1) by

fixing res~ either to O or to I and by eliminating at least 2 nodes in O.

An (xi,xj)-path in a logical network is a pair of edge-disjoint paths

(w,v) such that w starts at an xi-variable and v starts at an xj-

variable and w,v have the same head:

88

The length of an (xi,xj)-path is the total number of edges. Let

~(xi,x j) be the minimal length of an (xi,xj)-path in B.

Lemma 2

Suppose B satisfies (I) - (3) : (I) B computes Eq(n), (2) there is a

unique (xi,xj)-path in B, {3) xi,x j are not entry of any ~ -gate and

of any ~ -gate. Then there is a computation B for Eq(n) which satis-

fies (I) - (3) such that JJ~(xi~x j) < J=~(xi'x j) and cost(~) = cost(B).

Observe that the reduction

6

a c c o r d i n g t o Lemma 2 can o n l y be a p p l i e d f i n i t e l y o f t e n s i n c e e a c h s t e p

reduces ~(xi,xj) .

Lemma 3

Let B be a Boolean computation depending on the variables in V(B).

Suppose that for all xi,x j~V(B) there exist at least 2 different

(xi,xj)-paths. This implies cost(B) ~ 2-11V(B) II-2.

It can easily be seen that Lemmata I-3 cover all cases of an inductive

proof for L(Eq(n)) = 2n-3. The same kind of arguments can be used to

prove L{and(n),nor(n)} = 2n-2.

The Boolean functions and(n),nor(n) are independent in the sense that

L{and(n),nor(n)} = L(and(n)) + L(nor(n))

and we conjecture that this independence holds for any choice of a comp-

lete base of Boolean operations. Independence seems to be a basic

notion of complexity theory. It should be observed that many fast

algorithms which improve standard algorithms are based on hidden

89

dependencies of certain functions. For example, Strassen's fast matrix

multiplication yields a particularly interesting example of such a hidden

dependence:

Theorem 4

There exist sets F,G~ of Boolean functions such that (I) F,G depend

on disjoint sets of variables and (2) L(Fv G) < L(F) + L(G).

Proof Let A be an (n,n)-Boolean matrix and let x be a vector of n
n

Boolean variables. We associate with A n and x the Boolean function

B n % • x where A .x is the Boolean matrix An: ÷ B as follows: :x ~-~ A n n

product with respect to addition mod(2) and multiplication mod(2).

There exist 2 n2 different Boolean (n,n)-matrices. Therefore, a stand-

ard counting argument implies that for all n there exists AnSUCh that

L(A n) a c n2/ig n where c > O is some fixed real number. Let

I 2 n
x ,x ,...,x be a set of n-vectors that consist of disjoint sets of

Boolean variables° Let~ be the function~:xi~-~ A n • x i. If

Theorem 4 does not hold then

,A I A 2 n n 3 L(n' n' 'An) ~ c ig n

However, AnX1,AnX2,....,An xn is the matrix product of A n and the matrix

I n
with column vectors x , ,x . Therefore, Strassen's fast algorithm

for matrix multiplication yields

L(AIn A n) ~ 0(n lg7)

This proves Theorem 4 by contradiction.

4. Satisfiability is quasi-linear complete in NQL

A fundamental problem of computer science is the power of non-determin-

istic machines. Cook raised the question whether the classes P (NP,resp.

of all decision problems that can be solved within polynomially bounded

90

time on deterministic (non-deterministic, resp.) Turing-machines co-

incide. Cook proved that Satisfiability (i.e. the problem to decide

whether a given conjunctive Boolean normal form is satisfiable) is

polynomial complete in NP. This means that Satisfiability is in NP

and for every problem A in NP there is a polynomially time bounded re-

duction of A to Satisfiability. Cook, Karp and others established a

long list of polynomial complete problems in NP.

These results are improved by the following Theorem 5 which shows that

Satisfiability is one of the most hardest polynomial complete problems

in NP. In order to formulate this result we restrict the class of poly-

nomially time bounded reductions.

A time bound T(n) is called quasi-linear in n if T(n) = O(n(ig n) k) for

some fixed k. Consider the following classes of functions and problems.

Let QL f be the class of functions that are computable on Turing machines

in ~uasi-!inear time. Let QL be the class of decision problems that can

be solved on Turing-machines in deterministid ~uasi-!inear time.

Let NQL be the class of decision problems that can be solved on Turing

machines in non-deterministic ~uasi-~inear time.

Then we can prove that Satisfiybility is quasi-linear complete in NQL:

Theorem 5 [8]

(]) Satisfiability is in NQL

(2) VA~NQL : ~QLf:

[Vx:x~h: <=> ~(x) is satisfiable]

(i.e. 9 is a quasi-linear reduction of A to Satisfiability)

91

An immediate consequence of Theorem 5 is the following

Coro ii ary QL = NQL <=> Satisfiability ~QL

The main step in the proof of part (2) in Theorem 5 is an application

of the simulation of Turing-machines by logical networks according to

Theorem I.

The question whether QL = NQL? is very much like the famous P = NP?-

problem. However, a proof for QL # NQL seems to be not as hard as for

P # NP. Using Theorem 1 it would satisfy to prove a slightly higher

than quasi-linear lower bound on the network complexity of Satisfiability.

However,a proof for P ~ NP by this way requires a superpolynomial lower

bound on the network complexity of Satisfiability.

References

I. Cook, S.A.: The Complexity of Theorem-Proving Procedures.
Symposium on Theory of Computing 1971. 151-158

2. Fischer, M.J.: Lectures on Network Complexity.
Preprint Universit~t Frankfurt, 1974

3. Karp, R.M.: Reducibility among Combinatorial Problems.
in: Complexity of Computer Computations.
R.E. Miller and J.W. Thatcher, Eds.,
Plenum Press, New York (1972) 85-1o4

4. Paul, W.J.: 2.25N - Lower Bound on the Combinational Complexity
of Boolean Functions. Symposium on Theory of
Computing, 1975

5. Schnorr, C.P.: The Combinational Complexity of Equivalence.
Preprint Universit~t Frankfurt 1975,
to appear in Theoretical Computer Science

92

6. Schnorr, C°P.: Zwei lineare untere Schranken f~r die Komplexit~t
Boolescher Funktionen. Computing 13, (1974)

7. Schnorrr C.P.: The Network Complexity and the Turing Machine
Complexity of Finite Functions.
Preprint Universit~t Frankfurt, 1975

8. Schnorr, C.P.: Satisfiability is Quasi-Linear Complete in NQL.
Preprint Universit~t Frankfurt, 1975.

