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0. Introduction 

~fne problem of trams~mission of Lnformation over a c~ication charmel can be 

studied in two ways which are conceptually different.The first was originated by the 

fundamental work of C.E.Shannon [I 61 .The source of information is a probabilistic ergo- 

source.It satisfies the foll~Lng property [81(E-property)~ich is verdi L mportant dic 

in information theory:the sequences of large l~gth n generated by an ergodic source 

of entropy H(S) can be divided in two groups.The sequences of the first group,called 

also standard,have a probability close to 2 -H(S)n and are in number approxLmately equal 

to 2 H(s)n .The remaining sequences of length n have a total probability which vanishes 

for n diverging.The E-property makes it possible then,to separate fr(~ the initial 

language a sub-language formed by the "high-probability group" of the aoDroximatel Z 

~iprobable standard sec~Jences,wlnich play the essential role in the coding of Shannon's 

theorems. 

Another approach to i~o~r. ~tion theory that we call "linguistic" exists.This in 

some respects equivalent to the previous one,consists in considering directly a langua- 

ge L described by the so-called stucttme-function f of r~ndelbrot [I 2] .For all n, f (n) 

gives the number of distinct words of length n contained in the language L.The entropy 

H(L) of the language L can be,then,defined in a purely combinatorial fashion,as the 

(I/n) inS(n) [ or,more generally,as iLm suD(I/n)in2f(n) ] .It can he regarded as the iLm 
n+ ~ n+~ - 

number of or the least upper bo~Ind to[bits Per symbol required,on the average , to 

specify a word of the language.This concept of entropy was initially introduced by 

Shannon hLmself [16] in the case of languages consisting of all "messages" generated by 

a finite-state cc~m~nication eh~el,a_nd was named chmnnel-capacity.This definition 

] of entropy was successively extended by Chomsky and Millerl3 to any finite-state fan- 
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guage and by other authors [ I, I 0,17 ] to wider classes of formal languages .The main 

problem considered by these authors was,essentially,that of giving for some classes 

of formal languages (as,for inst~nce,sc~e subclasses of context-free languages)general 

computation methods of the entropy of a language of the class by knowing an underlying 

grarmmr generating it.Recently K&minger [7 1 proved that there cannot exist a general 

computation method of the entropy of languages generated by context-sensitive grammars. 

The aim of this paper is that of making a preliminary analysis of the problem 

of transmission of information in the context of the linguistic approach.We shall 

consider sources of information generating,in the general case,recursivelv enumerable 

(r.e.)languages (which can be always produced by type-0 granmars []4] )initially descr- 

ibed by the structure function only.We are not much interested in the underlying gram- 

mar generating a language L,but exclusively in its entropy H(L).The main problem that 

we shall consider is the one of efficient coding for the words of L relative to a gi- 

ven "effective-decoder" of it.This problem can be faced in a natural way by .making use 

of the KoLmogorov programccomplexity_ [2,9,11,15] .In fact the program-complexity K (~) 
- + 

of a word {,relative the partial recursive (p.r.)function (or decoder) ~ :~ ~,can 

be regarded as the minimal length of a "code-word" of ~ in a "co.nmunication-schema" 

where the "receiver" is an algorithm con%puting ~ and a "code-word" of a string is a 

"computer-program" for it (~! Moreover the program-complexity K(~)relative to a univer- 

sal p.r.function (or universal decoder) of the words of L gives a measure of their 

structural-complexity,since K(~) represents the .minimum n,~mber of bits,to within an 

additive constant,required to define ~ in an effective manner.The function K allows, 

therefore,an analysis of the structure of a r.e.language L deeper than those obtained 

by means of the structure function f.However,as we shall see in the following, the 

overwhe]lning majority of the words of L of large length l~I has a "compression-coeffi- 

cient" Z(6):=K(~)/ I~I approximately equal to (I/ I~l)lnzf(I~I) (in the case of a binary 

code-alphabet) .The entropy H(L) can be,then, redefined in terms of Kolmogorov's comple- 

xity of the words of L. 

I .Entropy of a formal language and Kolmogorov complexity 

Let X be a finite (non e~pty) alphabet of cardinality II X II ,and ~ the free-too 

noid generated by X,that is the set of all finite sequences or words % of symbols of 

X including the empty word I .The length of a word ~ will be denoted by l{I .A language 

(X) A generalization of this schema in which the "receiver" is a formal system has 
been proposed by the author [4-6] 
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L over the alphabet X is any subset of ~.Let X n be the set of all the words over X 
n 

of length n.For any language L we denote by L its subset L := L A X .The entropx 
n n 

H(L) of L is the quantity H(L):= i~ sup(I/n) in2f (n) ,where f is the structure-function 

of L defined as f(n):= llLnll ,for all n.From the definition one has that H(L) is finite 

iff L is an infinite language.In this latter case 0 --< H(L) <- in 2 I[XII . 

In the following we shall _mainly consider recursively entEnerable languages.A 
[ . 

language L is recursive iff L and its compl~nent ~L are recursively enttmerable[14]. 

Moreover a r.e. language is recursive iff its structure function is computable.We 

want now describe a r .e. language in terms of the Ko]_mogorov program-con%olexity of 

its words.We recall that for any p.r.function ¢ : Y~ X ~ ,the program-complexity 

K (~) relative to @ is defined as K (~) :=rain { IPl 19(P )= ~},where,conventionally 

mine=+ ~.The quantity K (~) depends ~in~an essential way~ on~ the p.r.function @.Howe- 

ver a basic theorem due to Solomonoff [181 and Kolr~gorov[9 j shows that there are asym- 

ptotically optimal p.r.functions with respect to which to evaluate the program-comple- 

xity.More precisely,a universal p.r.function U :~+ ~ exists with the property that 

for any other p.r.function ~ :Y~÷ X x one has that K (~)~K (~)+c f with ~ and Cu,SN 
U ~ U,,+' 

(N is the set of nonnegative integers).For any such two universal p.r.functions Uland 

U 2 ,IKu} ~)-KU~ ~)[_<cost~or all ~c~.Therefore,for all ~, KU} ~)and KU~ ~)are equal 

to within an additive constant which can be neglected for high values of the complexi- 

ty.The program-complexity of a string ~s~ relative to a fixed universal p.r.function 

U,will be simply denoted by K( ~ ).The following theorem,that generalizes a result of 

Kolmogorov and Martin-Lof 11 3] ,shows the relationship existing between the program- 

complexity of the words of a r.e. language and its structure function. 

Theoreml .I .For all n,such that L ~ ~ ,one has that 
n 

i. K( ~ )--< indf(n)+ O(!ndn),for all ~E Ln,where d= IIY II and O(indn)denotes 

a quantity of the order of indn when n diverges. 

ii.The number of words of L for which K(~) -> llndf(n) I - ~,with 6~N (~xj 
n -6 

is the greatest integer ~ x) is greater than f (n) (I -d /d-1 ) . 

ill .There isalower bound to the number of words of L for which K(~) < 
n 

[]_ndf(n) ] -~ given by f(n) d -~ -C/d3(d-1) ((d-1)n+d) 2 - I/d-l,with cEN. 

For any r.e.laun~dage L the elements of the sublanguage V( 6 )--{~EL I K( ~ )=> [indf(n) ] 

-6 },whose e n t r o p y  e~tuals H (L ) , a r e  cal le~l  t h e  ( f ,~ ) - randcrn  e l emen t s  o f  L.With t h e  on ly  

exception when H (L)= in 2 II X II the ~,'~ 6)-random elements of L are,for large n,a very 
n 

smal l  f r a c t i o n  o f  t h e  s e t  o f  a l l  sequences  o f  l e n g t h  n .A consequence  of  theorem 1.1 
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is that if L~ @ then V (~)~ @ since there is at least a word ~sL such that K(6} 
n n n 

=> Llndf(n) ] .Furthermore, when H(L)>0 a p.r.function r: N ~ cannot exist such that 

r(n) m V (~) for all n for which L ,~ '~. From this it is easy to derive that if L is 
n n 

recursive and H(L)>O, then  V(S) c a n n o t  be  r e c u r s i v e l ¥ _  e n ~ a e r a b l e  and K i s  n o t  com~uta-  

ble in L. 

2. Effective codin~ 

Let ~iJ : Y ~÷x~ be a p.r. function.A word oaY m such that ~ (p)=~ with %a~ can be 

regarded as a code-word (or coding) ,in the alphabet Y,of { relative to @. The function 

~} will be referred to as an effective-decoder (e.d.) for any lamc~aage L C p~nnqe @. 

Definition 2.] . For any given language L (LC_~) an [effective l-decoder of L 

is any [p.r.]-function @ :Y~+ X Z ,such that Range c~ DL. 

The alphabet Y is called the code-alohabet (Y can be equal to X).For all {sL 

the inverse-Lmage p I (~)C_ ~is formed by all code-words of ~.The quantity C(@ ):= 

H(Range @) will be nmmed the capacity of @.For si%y [effective] -decoder ~,C(@) equals 

the maximum of the entropy of any ]r.e.] language contained in _Range @. 

Definition 2.2 .For any given [effective ] -decoder @ of L an [effective ] -enc~]er 

of L,relative to ~,is any [p.r. I -function ~-I :-X~+ ~ such that Doe 91~L and 

~_i( ~)~-i (~) ,for all ~mL. 

It is easy to derive,from recursive function theorf,the following: 

L#mma 2.1 .Given an arbitrary, r.e.lanquage L and an e.d.@ of it there exists always 

an effective encoder @-I of L. 

For any oartial function p: X + _ + R (X +: K~ and R is the set of real ntmmbers) 

such that Domp DL- {l},let us denote by p (L), <p> (n) and <@> (L) respectively the 

quantities p (L) :=lie sup{@ (~) [~ L&i~i ->-n} ,<P> (n) := Z p ({)/f (n) for L ~ @ ,<p> (m) := 
n+~ ~L n 

lie sup <p> (n) . n 
n-~o 

With respect to any encoder ~-I ,relative to the decoder @ of L the con~pression- 

coefficient '~-i ( ~ ) of a none!npty string ~ of L is defined as '~-i ( ~ ) := ~ I ( ~ )I/~!. 

Ftrt*_b_ermore ~-I (L) ,<~ -I > (n) and <~" 1 > (L) will be called,respectivel~f,the cc~ression- 

coefficient of L,the average compression-coefficient of L] (Ln~)and the average eo~n- 

ression-coefficient of L.For any effective decoder @ of a r.e.language L the quantity 

~@(~) :: K (~) /~I ,where ~ is a nonempty word of L and K9({ ) the progrmm-cc~plexity 

of ~ relative to p ,represents the _minimal value of the compression coefficient of ~aL 
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with res.nect to all encoders ~]of L relative to ~p.Moreover,one has that ~ ! (L)-> ~ (L), 

<~_i >(n) _-><~¢>(n) and <~q>(L)_>- <U >(L). 

;kn encoder ¢_isuch that i9½ (6)I = K~ (6) in L is called absolutely-optimal.Such 

an encoder is effective iff K is commutable in L.Therefore,the existence of an effec- 

tive absolutely-optimal encoder of a r.e. language denends in an essential wav on the 

effective decoder ~.For an infinite r.e.language L there exists always a recursive 
0 

injection o :~÷ X • such that L z_Range ~.An effective encoder ~° I (which certainly 

exists by Lermaa 2.1)relative to ,$°is absolutely ootimal since {~°_ 1 (~)}=- (o)~ (6). 

On the contrary,from what we said at the end of the previous section,it follows that 

an absolutely-optimal effective encoder of a recursive la~nguage L,with H(L)>0,relati- 

ve to a universal e.d. U does not exist. 

It is easy to prove that the e.d. U,whose capacitv equals in 2 ri x ]I ,is such that 

any word ~e~ has an infinite ntumber of code-words.This fact justifies our definition 

of [effective ] -decoder which is a more general one than the usual.Psrthermore the 

basic Solomonoff-KoLmogorov theorem can be restated,in te~_~ms of c~mnression-coefficie - 

nts,in the following form:there exists an effective decoder U of any r.e.language L 

(that is U is a universal e.d.)which is asvmmtoticallv-omtimal with resnect to all 

effective-decoders ~ of L,in the sense that for any s>0, DU(6)_-<~9 (~)+s ,when ~sL 
n 

with n sufficiently large.It follows that Pu(L) < = p~(L) and ~UI (L): PU2 (L) for any 

such two universal decoders U 1 and. U 2 .Therefore the Quantity u (L) := PU (L) ,~Vnich de men- 

ds only on the r.e.language L,represents the minimal co_moression-coefficient of L with 

respect to all e.d.of it. 

A corollary of theorem 2. I of the previous section is the following proposition 

concerning the comnression-coefficient ~L (6):=K(~)/ i~I of the words of =~n infLnite r.e. 

language L. 

Pronosition 2.1 .Given any s>0 ,the (f,~)-random elements of L of length n,for a 

fixed ~,are such that I p (~)-(I/n)indf (n) ]<s ,when n diverges.The fraction of the 

remainLng words of Ln ,for which u (~) -<_ (I/n)indf (n)-c ,becomes as small as one 

wishes for a sufficiently large ~. 

If there exists ~ (I/n) In2f(n) =H(L) one has that[ p(~)-H(L)/Ln2dl <c for 

{EV (~) when n diverges.A consequence of proposition 2.1 and of theorem I .I is that 
n 

<p> (L)= n (L)= H(L)/in2d. Furthermore,for any r.e.language L,of entropy H(L),there is 

always an e.d.} which is optimal in the sense that pC (L)= <D > (L) =H (L) /In2d,relative 

to which there exists an absolutely-omtimal effective encoder ~ ½. 

A class of decoders very important from a theoretical and practical point of 
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view is those of sequential-decoders which are such that if a word ~ of a language L 

canbe factorized in subwords ~ (i:I .... k)still belonging to L,then a code~4ord (or 

program) for ~ can be obtained by making the juxtaposition of the code-words of 6i's. 

This condition is verj important in information theory, since one is interested in 

transmitting sequences of words (or messages)of a given language. 

Definition 2.3 .Let 4: Y~+ ~ be an[effective]-decoder of a language L.It is 

called sequential if for all k aN: 

~(pil) ..... ~(Pik ) aL and ~(pil)- • .~(Pik)a L~>~(Pil..Pik)=~(Pil)...~(Pik) 

From Lhe definition it follows that if 9 is a sequential decoder of L and ~ = 
k 

~i[...~i k with ~,~il,..~i k aL then one has K~(~)~iZI= N (~i).It. is ~Dossible to show 

that for any r.e.language L of entropy H(L) there is an effective sequential deco- 

der ~ of L ~ (L ~ denotes the monoid generated by L) and therefore of L,which is opti- 

mal in the sense that p~(L)= <~ >(L) =H(L)/in2d . 

3.Concluding remarks 

In the setting of the co~mmunication-schQ~a described in the introduction we 

have seen in the previous section some results on coding which are obtained by means 

of the Kolmogorovprogram-complexity theory.However we stress that the "efficiency_" 

of such a coding does not depend only on the compression-coefficient of the words 

which one wishes to transmit,but also on the time of commutation required to obtain 

them. In fact it can occur that one can keep "small" the amount of program but increa- 

sing the computation resources(time,space,etc) beyond any realistic l£mitation.There- 

fore also the "dynamic" aspects of the computation have to play a relevant role in 

this theory.Moreover we believe that the previous approach in which the receiver is 

schematized by an algorithm(or,more generally,by a formal system)can be a good frame 

to analyze higher levels of the con~mm%ication as,for instance,how to transmit in order 

that the message affects the conduct of the receiver in the desidered way(praqmatical- 

level]. 
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