
CONTROL STRUCTURES AND MONADIC LANGUAGES

#~)
Klaus Indermark

GMD - Universit~t Bonn

i. Introduction The theory of program schemes allows to investigate the impact of

control mechanisms on the computation power of programs. Those properties which do

not depend on the state structure and which hold for arbitrary base functions and

data structures can be analysed by means of monadic schemes with one variable. Two

such schemes are equivalent iff the sets of computation sequences of their standard

forms coincide. This shows how control constructs can be treated syntactically,

namely by comparing classes of languages 12].

The purpose of this paper is to study the particular structure of these languages,

called monadic languages (with conditions). A complete version with proofs can be

found in 131.

2. Monadic languages

Let A and B be disjoint sets with IAI > 1 and IBI > 2. E := A U B. The ele-

ments of A are called actions, those of B conditions, and those of

C(A,B) := (BA) B computations over (A,B).

A set L of computations over (A,B) is called a monadic language over (A,B) iff

it satisfies (M):

(S) V (w,v,v' e ~:~, a g A) ~(v'' g ~#) way, wv' ~ L => v' = av''

This property means that an action is uniquely determined by the preceding condition.

In other words: a monadic language can be represented by a tree (finite or infinite)

which branches out via B.

Example A= {a } , B-- {be,b I }

b I a bl a b I a b 1

b ° b lbo b
a ° a °

b I b I

represents the same monadic language L
o

(b I a b I a) (be v b I a b ° a bl).

a

~b O

as the regular expression

~) This research has been supported by the Gesellschaft ffir Mathematik und Daten-
verarbeitung mbH., Bonn (GMD)

~#) Address: Institut f~r Informatik, 53 Bonn, Wegelerstr. 6, W-Germany

290

By ~ (A,B) we denote the class of monadic languages over (A,B). They coincide

with Engelfriet's deterministic standard L-schemes 121. In fact, the sets of compu-

tations of Ianov schemes and de Bakker/Scett schemes in standard form are languages

of this type. Moreover, if D = (D; ~, Z) is an interpretation of (A,B), i.e.

(i) D is a nonvoid set, (ii) ~ : A ÷ D D, (iii) Z : D ÷ B, then (L,D) with

L S ~(A,B) represents a partial function f(L,D) : D-> D, and this representation

is unique: f(LI,D) = f(L2,D) for all interpretations D of (A,B) <=> L 1 = L2o

3. Operations on ~(A,B)

We shall define certain operations on ~(A,B) in order to characterize subclasses

of languages that correspond to classes of program schemes. Therefore, we simulate

syntactically operations on programs such as composition, branching and iteration.

However, one cannot use the algebra of regular sets as in 151 because of the parti-

cular nature of ~(A,B).

Let L, LI, L 2 c C(A,B) and ~ C B. We call

(i) L 1 o L 2 := {w b v I w b £ LI~ b v 6 L 2}

the conditional product of L 1 and L 2 and

(ii) L 1 ~L 2 := (~ ~ L I) u ((B \ ~) o L2)

the c o n d i t i o n a l u n i o n o f ._L_L 1 a n d L 2

(iii) With L ~ := B and L @ := L o L ~ (n C~) we call L e := 0
n=o

the conditional iteration of L.

w.r.t.

L®

Lemma ~(A,B) is closed under conditional product and conditional unions. This

does not hold for conditional iteration.

Conditional product and union correspond to program composition and branching,

respectively:

L I ~ L 2 is the language of

L 1 ~ L 2 is the language of

Finally, the conditional iteration can be used to describe the language of the

following program iteration I~-~

291

Namely, if L.
l

gram (i = 1,2)

is the set of computations leading to exit i in the original pro-

L~°I L2 describes the computations of this program iteration. then

Lemma ~ (A,B) is closed under program iteration, i.e.,
@

L, LI, L 2 e ~(A,B) , L = L l ~ L 2 => L 1 o L2 6]qf[(A,B)

A special case of program iteration is the so-called while iteration:

(~ o L) • (B \ $) is the language of

4. Goto and while languages

By means of these operations it is possible to characterize the languages of while

and goto schemes. While schemes are Ianov schemes with while loops only whereas goto

schemes are arbitrary Ianov schemes.

The class ~ (A,B) of base languages over (A,B) is defined by

(A,B) := {~ I ~ < B} u {B a B I a S A}. Clearly, ~ (A,B) < ~(A,B).

The class ~ (A,B) of goto languages over (A,B) is defined as the smallest sub-

class of %q~(A,B) that contains ~ (A,B) and that is closed under conditional

product, conditional unions and program iteration.

If we replace in the definition of ~ (A,B) program iteration by while iteration

we get the class ~(A,B) of while languages over (A,B) o

Theorem ~ (A,B) = ~ (A,B) n Rag (A u B)

This theorem shows that the goto languages are just the regular monadic languages,

hence, the computation sets of Ianov schemes in standard form.

From the definition of while schemes and while languages it follows that while

languages are the computation sets of while schemes. Moreover, we can prove that

~(A,B) ~ ~ (A,B) using a generalization of Brzozowski's derivations Iii.

Theorem L £ O~ (A,B) \ ~(A,B)
o

This proves syntactically that, in general, goto's cannot be eliminated by while

statements unless one allows boolean variables, e.g.

292

5. Conclusion We defined an algebraic structure on ~6[(A,B) in order to give

inductive descriptions of computation sets of goto and while schemes. However, the

characterization of ~ (A,B) is ~msatisfactory insofar as the program iteration is

a partial operation: it can be applied only to certain pairs of monadic languages.

But, what are the permissible pairs?

In a forthcoming paper 141 , we remove this drawlback by means of so-called vector

languages. Moreover, they can be used to characterize computation sets of repeat

exit schemes.

References

111

121

141

Lsl

J.A. Brzozowski: Derivatives of Regular Expressions.

Journal ACM Ii (1964), 481 - 494

J.Engelfriet: Simple Program Schemes and Formal Languages.

Springer Lecture Notes in Computer Science 2o (1974)

K. Indermark: On a Class of Schematic Languages.

GMD-ITAS-Seminarbericht 82 (1974); to appear in:

Proc. International Seminar on Languages and Programming Theory, Madrid (1975),

North Holland P.C.

K. Indermark: The Continuous Algebra of Monadic languages.

Proc. Mathematical Foundations of Computer Science, Mari&nsk~ L~zne,

Czechoslovakia (1975); to appear in:

Springer Lecture Notes in Computer Science

D.E. Knuth and R.W. Floyd: Notes on Avoiding goto-Statements.

Information Processing Letters I (1971), 23 - 31

