
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

38

P. Branquart • J.-P. Cardinael. J.
J.-P. Delescaille • M. Vanbegin

I

Lewi

An Optimized Translation Process
and Its Application to ALGOL 68

II I

Springer-Verlag
Berlin-Heidelberg- New York 19 7 6

Editorial Board
P. Brinch Hansen • D. Gries • C. Moler - G. Seegm(Jller - J. Stoer
N. Wirth

Authors
Paul Branquart
Jean-Pierre Cardinael*
Johan Lewi**
Jean-Paul Delescaille
Michael Vanbegin

MBLE Research Laboratory
Avenue Era. van Becelaere 2
1170 Brussels/Belgium

* Present address:

** Present address:

Caisse Gen6rale d'Epargne et de Retraite,
Brussels, Belgium

Katholieke Universiteit Leuven,
Applied Mathematics and Programming
Division, Leuven, Belgium

Library of Congress Cata}oging in Publication Data

Main entry under title:

An Optintized translation process and its applica-
tion to ALGOL 68.

(Lecture notes in computer science ; 38)
Bibliog?aphy: p.
Includes index.
1. ALGOL (Computer program language)

2. Compilir~g (Eleetronic computers) I. Branquart~
Paul, 1937- II. Semies ~
QA76.73. A25067 001.6 ~" 424 75-45092

AMS Subject Classif icat ions (1970): 68-02, 68A05 , 90-04
CR Subject Classif ications (1974): 4.1, 4.12

ISBN 3-540-07545-3 Springer-Vertag Berl in • Heidelberg • New York
ISBN 0-387-07545-3 Springer-Verlag New York • Heidelberg . Berl in

This work is subject to copyright All rights are reserved, whether the whole
or part of the materia! is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than
private use, a fee is payable to the pubJisher, the amount of the fee to be determined
by agreement with the publisher.
© by Springer-Vertag Berlin • Heidelberg 1976
Printed in Germany
Offsetdruck: Julius Beltz, Hemsbach/Bergstr.

FOREWORD

In the late sixties, the definition of ALGOL 68 I 11 , for a long time called

ALGOL X, reached some stability. It is at that period (1967) our team started the

project of writing a compiler for that language. We had two goals in mind :

(I) to make significant research in the field of compiler methodology,

(2) to point out the special difficulties encountered in the design of the compiler

and thus possibly influence the definition of the language.

This book is concerned with the first goal only ; ALGOL 68 should be considered

a support to explain and develop compiling principles and techniques.

The whole book is directly based on the actual compiler we have written for the

Electrologica-X8 computer ; this compiler has been operational since early 1973o

Since May 1975, it is available on the "BS-com~uter", the Philips prototype develo-

ped by MBLE and which is at the origin of the UNIDATA 7720. In fact, the X8 has be~n

microprogra~ed on the BS [22] ; it is worthwhile to mention that microprogramming

did not introduce any significant loss in efficiency.

The book does not require a very deep knowledge of ALGOL 68 except in some special

cases described here for the s~e of completeness only. The reading of some general

description of the language as provided by 117] is however assumed.

Acknowledgments

We should like to express our thanks to Mrs Micheline Mispelon for her excellent

typing of the manuscript and to I~ Claude Semaille for his careful drawing of the

figures.

IV

SU~4ARY

The book describes a translation process which generates efficient code while re-

maining machine independent. The process starts from the output stream of the syntac-

tic analyzer.

(I) Code optimization is based on a mechanism controlling a number of static proper-

ties and allowing to make long range previsions. This permits to minimize the

dynamic (r~u-time) actions, replacing them by static (compile-time) ones whene-

ver possible, in particular, much attention is paid on the minimization of run-

time copies of vaiues~ of run-time memory management and of dynamic checks.

(2) Machine independency is improved by translating the programs into intermediate

code before producing machine code. In addition to being machine independent,

intermediate code instructions are self-contained modules which can be transla-

ted into machine code independently, which improves modularity. Only trivial lo-

cal optimizations are needed at the interface between intermediate code instruc-

tions when machine code is produced.

The description of the translation process is made in three parts :

-PART I defines the general principles on which the process is based. It is made as

readable as possible for an uninitiated reader.

-PART II enters the details of translation into intermediate code : particular pro-

blems created by all ALGOL 68 language constructions and their interface are sol-

ved.

-PART IIl shows the principles of the translation of the intermediate code into ma-

chine code ; these principles are presented in a completely machine independent way.

CONTENTS

PART I : GENERAL PRINCIPLES

O. INTRODUCTION

O. 1 BASIC CONCEPTS

0.2 THE TRANSLATOR AUTOMATON

1. RECALL OF STORAGE ALLOCATION PRINCIPLES

1.1 MEMORY REPRESENTATION OF VALUES

1.2 CONCEPTUAL MEMORY ORGANIZATION

1.3 PRACTICAL MEMORY ORGANIZATION

1.4 RANGE STACK ACCESSES

1.5 REMARK ON THE IMPLEMENTATION OF PARALLEL PROCESSING

2, STUDY OF THE STATIC PROPERTIES OF VALUES

2.1 THE ORIGIN

2.2 THE MODE

2.3 THE ACCESS

2.3.1 GENERALITIES ON ACCESSES

2, 3.2 RESTRICTIONS ON ACCESSES

2.3.3 VALIDITY OF ACCESSES

2.3.4 LOCAL OPTIMIZATIONS

2.4 ME~ORY RECOVERY

2.4, 1 STATIC WORKZNG STACK MEMORY RECOVERY

2, 4.2 DYNAMIC WORKING STACK MEMORY RECOVERY

2.4.3 HEAP MEMORY RECOVERY

2, 5 DYNAMIC CHECKS

2.5.1 SCOPE CHECKING

2.5.2 CHECKS OF FLEXIBILITY

3. STUDY OF THE PREVISION MECHANISM

3.1 MINIMIZATION OF COPIES

3.2 THE TOP PROPERTIES OF FLEXIBILITY

1

3

3

8

12

12

12

12

15

17

19

19

20

21

21

23

26

27

31

31

34

40

55

56

61

67

67

69

PART II : DETAILS OF TRANSLATION INTO INTERMEDIATE CODE

O. INTRODUCTION

O. 1 GENERALITIES

O. 2 METHOD OF DESCRIPTION

0.3 DECLARATIONS FOR RUN-TIME ACTIONS

71

73

73

74

78

Vi

0.4

O. 3.1 BLOCK% CONSTITUTION

O. 3.2 H% INFORMATION

O. 3.3 DYNAMIC VALUE REPRESENTATION

DECLARATIONS FOR COMPILE-TIME ACTIONS

O. 4.1 THE CONSTANT TABLE " CONSTAB

O. 4.2 THE DECLARER TABLE : DECTAB

O. 4.3 THE MULTIPURPOSE STACK : ~TACK

O. 4.4 THE BLOCK TABLE : BLOCKTAB

O. 4.5 RECALL OF STATIC PROPERTIES

O. 4.6 THE SYMBOL TABLE : SVMBTAB

O. 4.7 THE BOTTOM STACK : BOST

0.4.8 THE TOP STACK : TOPST

O. 4.9 OBJECT PROGRAI~ ADDRESS MANAGEMENT

O. 4.10 THE SOURCE PROGRAM : SOPROG

0.4.11 THE OBJECT PROGRAM : OBPROG

1. LEXICOGRAPHICAL BLOCKS

2. MODE IDEdVTIFIERS

2.1 IDENTITY DECLARATION

2.2 LOCAL VARIABLE DECLARATION

2.3 HEAP VARIABLE DECLARATION

2.4 APPLICATIONS OF MODE IDENTIFIERS

3. GENERATORS

3.1 LOCAL GENERATOR

3.2 HEAP GENERATOR

4. LABEL IDENTIFIERS

4. I GENERALITIES

4.2 LABEL DECLARATION

4.3 GOTO STATEkIENT

5. NON-STANDARD ROUTINES WiTH PARAMETERS

5.1 OENERALITu!ES

5.1~ 1 STATIC PBLOCK INFORMATION

5.1.2 STRATEGY OF PARAMETER TRANSMISSION

5.1.3 STRATEGY OF RESULT TRANSMISSION

5.1.4 STATIC AND DYNAMIC ROUTINE TRANSMISSION

5.2 CALL OF STATICALLY TRANSMITTED ROUTINES

5.3 CALL OF DYNAMICALLY TRANSMITTED ROUTINES

5.4 ROUTINE DENOTATION

5.5 PREVISIONS

5.6 COMPARISON BETWEEN LBLOCKS AND PBLOCKS

79

82

83

84

84

84

87

87

9O

96

97

98

99

100

100

101

108

108

111

115

116

118

118

119

121

121

121

122

124

124

124

125

126

127

128

134

138

143

144

Vll

6. NON-STANDARD ROUTINES WITHOUT PARAMETERS

6.1 DEPROCEDURING OF STATICALLY TRANSMITTED ROUTINES

6.2 DEPROCEDURING OF DYNAMICALLY TRANSMITTED ROUTINES

6,3 PROCEDURING (BODY OF ROUTINE WITHOUT PARAMETERS)

6.4 ANOTHER TRANSLATION SCHEME

6.4.1 DEPROCEDURING1 OF STATICALLY TRANSMITTED ROUTINES

6.4.2 DEPROCEDURING1 OF DYNAMICALLY TRANSMITTED ROUTINZS

6.4.3 PROCEDURING1

7. PROCEDURED JU~S

7.1 GENEP~LITIES

7.2 CALL OF STATICALLY TRANSMITTED PROCEDURED JU~S

7.3 CALL OF DYNAMICALLY TRANSMITTED PROCEDURED JUMPS

7.4 JUMP PROCEDURING

8. BOUNDS OF MODE DECLARATIONS

8.1 GENERALITIES

8.2 CALL OF MODE INDICATION

8.3 MODE DECLARATION (BODY OF ROUTINE)

9. DYNAMIC REPLICATIONS IN FORMATS

9.1 GENERALITIES

9.2 CALL OF STATICALLY TRANSMITTED FORMATS

9.3 CALL OF DYNAMICALLY TRANSMITTED FORMATS

9.4 DYNAMIC REPLICATIONS' (BODY OF ROUTINE)

10. OTHER TERMINAL CONSTRUCTIONS

10.1 DENOTATIONS

10.2 SKIP

10.3 NIL

10.4 EMPTY

11. I~RNEL INVARIANT CONSTRUCTIONS

11.1 SELECTION

11.2 DEREFERENCING

11.3 SLICE

11.4 UNITING

11.5 RO[~TG

12. CONFRONTATIONS

12.1 ASSIGNATION

12.2 IDENTITY RELATION

12.3 CONFORMITY RELATION

13. CALL OF STANDARD ROUTINES

146

146

148

150

151

152

153

154

156

156

156

157

158

160

160

161

162

165

165

166

168

170

172

172

172

173

174

176

176

182

185

194

198

2O8

208

210

212

215

Vfll

14. CHOICE CONSTRUCTIONS

14. I GENERALITIES

14.1 • 1 DEFINITIONS

14.1.2 BALANCING PROCESS

14.1.3 GENERAL ORGANIZATION

14.1.4 DECLARATIONS RELATIVE TO CHOICE CONSTRUCTIONS

14.2 SERIAL CLAUSE

14.3 CONDITIONAL CLAUSE

14.4 CASE C%AUSE

14.5 CASE CONF©RMITY CLAUSE

15. COLLATERAL CLAUSES

15.1 COLLATERAL CLAUSE DELIVERING NO VALUE

15.2 ROW DISPLAY

15.3 STRUCTURE DISPLAY

16. MISCELLANEOUS

16.1 WIDENING

16.2 VOIDING

16.3 FOR STATEMENT

16.4 CALL OF TRANSPUT ROUTINES

17. OTHER ICIS

PART III: TRANSLATION INTO MACHINE CODE

O. GENERALITIES

1. ACCESSES AND MACHINE ADDRESSES

1.1 ACCESS STRUCTURE

1.2 PSEUDO-ADDRESSES

2. METHOD OF CODE GENERATION

2.1 SYMBOLIC REPRESENTATION OF CODE GENERATION

2.2 ACTUAL IMPLEMENTATION OF CODE GENERATION

3. LOCAL OPTIMIZATI011]S

4. THE LOADER

5. TRANSLATION OF INTERt, CEDIATE CODE MODULES

5.1 SET OF REGISTERS

5.2 SII~LE MODULES

5.3 MODULES INVOLVING LIBRARY ROUTINES

5.4 MODULES IMPLYING DATA STRUCTURE SCANNING

219

219

219

219

222

223

225

226

23O

231

236

236

236

242

248

248

248

248

251

254

255

257

258

259

261

264

264

266

269

273

277

277

278

278

280

I×

5.4.1 DATA STRUCTURE SCANNING

5.4.2 THE ROUTINE COPYCELLS

5.4.3 TRANSLATION OF THE MODULE stwost

5.4.4 TRANSLATION OF OTHER MODULES ON DATA STRUCTURE'S

6. FURTHER REMARKS ON GARBAGE COLLECTION

6.1 THE INTERPRETATIVE METHOD

6.2 THE GARBAGE COLLECTOR WORI~NG SPACE

6.3 GARBAGE COLLECTION DURING DATA STRUCTURE HANDLING

6.4 MARKING ARRAYS WITH INTERSTICES

6.5 FACILITIES FOR STAtiSTICAL INFORMATION

CONCLUSION

BIBLIOGRAPHY

APPENDIX 1 : ANOTHER SOLUTION FOR CONTROLLING THE WOST~ GARBAGE'

COLLECTION INFORMATION

APPENDIX 2 : SUMMARY OF THE SYNTAX

APPENDIX 3 : SUMMARY OF lOPSl PROPERTIES

APPENDIX 4 : SUMMARY OF THE' NOTATIONS

APPENDIX 5 : LIST OF INTERMEDIATE CODE INSTRUCTIONS

APPENDIX 6 : AN EXAMPLE OF COMPILATION

281

287

288

294

298

298

298

299

299

300

303

306

307

309

311

312

318

326

PART I : GENERAL PRINCIPLES

O. INTRODUCTION

A programming language is defined by means of a semantics and a syntax.

- the semantics ~efines the meaning of the programs of the language. It is based on

a number of primitive functions (actions) having parameters, delivering a result

and/or having some side-effects, and on a number of composition rules by which

the result of a function may be used as the parameter of another function.

- the syntax provides means for program representations. It defines a structure of

programs, reflecting both the primitive functions and the composition rules of

the semantics.

A compiler translates programs written in a given source language into programs

written in an object language and having the same meaning. Ultimately the object lan-

guage is the machine code. Generally, the transformation is performed in two steps

at least conceptually separated : the syntactic analysis and the translation proper.

O. 1 BASIC CONCEPTS

The syntactic analysis is a program transformation by which the structure of

the source program is made explicit. We can distinguish three parts in the syntactic

analysis, namely :

- the lemical analysis by which atoms of information semantically significant in the

source language are detected,

- the context-free analysis by whic~ the primitive functions of the source language

and their composition rules are made explicit, and

- the declaration handling by which the declared objects are connected to their decla-

ration.

Conceptually, the output of the syntactic analysis has the form of a tree in

which :

- the terminal nodes are the atoms delivered by the lexical analyzer. These atoms

may represent values (value denotations, identifiers) or they may just be source

language syntactic separators or key-words,

- nonterminal nodes represent functions (actions) the parameters of which are the

values resulting from the subjacent nodes ; in turn, these functions may deliver

a value as their result, and

- the initial node is obviously the syntactic unit "particular program".

The translation proper produces machine code. Elementary functions of, and va-

lues handled by machine codes are much more primitive than primitive functions of

high level languages and their parameters. The translation process has to decompose

the source functions and source values. Machine instructions are executed as indepen-

dent modules : the interface between them is determined by the sequence in which

they are elaborated and by the storage allocation scheme on which the program they

constitute is based° More concretely, the result of each instruction is stored in a

memory cell and it can be used by another instruction in which the access (address)

of the same memory cell is specified.

Roughly speaking, machine code generation for a given program is based on the

following informations :

- the program tree resulting from the syntactic analysis,

- the semantics of the source functions as defined by the source language, and

- the semantics of the machine instructions as defined by the hardware.

The main task of the compiler reduces to decompose source functions into equiva-

lent sequences of machine instructions. Obviously, a storage allocation scheme must

first be designed in order to be able to take the composition rules of the source

language into account.

It is not reefaired to produce machine code in one step ; our translation scheme

first produces an intermediate form of programs called ~ntelwn~diat~ cod~ (IC). Among

other things, this permits to remain machine independent during a more significant

part of the translation process and hence to increase the compiler portability. We

propose an intermediate code consisting of the same primitive functions as the sour-

ce language, hut provided with explicit parameters making it possible, these func-

tions to be considered separate self-contained modules. As it is the case for the

machine code, these modules are elaborated sequentially except when explicit breaks

of sequence appear. The composition rules of the source language are taken into ac-

count through the sequential elaboration of the modules and the strategy of storage

allocation. In this respect, as opposed to the source language dealing with abstract

instances of values, the intermediate code deals with stored values characterized

by the static properties corresponding both to the abstract instances of values [I]

(mode ...) and to the memory locations where the values are stored (access ...). It

is those properties which are used ss the parameters of the intermediate code

(object) instructions (ICI) ; more precisely, the parameters of an ICI consist of

one set of static (compile-time) properties for each parameter of the corresponding

source function and one set for the result of this function.

Coming back to our translation scheme, we can say that intermediate code genera-

tion for a given program is based on the following information :

- the program tree resulting from the syntactic analysis,

- the semantics of the source functions, and

- the storage allocation scheme.

We see that the semantics of machine instructions has disappeared, only the sto-

rage allocation can be influenced by the hardware. In fac~, we only make two hypo-

theses at the level of the intermediate code :

- the memory is an uninterrupted sequence of addressable units,

- there exists an indirect addressing mechanism.

Machine independent optimizations are performed at the level of the intermediate

code generation. In particular

- run-time copies of values,

- run-time memory management, and

- dynamic checks

are minimized up to a great extent.

Moreover, precautions are taken in order to allow to retrieve machine dependent

optimizations in a further step ; such optimizations take care of :

- register allocation and

- possible hardware literal and/or display addressing.

Now, machine code generation can be based onthe following :

- the intermediate code form of the progr~s,

- the semantics of the source functions, and

- the semantics of the machine code.

Note that each intermediate code instruction can be translated independently

into machine code which improves the compiler modularity. This translation mainly

consists in decomposing source functions and data into machine instructions and

words (bytes) respectively. Only local optimizations(peephole [16])at the interface

between ICI's will still be needed to get the final machine code program.

Gathering information to be able to translate a programefficiently and automa-

tically requires a non trivial static (compile-time) information management. The

metho~ explained in this book has many similarities with the one described by Knuth

[6], although it has been developed independently. We explain it using Knuth's ter-

minology.

Attributes are static properties attached to the tree nodes ; there are synthe-

tized and inherited attributes.

In our system, the synthetized attributes of a node are the static properties

(mode, access ...) of the value attached to the node, i.e. the value of a terminal

construction (denotation, identifier) or the value resulting from a function (non-

terminal node).

These synthetized attributes are deduced from each other in a bottom-up way.

For a terminal node, they are obtained from the terminal construction itself (and

from its declaration in case of a declared object). For nonterm/nal nodes, they are

calculated by the process of static elaboration.

The static elaboration of a function is the process by which the static proper-

ties of the result of the function are derived from the static properties of its

parameters (i.e. the synthetized attributes of the subjacent nodes) and according

to the code generated for the translation of the function.

Again,in our system, inherlted attributes of a node are attributes which are trans-

mitred in the tree in a top-down way along a path leading from the initial node to

the current node.

Translating a function is based on the synthetized attributes of the parame-

ters of the function~ and on the inherited attributes of the function itself. Moreo-

ver, the translation can also take into account all the functions associated to the

nodes situated on the path between the node of the current function and the initial

node ; this allows us to make previsions on what will happen to the result of that

function, and in some cases to generate better code. As we shall see in the next

section, a very simple and efficient automaton can be used to implement the above

principles.

Example 0.1

Source program :

x:=a×b+3

Syntactic tree : {the part of the tree used to translate 'x' is bold faced}

x .a b, 3

{ in t ~ ; i n t d=.. . ; i n t b=.. . ;}

Intermediate code :

× (proc (int__._,int____)int_, access a, access b, access w)

+ (proc (int___,int___)int___, access w, access 3, access wl)

:= (int____, access x, access wl)

Machine code without local optimizations :

LDA access a
MPY access b
STA access w

LDA access W
ADA = 3
STA access wl

LDA access wl
STA access x

S
o
u
r
c
e

l
a
n
g
u
a
g
e

R
e
s
u
l
t

o
f

t
h
e

s
y
n
t
a
c
t
i
c

I
n
t
e
r
m
e
d
i
a
t
e

c
o
d
e

M
a
c
h
i
n
e

c
o
d
e

a
n
a
l
y
s
i
s

Se
ma
nt
ia
s

-
P
r
i
m
i
t
i
v
e

f
u
n
c
t
i
o
n
s

-
P
r
i
m
i
t
i
v
e

d
a
t
a

-
C
o
m
p
o
s
i
t
i
o
n

r
u
l
e
s

Sy
nt

ax

-
M
e
a
n
s

f
o
r

p
r
o
g
r
a
m

r
e
p
r
e
s
e
n
t
a
t
i
o
n

-
D
e
f
i
n
e
s

a

s
t
r
u
c
t
u
r
e

r
e
f
l
e
c
t
i
n
g

t
h
e

s
e
m
a
n
-

t
i
c
s

I T
h
e

s
y
n
t
a
c
t
i
c

s
t
r
u
c
t
u
r
e

i
s

m
a
d
e

e
x
p
l
i
c
i
t

:

-
s
y
n
t
a
c
t
i
c

t
r
e
e

-
l
i
n
k
s

b
e
t
w
e
e
n

d
e
c
l
a
r
e
d

o
b
j
e
c
t
s

a
n
d

t
h
e
i
r

d
e
-

c
l
a
r
a
t
i
o
n

-
L
e
x
i
c
a
l

a
n
a
l
y
s
i
s

-
C
o
n
t
e
x
t
-
f
r
e
e

a
n
a
l
y
s
i
s

-
D
e
c
l
a
r
a
t
i
o
n

h
a
n
d
l
i
n
g

S
Y
N
T
A
C
T
I
C

A
N
A
L
Y
S
I
S

J

-
S
t
a
t
i
c

e
l
a
b
o
r
a
t
i
o
n

-
S
t
o
r
a
g
e

a
l
l
o
c
a
t
i
o
n

T ! 1 l

S
a
m
e

p
r
i
m
i
t
i
v
e

f
u
n
c
t
i
o
n
s

a
n
d

d
a
t
a

a
s

t
h
e

s
o
u
r
c
e

l
a
n
g
u
a
g
e
,
 b
u
t

-
i
n
d
e
p
e
n
d
e
n
t

m
o
d
u
l
e
s
,

t
h
e

p
a
r
a
m
e
t
e
r
s

o
f

w
h
i
c
h

a
r
e

s
t
a
t
i
c

p
r
o
p
e
r
t
i
e
s

o
f

s
t
o
r
e
d

v
a
l
u
e
s

-
i
n
t
e
r
f
a
c
e

e
n
s
u
r
e
d

t
h
r
o
u
g
h

(
1
)
s
t
o
r
a
g
e

a
l
l
o
c
a
t
i
o
n

a
n
d

(
2
)
s
e
q
u
e
n
t
i
a
l

e
l
a
b
o
r
a
t
i
o
n

-
m
a
c
h
i
n
e

i
n
d
e
p
e
n
d
e
n
c
y

P
r
i
m
i
t
i
v
e

f
u
n
c
t
i
o
n
s

=

i
n
s
t
r
u
c
t
i
o
n
s

P
r
i
m
i
t
i
v
e

d
a
t
a

=

w
o
r
d
s
,

b
y
t
e
s

..

.

-
i
n
d
e
p
e
n
d
e
n
t

m
o
d
u
l
e
s
,

t
h
e

p
a
r
a
m
e
-

t
e
r
s

o
f

w
h
i
c
h

a
r
e

m
a
c
h
i
n
e

a
d
d
r
e
s
s
e
s

-
i
n
t
e
r
f
a
c
e

e
n
s
u
r
e
d

t
h
r
o
u
g
h

(
1
)
s
t
o
r
a
g
e

a
l
l
o
c
a
t
i
o
n

a
n
d

(
2
)
s
e
q
u
e
n
t
i
a
l

e
l
a
b
o
r
a
t
i
o
n

-
D
e
c
o
m
p
o
s
i
t
i
o
n

o
f

s
o
u
r
c
e

f
u
n
c
t
i
o
n
s

a
n
d

v
a
l
u
e
s

-
L
o
c
a
l

o
p
t
i
m
i
z
a
t
i
o
n
s

T
R
A
N
S
L
A
T
I
O
N

P
R
O
P
E
R

I I

% % 4,

Machine code with local optimizations :

LDA access a
MPY access b
ADA = 3
STA access x

0.2 THE TP~NSLATOR AUTO.TON

In practice, the syntactic analyzer should deliver a form of tree well suited

for the translator automaton ; we propose here a linear prefixed form of the tree (T) .

In this form, the terminals representing declared objects are connected to their

declaration by means of a symbol table (SYMBTAB). In this table there is one entry

for each declaration. For a declared object, both its declaration and applications

are connected to the same SVMBTAB entry. This allows to make the static properties

of the objects, defined at their declaration, available at each of their applica-

tions.

The translator automaton scans the linear prefixed form from left to right,

accumulating top information on a so called top stack (TOPST) and bottom information

on a so called bottom stack (BOST), while intermediate code is generated. Static

properties of declared objects are obtained through SYMBTAB. More precisely, the

automaton consists of :

(I) An input tape containing the source program ; this consists of prefix markers

for the nonterminal nodes of the tree, and of basic constructions (i.e. denotations,

identifiers ...) for the terminal nodes.

(2) An output tape where the intermediate code is generated.

(3) The so called bottomstack (BOST) where static information is stored in such

a way that when an action is translated, the static properties, i.e. the synthetized

attributes of its n parameters, can be found in the n top elements of BOST.

(4) The so called topstack (TOPST) containing at each moment the prefix markers

and the inherited attributes of the not completely translated actions, in such a way,

each time an action is translated, the complete future story of its result can be

found on TOPST.
(5) The symbol table (SYMBTAB) where the static properties of each declared

object deduced from its declaration are stored in order to be retrieved at each of

its application, thus allowing to initialize the process of static elaboration.

(T) In ALGOL 68, coercions are a kind of implicit monadic operators ; in the sequel
they will be supposed to have been made explicit by the syntactic analysis

[151 •

Source program
(prefixed form
of the tree)

J] Object program
Translator ~ (intermediate code)

i// IT \\

fig. 0.i

The translation of a given adtion can be separated in three parts :

(I) the prefix translation which is performed when the prefix marker of the action

is scanned in the source program ; it may consist of the generation of prefix

code.

(2) the i~fix translation which is performed in between the translation of two sub-

jacent actions ; it may consist of code generation by which the value of a para-

meter will be copied at run-time, together with the corresponding updating of

the static properties of the parameter at the top of BOST.

(3) the postf~z translation which corresponds to the translation proper of the cur-

rent action ; it consists of the generation of the corresponding object instruc-

tions, together with the replacement, at the top of BOST, of the static proper-

ties of the parameters of the current action by the static properties of its re-

sult (static elaboration).

This is described in a more precise way by the flowchart of fig. 0.2.

PART I is mainly devoted to the description of static properties. Beforehand, the

principles of a storage allocation scheme are recalled (1.1).

Example 0.2

Source program :

x:=a×b+3

Result of the syntactic analysis :

:--X+Xa b 3
÷ +

(1) (2)

10

(o)-

Initialize TOPST
T

READ

read in char = marker?

N

{The read in character corresponds to
an initial construction}

PUt on BOST a new element reflecting the static properties
of this construction ; incase of a declared object, these
properties are furnished by SYMBTAB.

I

(2) i l
Is this basic construction the last
parameter of the top action of TOPST? _N ~GENERATE THE INFIX CODE,

upJ~te the ~op of BOST

accordingly
Y

"(o)

(1) - -Does t h e t o p a c t i o n o f TOPST c o r t e s - Y -- STOP
pond t o "program"I?

GENERATE POSTFIX CODE ACCORDING TO THE CHARACTERISTICS OF THE
PARAMETERS ON BOST AND THE ACTIONS AND ATTRIBUTES STORED ON TOPST

Replace the characteristics of the parameters on BOST by
the characteristics of the result according to the generated
instructions. In case of a declaration, store the static
properties of the actual parameter in the corresponding
SVMBTAB element l
Erase the top element o~TOPST

Is the result stored on BOST the last
parameter of the action at the top of Y = (I)

TOPST? L
. (2)

~GENERATiON OF THE PREFIX CODE
OF THE ACTION OF THE MARKER

Put the marker and the inherited
attributes on YOPST

I ~ (o)

fi~. 0.2 : The translator automaton.

11

(I) Snapshot of the stacks when b is being translated :

. - -

[] [] [] 3

BOST D TOPST

a +

b ×

(2) Snapshot of the stsnkswhen 3 is being translated :

° -
. -

[] []

BOST EJ TOPST

a x b +

3

