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FOREWORD 

In the late sixties, the definition of ALGOL 68 I 11 , for a long time called 

ALGOL X, reached some stability. It is at that period (1967) our team started the 

project of writing a compiler for that language. We had two goals in mind : 

(I) to make significant research in the field of compiler methodology, 

(2) to point out the special difficulties encountered in the design of the compiler 

and thus possibly influence the definition of the language. 

This book is concerned with the first goal only ; ALGOL 68 should be considered 

a support to explain and develop compiling principles and techniques. 

The whole book is directly based on the actual compiler we have written for the 

Electrologica-X8 computer ; this compiler has been operational since early 1973o 

Since May 1975, it is available on the "BS-com~uter", the Philips prototype develo- 

ped by MBLE and which is at the origin of the UNIDATA 7720. In fact, the X8 has be~n 

microprogra~ed on the BS [22] ; it is worthwhile to mention that microprogramming 

did not introduce any significant loss in efficiency. 

The book does not require a very deep knowledge of ALGOL 68 except in some special 

cases described here for the s~e of completeness only. The reading of some general 

description of the language as provided by 117] is however assumed. 
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IV 

SU~4ARY 

The book describes a translation process which generates efficient code while re- 

maining machine independent. The process starts from the output stream of the syntac- 

tic analyzer. 

(I) Code optimization is based on a mechanism controlling a number of static proper- 

ties and allowing to make long range previsions. This permits to minimize the 

dynamic (r~u-time) actions, replacing them by static (compile-time) ones whene- 

ver possible, in particular, much attention is paid on the minimization of run- 

time copies of vaiues~ of run-time memory management and of dynamic checks. 

(2) Machine independency is improved by translating the programs into intermediate 

code before producing machine code. In addition to being machine independent, 

intermediate code instructions are self-contained modules which can be transla- 

ted into machine code independently, which improves modularity. Only trivial lo- 

cal optimizations are needed at the interface between intermediate code instruc- 

tions when machine code is produced. 

The description of the translation process is made in three parts : 

-PART I defines the general principles on which the process is based. It is made as 

readable as possible for an uninitiated reader. 

-PART II enters the details of translation into intermediate code : particular pro- 

blems created by all ALGOL 68 language constructions and their interface are sol- 

ved. 

-PART IIl shows the principles of the translation of the intermediate code into ma- 

chine code ; these principles are presented in a completely machine independent way. 
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PART I : GENERAL PRINCIPLES 





O. INTRODUCTION 

A programming language is defined by means of a semantics and a syntax. 

- the semantics ~efines the meaning of the programs of the language. It is based on 

a number of primitive functions (actions) having parameters, delivering a result 

and/or having some side-effects, and on a number of composition rules by which 

the result of a function may be used as the parameter of another function. 

- the syntax provides means for program representations. It defines a structure of 

programs, reflecting both the primitive functions and the composition rules of 

the semantics. 

A compiler translates programs written in a given source language into programs 

written in an object language and having the same meaning. Ultimately the object lan- 

guage is the machine code. Generally, the transformation is performed in two steps 

at least conceptually separated : the syntactic analysis and the translation proper. 

O. 1 BASIC CONCEPTS 

The syntactic analysis is a program transformation by which the structure of 

the source program is made explicit. We can distinguish three parts in the syntactic 

analysis, namely : 

- the lemical analysis by which atoms of information semantically significant in the 

source language are detected, 

- the context-free analysis by whic~ the primitive functions of the source language 

and their composition rules are made explicit, and 

- the declaration handling by which the declared objects are connected to their decla- 

ration. 

Conceptually, the output of the syntactic analysis has the form of a tree in 

which : 

- the terminal nodes are the atoms delivered by the lexical analyzer. These atoms 

may represent values (value denotations, identifiers) or they may just be source 

language syntactic separators or key-words, 

- nonterminal nodes represent functions (actions) the parameters of which are the 

values resulting from the subjacent nodes ; in turn, these functions may deliver 

a value as their result, and 

- the initial node is obviously the syntactic unit "particular program". 

The translation proper produces machine code. Elementary functions of, and va- 

lues handled by machine codes are much more primitive than primitive functions of 

high level languages and their parameters. The translation process has to decompose 

the source functions and source values. Machine instructions are executed as indepen- 



dent modules : the interface between them is determined by the sequence in which 

they are elaborated and by the storage allocation scheme on which the program they 

constitute is based° More concretely, the result of each instruction is stored in a 

memory cell and it can be used by another instruction in which the access (address) 

of the same memory cell is specified. 

Roughly speaking, machine code generation for a given program is based on the 

following informations : 

- the program tree resulting from the syntactic analysis, 

- the semantics of the source functions as defined by the source language, and 

- the semantics of the machine instructions as defined by the hardware. 

The main task of the compiler reduces to decompose source functions into equiva- 

lent sequences of machine instructions. Obviously, a storage allocation scheme must 

first be designed in order to be able to take the composition rules of the source 

language into account. 

It is not reefaired to produce machine code in one step ; our translation scheme 

first produces an intermediate form of programs called ~ntelwn~diat~ cod~ (IC). Among 

other things, this permits to remain machine independent during a more significant 

part of the translation process and hence to increase the compiler portability. We 

propose an intermediate code consisting of the same primitive functions as the sour- 

ce language, hut provided with explicit parameters making it possible, these func- 

tions to be considered separate self-contained modules. As it is the case for the 

machine code, these modules are elaborated sequentially except when explicit breaks 

of sequence appear. The composition rules of the source language are taken into ac- 

count through the sequential elaboration of the modules and the strategy of storage 

allocation. In this respect, as opposed to the source language dealing with abstract 

instances of values, the intermediate code deals with stored values characterized 

by the static properties corresponding both to the abstract instances of values [ I] 

(mode ...) and to the memory locations where the values are stored (access ...). It 

is those properties which are used ss the parameters of the intermediate code 

(object) instructions (ICI) ; more precisely, the parameters of an ICI consist of 

one set of static (compile-time) properties for each parameter of the corresponding 

source function and one set for the result of this function. 

Coming back to our translation scheme, we can say that intermediate code genera- 

tion for a given program is based on the following information : 

- the program tree resulting from the syntactic analysis, 

- the semantics of the source functions, and 

- the storage allocation scheme. 

We see that the semantics of machine instructions has disappeared, only the sto- 

rage allocation can be influenced by the hardware. In fac~, we only make two hypo- 

theses at the level of the intermediate code : 



- the memory is an uninterrupted sequence of addressable units, 

- there exists an indirect addressing mechanism. 

Machine independent optimizations are performed at the level of the intermediate 

code generation. In particular 

- run-time copies of values, 

- run-time memory management, and 

- dynamic checks 

are minimized up to a great extent. 

Moreover, precautions are taken in order to allow to retrieve machine dependent 

optimizations in a further step ; such optimizations take care of : 

- register allocation and 

- possible hardware literal and/or display addressing. 

Now, machine code generation can be based onthe following : 

- the intermediate code form of the progr~s, 

- the semantics of the source functions, and 

- the semantics of the machine code. 

Note that each intermediate code instruction can be translated independently 

into machine code which improves the compiler modularity. This translation mainly 

consists in decomposing source functions and data into machine instructions and 

words (bytes) respectively. Only local optimizations(peephole [16])at the interface 

between ICI's will still be needed to get the final machine code program. 

Gathering information to be able to translate a programefficiently and automa- 

tically requires a non trivial static (compile-time) information management. The 

metho~ explained in this book has many similarities with the one described by Knuth 

[ 6], although it has been developed independently. We explain it using Knuth's ter- 

minology. 

Attributes are static properties attached to the tree nodes ; there are synthe- 

tized and inherited attributes. 

In our system, the synthetized attributes of a node are the static properties 

(mode, access ...) of the value attached to the node, i.e. the value of a terminal 

construction (denotation, identifier) or the value resulting from a function (non- 

terminal node). 

These synthetized attributes are deduced from each other in a bottom-up way. 

For a terminal node, they are obtained from the terminal construction itself (and 

from its declaration in case of a declared object). For nonterm/nal nodes, they are 

calculated by the process of static elaboration. 

The static elaboration of a function is the process by which the static proper- 

ties of the result of the function are derived from the static properties of its 

parameters (i.e. the synthetized attributes of the subjacent nodes) and according 

to the code generated for the translation of the function. 

Again,in our system, inherlted attributes of a node are attributes which are trans- 



mitred in the tree in a top-down way along a path leading from the initial node to 

the current node. 

Translating a function is based on the synthetized attributes of the parame- 

ters of the function~ and on the inherited attributes of the function itself. Moreo- 

ver, the translation can also take into account all the functions associated to the 

nodes situated on the path between the node of the current function and the initial 

node ; this allows us to make previsions on what will happen to the result of that 

function, and in some cases to generate better code. As we shall see in the next 

section, a very simple and efficient automaton can be used to implement the above 

principles. 

Example 0.1 

Source program : 

x:=a×b+3 

Syntactic tree : {the part of the tree used to translate 'x' is bold faced} 

x .a b, 3 

{ in t  ~ ; i n t  d=.. .  ; i n t  b=.. .  ;} 

Intermediate code : 

× (proc (int__._,int____)int_, access a, access b, access w) 

+ (proc (int___,int___)int___, access w, access 3, access wl) 

:= (int____, access x, access wl) 

Machine code without local optimizations : 

LDA access a 
MPY access b 
STA access w 

LDA access W 
ADA = 3 
STA access wl 

LDA access wl 
STA access x 
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Machine code with local optimizations : 

LDA access a 
MPY access b 
ADA = 3 
STA access x 

0.2 THE TP~NSLATOR AUTO.TON 

In practice, the syntactic analyzer should deliver a form of tree well suited 

for the translator automaton ; we propose here a linear prefixed form of the tree (T) . 

In this form, the terminals representing declared objects are connected to their 

declaration by means of a symbol table (SYMBTAB). In this table there is one entry 

for each declaration. For a declared object, both its declaration and applications 

are connected to the same SVMBTAB entry. This allows to make the static properties 

of the objects, defined at their declaration, available at each of their applica- 

tions. 

The translator automaton scans the linear prefixed form from left to right, 

accumulating top information on a so called top stack (TOPST) and bottom information 

on a so called bottom stack (BOST), while intermediate code is generated. Static 

properties of declared objects are obtained through SYMBTAB. More precisely, the 

automaton consists of : 

(I) An input tape containing the source program ; this consists of prefix markers 

for the nonterminal nodes of the tree, and of basic constructions (i.e. denotations, 

identifiers ...) for the terminal nodes. 

(2) An output tape where the intermediate code is generated. 

(3) The so called bottomstack (BOST) where static information is stored in such 

a way that when an action is translated, the static properties, i.e. the synthetized 

attributes of its n parameters, can be found in the n top elements of BOST. 

(4) The so called topstack (TOPST) containing at each moment the prefix markers 

and the inherited attributes of the not completely translated actions, in such a way, 

each time an action is translated, the complete future story of its result can be 

found on TOPST. 
(5) The symbol table (SYMBTAB) where the static properties of each declared 

object deduced from its declaration are stored in order to be retrieved at each of 

its application, thus allowing to initialize the process of static elaboration. 

(T) In ALGOL 68, coercions are a kind of implicit monadic operators ; in the sequel 
they will be supposed to have been made explicit by the syntactic analysis 
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Source program 
(prefixed form 
of the tree) 

J ] Object program 
Translator .......... ~ (intermediate code) 

i// IT \\ 

fig. 0.i 

The translation of a given adtion can be separated in three parts : 

(I) the prefix translation which is performed when the prefix marker of the action 

is scanned in the source program ; it may consist of the generation of prefix 

code. 

(2) the i~fix translation which is performed in between the translation of two sub- 

jacent actions ; it may consist of code generation by which the value of a para- 

meter will be copied at run-time, together with the corresponding updating of 

the static properties of the parameter at the top of BOST. 

(3) the postf~z translation which corresponds to the translation proper of the cur- 

rent action ; it consists of the generation of the corresponding object instruc- 

tions, together with the replacement, at the top of BOST, of the static proper- 

ties of the parameters of the current action by the static properties of its re- 

sult (static elaboration). 

This is described in a more precise way by the flowchart of fig. 0.2. 

PART I is mainly devoted to the description of static properties. Beforehand, the 

principles of a storage allocation scheme are recalled (1.1). 

Example 0.2 

Source program : 

x:=a×b+3 

Result of the syntactic analysis : 

:--X+Xa b 3 
÷ + 

(1) (2) 
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(o)- 

Initialize TOPST 
T 

READ 

read in char = marker? 

N 

{The read in character corresponds to 
an initial construction} 

PUt on BOST a new element reflecting the static properties 
of this construction ; incase of a declared object, these 
properties are furnished by SYMBTAB. 

I 

(2) i l 
Is this basic construction the last 
parameter of the top action of TOPST? _N ~GENERATE THE INFIX CODE, 

upJ~te the ~op of BOST 

accordingly 
Y 

"(o) 

(1 ) - -Does  t h e  t o p  a c t i o n  o f  TOPST c o r t e s -  Y -- STOP 
pond t o  "program"I?  

GENERATE POSTFIX CODE ACCORDING TO THE CHARACTERISTICS OF THE 
PARAMETERS ON BOST AND THE ACTIONS AND ATTRIBUTES STORED ON TOPST 

Replace the characteristics of the parameters on BOST by 
the characteristics of the result according to the generated 
instructions. In case of a declaration, store the static 
properties of the actual parameter in the corresponding 
SVMBTAB element l 
Erase the top element o~TOPST 

Is the result stored on BOST the last 
parameter of the action at the top of Y = (I) 

TOPST? L 
. . . . . . . . .  (2) 

~GENERATiON OF THE PREFIX CODE 
OF THE ACTION OF THE MARKER 

Put the marker and the inherited 
attributes on YOPST 

I ~ (o)  

fi~. 0.2 : The translator automaton. 
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(I) Snapshot of the stacks when b is being translated : 

. - -  

[] [] [] 3 

BOST D TOPST 

a + 

b × 

(2) Snapshot of the stsnkswhen 3 is being translated : 

° -  
. -  

[] [] 

BOST EJ TOPST 

a x b  + 

3 


