
DATA EASE STANDARDIZATION

A STATUS REPORT

Thomas B. Steele Jr.

Equitable Life Assurance Society

New York, N.Y.~ USA

This paper is a report on the current (1975 September) status of the

Study Group on Data Base Management Systems in the United States,

together with some remarks on the ISO activity in the area. While

the official purpose of this Study Group is an investigation of

standardization potential in the area of data base management

systems, an important by-product of the work of the Group has been

the development of a set of requirements for effective data base

management systems. As no existing or proposed implementation of a

data base management system satisfies these requirements, it is

appropriate to expose these ideas as widely as possible for

evaluation.

Among the responsibilities of the Standards Planning and

Requirements Committee (SPARC) of the American National Standards

Committee on Computers and Information Processing (ANSI/X3) is the

generation of recommendations for action by the parent Committee on

appropriate areas for the initiation of standards development. For

some time it has been evident that data base management systems are

in the process of becoming central elements of information

processing systems, and that there is less than full agreement on

appropriate design. In addition to the existence of a number of

implementations of such systems (CODASYL 1969), there are several

documents generated out of the collective wisdom of some segment of

363

the information processing community which are either proposals for

specific systems (CODASYL 1971) or statements of requirements

(GUIDE-SHARE 1970), (CMSAG 1971). As is well known there is a

debate in the community on whether existing and proposed

implementations meet the indicated requirements or whether the

requirements as drawn are all really necessary. Further, there are

serious questions about the economics of meeting all the stated

requirements.

In addition to the above considerations there is argument on the

appropriate data model to use: relational, hierarchical, network.

This particular debate has been referred to as the "theological"

discussion of the data base management system theorists. There has

been criticism of the use of this word; I can only respond to that

criticism by quoting Hilaire Belloc: "All political questions are

ultimately theological". Indeed, such it seems to be, from which it

follows that the correct answer to the question of what data model

to use is necessarily "all of the above". One of the outcomes of

the work reported in this paper is a mechanism that permits this

answer in a meaningful sense.

In the autumn of 1972, responding to the clearly perceived need to

rationalize the growing confusion, SPARC, then under the

Chairmanship of the author, took formal action to initiate

investigation of the subject of data base management systems in the

context of potential standardization. Consistent with its normal
o

practice when confronted with a complex subject, SPARC established

an ad hoc Study Group on Data Base Management Systems, initially

under the Chairmanship of D. M. Smith of the EXXON Corporation and

now under the Chairmanship of the author. This Study Group was

convened with a charge to investigate the subject of data base

364

management systems with the objective of determining which, if an[,

aspects of such systems are at present suitable candidates for the

development of American National Standards. The "if any"

qualification is important because a negative response is just as

meaningful as a positive response in a standards context. The "at

present" qualification is equally significant, indicating the

continuing need for review as the requirements, technologies and

economics change over time.

The eventual result of the deliberations of this Study Group will be

a series of reports in a specified format (SPARC 1974), identifying

potentially standardizable elements of data base management systems

and recommending whether or not there is a need, technological

feasibility and economic justifications for the initiation of a

standards development project in the area. The first interface to

be examined is 7 with respect to COBOL. The present target date for

completion of this work is the beginning of 1976. As an Interim

Report the Study Group has prepared a document (SPARC 1975) which

has had wide circulation and is soon to be generally published.

It is appropriate at this juncture to provide a list of the members

of the Study Group and their affiliations to indicate the breadth of

representation. It is worth noting the extent to which the user

community is participating in this effort, a rare event in data

processing standardization on any continent.

Bachman, C.Wo Honeywell Information Systems

CohnF L. IBM Corporation

Florance, W.E. Eastman Kodak Company

Kirshenbaumt F. Equitable Life

365

Kunecke, H. Boeing Computer Services

Lavin, M. Sperry Univac

Mairet, C.E. Deere and Company

Sibley, E.H. University of Maryland

Steel, T.B., Jr. Equitable Life

Turner, J.A. Columbia University

Yormark, B. The RAND Corporation

The initial tasks of the Study Group were the difficult ones of

understanding and coming to respect the varying views of the

different individuals--all theologies were (and still are)

represented--and developing a vocabulary that was consistent and

mutually comprehensible. It is not clear whether this last task has

yet been fully accomplished, although considerable closure has been

attained.

In the course of the early discussions it emerged that what any

standardization should treat is interfaces. There is no merit and

potential disaster in developing standards that specify how

components are to work. What is potentially proper for standards

specification is how the components are meshed together; in other

words, the interfaces. With this notion in mind a generalized model

of a data base management system has been developed that highlights

the interfaces and the kind of information and data passing across

them. Figure I is a simplified diagrammatic view of this model.

It should be noted that, except for the man-system interfaces, the

technological nature of the interface is not determined; it could be

hardware, software, firmware or some mixture. Indeed, some of the

366

interfaces could be man-man, although pursuit of that notion is not

germane to what follows. The important point is that the

implementation of the system is not prescribed, only the

requirements that must be satisfied. As was noted above, this is a

simplified diagram, but in order to maintain consistency with the

detailed picture, the numerical identifications of the exhibited

interfaces have not been changed so there are some numbers missing.

The hexagonal boxes depict people in specific roles. The

rectangular boxes represent processing functions, the arrow

terminated lines represent flow of data, control information,

programs and descriptions, and the dashed boxes represent program

preparation and execution subsystems (including compilation and

interpretation functions). Finally, the solid bars represent

essential interfaces, the ultimate subject matter of the Study

Group's deliberations. These interfaces are numbered rather than

conventionally named for simplicity of discussion and to avoid

confusion.

Among the processes and interfaces omitted on this cut down version

of the diagram are the various ways that system programmers and

machine operators can invade the system to make ad hoc repairs,

certain bypasses of the system mechanism that are asserted to

promote efficiency but of debatable desirability in view of their

impact on data independence, integrity and security, and the entire

structure of physical mapping of data onto specific storage devices.

All of the latter structure is to be found to the left of interface

21, much of it will be dictated by the laws of physics and, as such,

is of little concern to the current investigation. The principal

elements of the Study Group's view of a data base management system

are displayed and, in particular, the three schema approach,

367

reflecting the new element introduced by this work, is illustrated.

The lower right hand side of the diagram, the hexagon labelled

"application programmer", the dashed rectangle labelled "application

program subsystem" and the two interfaces labelled "7" and "12"

comprise the entire non-data base activity of preparing and

executing an application program. This structure may be viewed as

replicated into a variety of subsystems, all interfacing with the

data base management system through interface 12, differing in the

nature of the language used by the programmer to communicate across

the man-machine interface. This language may be a conventional

procedure language such as COBOL, ALGOL or PL/I, recognizable

special languages like report generators, inquiry languages or

update specifiers, or some potentially new type of procedure or

problem language. The critical thing to note here is that all data

description passes into the application program subsystem across

interface 12 from the data base system itself. This, of course, is

nothing new°

The lower left hand side of the diagram, the hexagon labelled

"system programmer", the dashed rectangle labelled "system program

subsystem" and the two interfaces labelled "16" and "18" comprise

the entire normal interface available to the system programmer when

it is necessary to bypass the ordinary mode of access to the system.

Routine system maintenance and modification will occur through this

subsystem. There are some exceptions, as noted above, but they do

not concern the thrust of this paper. It should also be noted that

there is clearly available the installation option of permitting

application programmers to operate across this interface,

potentially dangerous as that may be. Again, there is nothing new

in this construction.

368

It is the upper portion of the diagram that is of concern in this

paper. Current data base systems envision a two level structure;

the data as seen by the machine and the data as seen by the

programmer. A plethora of confusing terminology has been employed

to distinguish between these views. The Study Group has chosen to

employ the terms ~internal" and "external" to make this distinction.

In addition, the Study Group has taken note of the reality of a

third level, which we chose to call the "conceptual", that has

always been present but never before called out explicitly. It

represents the enterprise's view of the structure it is attempting

to model in the data base. This view is that which is informally

invoked when there is a dispute between the user and the programmer

over exactly what was meant by program specifications. The Study

Group contends that in the data base world it must be made explicit

and, in fact, made known to the data base management system. The

proposed mechanism for doing this is the conceptual schema. The

other two views of data, internal and external, must necessarily be

consistent with the view expressed by the conceptual schema.

This required consistency can be maintained and verified in a

reasonably fail safe manner only if the conceptual schema is machine

processable. The bulk of the remainder of this paper will discuss

the nature of the conceptual schema and how it may be made explicit

to the system. However, it is worth examining what its presence

means to the dynamics of the data base management system operation

in terms of the diagrammatic representation of Figure I.

Ignoring the system programmers, who are extraneous to normal

operation, there are four human roles identified: the enterprise

administrator, the data base administrator, the application

administrator(s) s and the application programmer(s). Notice that

369

these are roles as opposed to individuals. The same individual may

function in different roles and one role may involve several

individuals simultaneously. It is critical, however, that there is

only one enterprise administrator and one data base administrator

(viewed as roles) while there may be several application

administrators and several application programmers. This leads to

the notion that there can be several external schemas, each

representing a different view of the data, provided each is

consistent with and derivable from the single conceptual schema. By

extension there can be several application programmers, not

necessarily working on the same program, that use the same external

schema.

Each "administrator" is responsible for providing to the system a

particular view of the necessary data and the relevant relationships

among that data. The central view, as noted above, is that of the

enterprise administrator who provides the conceptual schema. It

must be emphasized, and apparently with repetition as this point

seems to be the most frequently missed by those not on the Study

Group who have examined its work, that the conceptual schema is a

real, tangible item, made most explicit in machine readable form,

Couched in some well defined and potentially standardizable syntax.

Much of the remainder of this paper is concerned with conceptual

schemas and the author's view of the possibilities for the semantics

of such schemas. In order to provide a context, however, a

preliminary examination of the dynamics of the process envisioned is

appropriate.

The enterprise administrator defines the conceptual schema and, to

the extent possible and practicable, validates it. Some, but in

general not all, of this schema can be checked for consistency by

370

mechanical means. As the conceptual schema is a formal model of the

interesting (for the data base management system) aspects of the

enterprise, if the situation is at all complex then the problem of

logical incompletability will be encountered (Godel 1931). The

conceptual schema will contain, among other things, definitions of

all the entities to be comprehended--up to the isomorphism

determined by identity of those properties defined in the schema as

relevant. Relatonships amongst these entities will also be

explicated, as will the constraints on allowable values of "data".

By defining those persons with some access to the data base

management system as entities of interest, it is possible to

directly model the rules of access and, thus, provide security

control at the level of the conceptual schema. This is a key point.

It is well known that there are substantial problems with security

control and the importance if a centralized point having a view of

the entire system must not be overlooked.

The data base administrator (a definition of this role somewhat at

variance with the conventional conception of the task) is

responsible for defining the internal schema. This schema contains

an abstract description of the storage strategy currently employed

by the data base management system. Whether the data is actually

stored flat, hierarchical, networked, inverted or otherwise,

including any meaningful combination, is contained in the internal

schema. The "internal syntax" of the data values will also be found

in the internal schema; such items as the radix for numeric values,

coding schemes used, units of measure, and the like. Access paths

and the relational connectivity between data representations will be

defined. All of this must be consistent with and derivable from the

conceptual schema, which, therefore, must be available for display

to the data base administrator,. The internal schema processor (see

371

Figure 1) provides a mechanical check on this consistency. Within

the limits imposed by this requirement of consistency with the

conceptual schema, the data base administrator is free to alter the

internal schema in any way appropriate to optimization of the data

base management system operation. Indeed, by use of suitable

interpreters it will be possible to reorganize the internal

structure of the data base dynamically while normal operations

continue. In view of the massive size of some data bases currently

comtemplated, this is an essential requirement, and it would seem

that only the guarantee of separation of the users' view and the

system's view of data provided by interposition of the conceptual

schema permits this.

The third "administrator" role, the application administrators,

provide the external schemas (analogues of the DETG "sub-schemas")

which define the application programmers' views of the data. These

external schemas are a multiplicity in concept and will, in general,

only encompass the portion of the data base relevant to a particular

application. It is envisioned that each general application area

will have its own application administrator who provides the

appropriate schemas for that area. These are the only data

descriptions (schemas) seen by an application program and provide

the only avenue of data name resolution. It would carry this essay

too far afield to discuss the complexities of name resolution and

symbol binding; suffice it to say that all external name resolution,

whether performed at compile time, program invocation time, or

module execution time are done across interfaces 7, 12 and 31

through the intermediation of the appropriate external schema across

interface 5.

Exactly the same remarks about the consistency of the various

372

external schemas with respect to the conceptual schema as was noted

about the internal schema are to be understood, with the

qualification that one external schema may be a true subset of

another and, under the hypothesis that consistency in this sense is

transitive, the external schema processor may only validate one

external schema against a more comprehensive one known to be

consistent with the conceptual schema.

After the appropriate schemas are defined, the system dynamics

becomes quite straightforward and little different from current

systems. The application programmer (report specifier, inquiry

specifier, etc.) does his job in the usual way, using the provided

external schema, both explicitly and implicitly, as his set of data

declarationst providing procedural input across interface 7 and

invoking compilation, generation or other relevant processes through

the application program subsystem. Upon entry to execution mode,

requests for data are passed across interface 12 to the

conceptual/external transformer which computes the mapping between

the external data description and the conceptual data description.

This description passes across interface 31 to the

conceptual/internal transformer which in its turn computes the

mapping between the conceptual data description and the internal

data description© In general, the internal and conceptual schemas

will be static, so, depending upon the mapping complexity and the

nature of the implementation, it may well be possible to collapse

the two transformers (into and out of the conceptual data

description) by computing the composite mapping function. This

should not obscure the face that in order to maintain true data

independence it must always remain possible to force this process to

occur in two steps.

373

Finally, the data request as transformed is passed across interface

30 to the internal/storage transformer. The internal schema will

recognize storage as something like a linear, multiorigined address

space, and it will be necessary to remap this abstract model of

storage onto hardware constructs such as tracks, cylinders and the

like. This "dirty" description then is passed across interface 21

into the bowels of the machine (and may go through other

transformations therein) until actual data is obtained and the

process reversed. This brief description has been couched in terms

of obtaining data but, of course, storage of data proceeds in the

same way, mutatis mutandis.

Question of locks, avoidance of "deadly embrace", security,

integrity and other data base managemen t system problems all have

their place in this scheme of things, but it is beyond the scope of

this paper to consider them. By and large they present no distinct

aspects in this three level view from those found in conventional

approaches, except that in some instances--security, for

example--the solutions may be both easier and more assured.

Before turning to a discussion of the conceptual schema it is

appropriate to insert a brief excursus on the status of data base

management system standardization in ISO. At the Eight Plenary

Meeting of ISO/TC97, held 1974 May 14-17 in Geneva, Resolution 11,

passed with 14 affirmative and two negative (Canada, France) votes,

assigned responsibility for data base management to Subcomittee 5

(Programming Languages) and instructed SC5 to establish a study

group on the subject (ISO 1974).

Such a Study Group was established by SC5 and several countries

submitted position papers. The USA position paper was the SPARC

Interim Report. An 1975 June 24-26, the Study Group met in

374

Washington, DC with delegations from France, Germany, Sweden and the

USA. Written input was also available from Switzerland and the

United Kingdom. The following six points are the conclusions of

that meeting:

I. The Study Group concludes in response to the Netherlands

Proposal on Data Base Management (ISO/TC 97/598), that any

standardization action in the area of data base management

systems based on existing proposals is premature in the absence

of criteria against which to measure such proposals.

2. The Interim Report of the ANSI/X3/SPARC Study Group on Data Base

Management Systems (ISO/TC 97/SC 5 (USA-75) N359) is accepted by

the ISO/TC 97/SC 5 Study Group on Data Base Management Systems

as an initial basis for discussion on a gross architecture of

data base management systems.

3.

4.

The Study Group acknowledges the need to identify all types of

data base management systems users and to specify their

requirements~

The Study Group proposes to review and augment the terminology

used in N359 and the concepts therein. As the initial effort,

the Study Group will establish priorities in terms of the

interfaces identified in N359 for further investigation. These

priorities will be chosen to optimize the benefits derived from

standardization.

5. As a parallel activity to those identified above, the current

CODASYL data base specifications will be evaluated. The Study

Group notes at this time that preliminary studies by various

national and internationl bodies have indicated that the CODASYL

specifications are not suitable for standardization as they

375

stand.

6. The Study Group will recommend development work for those

interfaces appropriate for standardization for which no adequate

candidate exists.

The next meeting of this Study Group will be in Paris, 1976 January

12-15.

The underlying notion behind the conceptual schema as envisioned by

the Study Group is the "entity-property-value" trinity made explicit

in GUIDE-SHARE requirements study (GUIDE-SHARE 1970). There is

general agreement among the members of the Study Group on the

overall nature and objectives of the conceptual schema, but in my

judgment there is less real agreement on its exact place in the

scheme of things than might seem the case from the Study Group

reports. To a considerable extent this lack of agreement does not

hamper progress, and may well not matter in the long run provided

the distinct views are carefully articulated. What follows is the

author's view of the conceptual schema notion and some indications

on how it can be formalized.

Figure 2 is a schematic illustration of how one can proceed from

"reality" to the data models actually used by application programs.

It is derived from a metaphysics that may not be wholly congenial to

everyone but should at the very least be familiar to those

acquainted with the principles of scientific explanation

(Braithwaite 1953). It is assumed that a "real world" exists in

some meaningful sense. Subordinate to this "true" reality can be

found the "perceived" reality obtained through our sensory inputs as

transformed by our brains. This immediate, primitive image of

reality is, or at least can be, transformed into a rational mental

376

model of reality by a process known as scientific abstraction.

This process can be roughly described as: (1) observation (noting

one's perceptions); (2) experimentation (stimulation of the

perceived reality to generate new perceptions); (3) ~eneralization

(intuiting that similar stimulation will generate similar

perceptions); (4) theorizin~ (identifying fundamental

generalizations); (5) ~ (inferring that new and different

stimulations will produce new, albeit expected, perceptions); and,

finally, (6) verification (initiating these new stimuli and

observing the results). Repeated iteration of this sequence leads

to a gradually more refined mental model of the real world.

In order to communicate this model to someone--or something--else,

it is necessary to use a language. As is well known, natural

languages are unsatisfactory media for ~recise communication of the

content of scientific models. At present the best available vehicle

for such precise communication is that of formal languages (Tarski

1930). While there are complications in the reduction of scientific

descriptions of reality to existing formalisms, most of these

problems are to be found on the outer limits of the models.

Generally one does not really wish to describe a total model of all

reality--the "best ~ model whose boundary is fuzzy and moves with the

growth and modification of scientific knowledge. What is desired is

to describe some limited model of a portion of reality, extracted

from the "best" model by a process we can call "engineering

abstraction". While it may be the case that the universe is "best"

described by the interactions of 3.10 ~0 quarks, the typical engineer

is more apt to build his bridge by combining girders, cross braces

and rivets. The molecular biologist may view the human being as a

complex structure of water, protein molecules, DNA and other,

377

assorted chemicals, but to the insurance agent a human being is not

much more than an age, sex and checkbook. For any application one

abstracts those aspects of "reality" considered relevant and ignores

the rest. Thus, formal descriptions need only deal with the

appropriate level of abstraction.

This resultant formalism--the "symbolic" model--is derived from the

limited, "engineering" model of the interesting subset of reality as

embodied in the mind of the perceiver by a process we will call

"symbolic abstraction", and is the linguistic expression in some

conventional, predetermined syntax of a set of forms to which

suitable semantic content is given by the adoption of rules of

designation and rules of truth (Carnap 1942). It expresses the

totality of what is known and interesting about the enterprise being

modeled. It i__ss the conceptual schemma. The processes of mapping

from this formal model to the data models we call "internal schema"

and "external schemas" may be complex and difficult in practice, but

they are straightforward in principle, providing only that the

conceptual schema has sufficient detail to permit all necessary

expression.

In the author's view the proper choice of formalism--indeed, the

only acceptable choice--is that of modern symbolic logic; the first

order predicate calculus with identity (Hilbert & Ackermann 1938),

together with a suitable axiomatic set theory (Bernays & Fraenkel

1958), augmented by appropriate modal logics (von Wright 1951), and,

finally, supplemented by "individuals" (Quine 1961) and the

associated non-logical predicates and the axioms for their behavior.

The reasoning behind this position is quite simple. Use of the

conventional formalisms of symbolic logic and set theory permit the

invocation of all the analysis that has been devoted to this topic

378

by three generations of logicians. Both the pitfalls and

possibilities are well understood and the limitations clearly

defined. Further, it is in some sense the most general scheme

available. If one accepts Church's Thesis (Kleene 1952), as do most

contemporary logicians, it is the most general scheme that can be

contemplated for use with digital machinery. From this it is

possible to deduce that anything expressible to a machine with

precision at all is necessarily expressible in this fashion.

As an aside let me emphasize a point which should be obvious but is,

perhaps, worth making explicit for clarity. Whenever in this paper

I use the word "set" I intend it in the strictly logical sense as a

synonym for "collection" or the German "Mange" or the French

"ensemble", not in any way as that linguistic atrocity perpetrated

by the DBTG Report wherein the nineteenth, fifth and twentieth

letters of the Roman alphabet are used in that order as the name of

a peculiar object. This may seem harsh, but the point at issue

represents a prize example of the manner in which the information

processing sciences generate confusion for themselves and others by

casual misuse of words. Indeed, it reminds me of Orwell's Newspeak.

In a paper of this character it is not possible to probe the

possibilities of the sketch above in any depth. However, certain

examples may clarify the power of the approach. It is unequivocally

precise in any modern version of set theory as to what is meant by a

"relation". A relation is a set of ordered pairs (the ordered pair

being definable as ~x~,tx,y~) and one can say that x bears <x,y>

the relationship R to y provided that <x,y> g R ("~" being the

predicate of set membership). Thus, the confusion between a

"relation" and a "relationship", which is another example of

terminological idiocy, is made quite precise.

379

Relations of interest can be given names and defined either by

enumeration of their members or by any property that must be

possessed by a pair to enjoy membership, in exactly the same fashion

that any other set is completely defined by its members.

The equally troublesome concept of "order" can be explicitly

defined. A partial ordering is any relation having the properties

of reflexivity, anti-symmetry and transitivity. A linear ordering

is a partial ordering where any two elements in its field are

comparable and a well-ordering is a nowhere dense linear ordering.

Structures of arbitrary complexity can be constructed. The concept

of a general array (Steel 1964) developed out of some early data

structure studies, and it can be shown that any nondense complex is

expressible as a general array so defined. As digital computers

cannot deal with dense structures except in finite approximation,

this would seem to be sufficient.

The modal predicate of deontic logic, "O" (for "obliged to"), and

its derived predicates "O-" ("obliged to not" E "forbidden to"), and

"-0-" ("not forbidden to" I "permitted to") provide the required

paradigm for expressing either legal constraints in the model or

defining the rules of access.

These examples could be multiplied a considerable length, but should

be sufficient to illustrate the point. From a theoretical point of

view there is no more suitable vehicle for expressing a conceptual

schema. This is, of course, not the whole story.

First, theoretical possibility and practical possibility are not

identical. There is the danger that the necessary expressions get

too large and cumbersome for effective use. In an age where we deal

with million instruction operating systems, this is not a fully

380

persuasive argument in any event. It is, however, moot. The number

and character of the necessary expressions do not get excessive;

unlike, say, the contrast between conventional procedure languages

and Turing machines. On the contrary, nearly a century of search

for compact notation has resulted in definitional sequences that

provide more compact expression than one typically finds in

programming language data descriptions (or sub-schemas) which

perform less of the task. Some of this is due, of course, to the

use of large character sets, but in any case economy of notation is

not a problem.

A second potential difficulty is the actual use of the tools to

construct the desired models, which is a task that is necessarily an

art rather than a science. Clearly, if the process of constructing

a model could be itself formalized one would already have the model

in the input. To this point I can only say that I have personally

been partially successful in constructing models of relatively

complex insurance procedures, and in a matter of a few days,

inventing notation as I went along. This effort was only partially

successful in the sense that, while I was able to generate static

models with no difficulty, the problem with time and the dynamic

behavior of the model caused difficulties of two types. First,

thre was the philosophical problem of the potential as opposed to

the actual. How does one treat the property "age at death" prior to

the actual death of the individual? Formally, of course, this is

trivialF but obtaining some assurance that the formalism does not

hide an ambiguity or paradox is far from trivial.

The second problem with time has to do with the inelegance of making

the variable denoting time distinguished and, therefore, a special

case. While there is nothing inherently wrong with mathematical

381

inelegance per s e, several thousand years of logical and

mathematical history suggest intuitively that something is wrong.

Some recent work (Thomasen 1974) on the reduction of tense logic to

modal logic hints at a solution to this problem.

I have gone far enough with this work to become convinced that the

approach is sound and no fundamental invention is required; only

some hard work to refine the ideas. There remains, however, one

further potential criticism of this approach with which it is

necessary to deal. It is a criticism to which I would prefer to

comment "a pox on those who raise it" and then ignore the matter.

As a practical consideration, however, it will not go away. It is

much the same argument that has been raised in the past against

every programming language except COBOL; i.e., the language is too

much like algebra, only the mathematicians can use it. The argument

is irrefutable for if people believe they cannot understand

something, they won't! However, there is one difference between

this situation and the programming language situation. The only one

who must construct models is the enterprise administrator and only

the data base administrator and the applications administrators need

to read such models. These individuals are presumably senior and

well compensated. They can be required to have a little education.

Furthermore, while I have no proof, it is my belief that once the

barrier of belief in its esoteric character is overcome, it is no

harder to teach reasonably intelligent people the relevant logic

than it is to teach them COBOL and the DDL.

To summarize this personal view of the nature of a conceptual

schema, any alternative is either equivalent and therefore equally

complex while being less understood for lack of familiarity, or it

is not equivalent and therefore can only model a subset of that

382

reality otherwise amenable to modelling. The only real issue is

whether some less powerful but more acceptable formalism exists that

is adequate for modelling anticipated enterprises for a reasonable

future. In my view neither data structure diagrams (Bachman 1969)

nor normalized relations (Codd 1970) nor the CODASYL DDL (CODASYL

1971) being discussed at this Working Conference are candidates for

such an alternative. As overlaid structures for internal and

external schemas they may be quite suitable; the criteria for

acceptability being different.

In conclusion~ let me reiterate that the latter portion of this

paper is my personal view of the appropriate structure for a

conceptual schema and does not necessarily represent the view of

other members of the ANSI/SPARC Study Group on Data Base Management

Systems. On the other hand, the general principle of the three

level approach and the essential requirement for the conceptual

schema is fundamental to the deliberations of the Study Group. It

is reasonable to claim that this position will be maintained in the

Final Report of the Study Group and will continue to characterize

the official position taken by ANSI on behalf of the USA in any

deliberations on data base management systems in the ISO.

383

REFERENCES

Bachman, C. W.: "Data Structure Diagrams", Data Base, 1:2 (1969).

Bernays, P. and Fraenkel, A. A.: "Axiomatic Set Theory",

North-Holland (Amsterdam 1958).

Braithwaite, R. B.: "Scientific Explanation", Cambridge University

Press (London 1953).

Carnap, R.: "Introduction to Semantics", Harvard University Press

(Cambridge, ~ 1942).

CMSAG Joint Utilities Project: "Date Management Systems

Requirements", CMSAG (Orlando, FL

1971).

CODASYL: "A Survey of Generalized Data Base Management Systems",

available from NTIS (Washington, DC 1969).

CODASYL": "Data Base Task Group Report", ACM (New York 1971).

Codd, E. F.: "A Relational Model of Data for Large Shared Data

Banks", CACM, 13:6 (1970), pp. 377-387.

G~del, K.: "Uber formal unentscheidbare S~tze der Principia

Mathematica und verwandter Systems I", Monatshefte, 38

(1931), pp. 173-198.

GUIDE/SHARE: "Data Base Management System Requirements", SHARE

Inc. (New York, N. Y. 1970).

Hilbert, D. and Ackermann, W.: "Grundzuge der Theoretischen

Logik", Julius Springer (Berlin,

1938).

ISO: ISO/TC97 (Geneva-3) 669.

384

Kleene, S. C.: "Introduction to Metamathematics", van Nostrand

(Princeton, N. J. 1952).

Quine, W. V. 0.: "Mathematical Logic", rev.ed., Harvard University

Press (Cambridge, MA 1961).

SPARC: "Outline for Preparation of Proposals for Standardization",

document SPARC/90, CBEMA (Washington, DC 1974).

SPARC: "Interim Report: Study Committee on Data Base Management

Systems:, SIGMOD NEWSLETTER (forthcoming).

Steel, T. B.; Jr.: "Beginnings of a Theory of Information

Handling", CACM, 7:2 (1964), pp. 97-103.

Tarski, A.: "Fundmentale Begriffe der Methodogie der deduktiven

Wissenschaften I", Monatshefte f~r Mathematik und

Physikt 37 (1930), pp. 361-404.

Thomason# S. K.: "Reduction of tense logic to modal logic, I",

J. Symbolic Logic, 39:3 (1974), pp. 549-551.

Von Wright, G. H. : "An Essay in Modal Logic", North-Holland

(Amsterdam 1951) .

385

' Enterprise
Administral

Data Base
~dministratol

®
Conceptual

Schema
Processor

® iptmswm~

"\.dm~,strator/!
®

Internal
Schema

_ ~ ~ P r o c e s s o r

,0 ~ ,®
I I 'n"'na'~ I_

"~ -i-'~! Sto,age r"- ! L,,.n,.°,~°, /

! I
! I I Internal I
~ (System) I
! Program I
I I I Subsystem I
I I
I I

p System
rogramme/

Conceptual/
Internal

Transformer

External
Schema

Processor

@

i I-, conc
'

I I
! I ! External I
1 (Application) ~
I Program I
~ Subsystem I I
I I
I I

<~ pplication~',
rogramme,/,'

, , , / /

Figure
I

386

• R e a l i t y "

Scientific progress

Perceived Reality

~ - - = ~ " ' ~ Scientific abstraction
Model ~ E n g i n e e r i n g abstractions
-~= Conceptual Realm

imited Models
Mental Model

/ / i / " ' / ' / / / ' / / / ' / " " ~ ~ I

Symbolic abstraction -v-$
Conceptual Realm

I Conceptual I Symbolic Model
Schema

External]
Schema(s)

Internal 1
Schema

Figure
2

