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Summary 

On the background of a general model of information systems a view is 

analyzed which explicitly distinguishes between information and its 

represeniation. Using a conceptual system (IMC) which has been designed 

to talk about information structures and their manipulation, some ideas 

on the representation of information are presented. The significant 

role of type declarations for the information and representation level 

is shown. For the concepts of format and data a definition is outlined. 

In the light of these considerations some topics concerning present 

data base technology are discussed. This gives the motivation to 

conclude with a plea for conceptual differentiation in the field of 

data base management systems. 

I. A model view of information ~ystems 

For information systems a view has been proven to be very useful which 

considers them consisting of communicating functional units 

(Funktionseinheiten) in the sense of [DIN]. Recently these functional 

units have been identified in [ANSI] as roles or work stations 

characterized only by their function within the system rather than by 

their technical realization. Years ago this kind of functional units 

has already been introduced and applied in [ABN] following a suggestion 

of C. A. Petri. There the term office (Instanz) has been chosen fox the 

functional units under consideration. In information systems the 

offices influence each other by communicating messages. So the need has 

been recognized to introduce a complementary functional unit which 

allows for the exchange of messages between offices. To this kind of 
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functional units the term channel (Kanal) was given in [ABN]. The 

concept of interfaces as used in [ANSI] has a direct relation to the 

concept of channel: An interface is a system of rules which govern the 

communication via a considered channel. Also a channel is characterized 

only by its function within the system serving as a facility where 

messages can be posted and taken by the communicating offices. 

This yields a model view of information systems which provides for the 

decomposition into two distinct classes of functional units: 

- offices characterized by the processes they can perform 

- channels characterized by the states they can assume. 

This model view applied to data base management systems recently has 

gained some publicity, since the publication of [ANSI] is under 

discussion both in the world of scientific research (IFIP/TC-2 and I~G) 

and in the area of standardization (ISO/TC 97/SC 5). 

With the above model in mind we want to do a close look to the 

communication of two offices via one channel. This seems to be an 

adequate minimum configuration to examine the interrelation between 

information and data. 

To illustrate this configuration we use the graphic notation of [PET], 

where offices are depicted by boxes and channels by circles (in the 

cited paper only elementary offices and channels are considered). This 

yields fig. I. In the adopted model communication between both offices 

is done by exchanging messages via the linking channel. The arrows in 

the above figure only indicate the possibility of access and are n o 

functional units. 

A further aspect is depicted in fig. I: The exchange of messages makes 

only sense if both communicating offices have a common background of 

understanding, which allows them to interpret the messages found in the 

channel. The assumption of such a "uniwerse of discourse" is a very 

useful auxiliary model for the understanding of communication also 

between technical functional units. 
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2. Model information and abstraction 

So far no reference has been made to a distinction between information 

and data. But words as "represent" and "interpret" indicate a kind of 

mapping between two things. It is the goal of this section to show that 

there are two mappings to be considered. Both have the nature of an 

abstraction, i.e. omission of features not to be considered - hut they 

start at different points. 

One kind of abstraction starts with the so-called initial information 

(Ausgangsinformation), which is to be understood as the whole of 

knowledge or ideas a person has about something (of the real world or 

anything else). For a certain pragmatic context, i.e. pursuing an 

intended purpose it might be that not the whole information is needed 

but only the "relevant" part of it. The information about a person e.g. 

is different for administrative purposes and for medical purposes; the 

information about a technical process for teaching purposes will be 

different from what is needed for engineering purposes. So it is the 

intended purpose which controls the abstraction process. In [DURI] the 

result of the abstraction process has been called the (respective) 

model information (~odellinformation). In similar considerations of 

[STEEL] the above abstraction is called the "engineering abstraction,' 

which yields the "engineering model". The term model information 

indicates, that we are still on the information level. In the present 

context we do not adopt any definition of information; the concept is 

used in the sense of knowledge or idea (about something). Thus 

information is viewed as being of mental nature. 

It is obvious, that depending on the respective intended purpose 

various abstractions can be performed on the same initial information. 

It is not of interest in this presentation, whether the model 

information "exists" or not - whatever that means. However we found the 

approach very useful which assumes a level of model information (as did 

also other authors). 

Model information cannot be communicated directly because of its mental 

nature. There must be a representation of it (on a medium) which can be 

handed out to the addressee (or which can he stored for later use). 

Such a representation is what usually is called "data". The distinction 

between information and its representation is the background on which 

all the following ideas have been developed. 
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Now it is possible to show the other abstraction mentioned above, which 

is of a guite different nature. Consider some messages (here in the 

sense of data) which by agreement between the communicating offices 

have the same meaning. What is "same meaning" in the present case? Any 

message is considered to be a representation of model information. As 

already pointed out, exchange of messages is assumed to have the goal 

to exchange model information. There are rules for the mapping of 

messages to model informa±ion. Such a mapping usually is called 

"semantics" and the process of mapping "interpretation". If several 

messages are mapped onto the same model information, they all have the 

"same meaning". So we have an abstraction from various representations 

to the pertinent model information by ignoring the respective 

representational peculiarities. 

There is one problem which might have been apparent already in the 

above discussion. Considering the communication beween an author and 

the audience he has the need of representing model information, which 

he wants to write about. For this purpose a kind of (graphical) 

reference language is beneficial, in which information can be 

represented and the interpretation of which is agreed upon. Such a 

graphical language will be presented in the following and used for 

canonical representation whenever emphasis is laid on the model 

information rather than on one of its possible representations. 

3. Outlines of a conceptual model of information 

Before dealing with any problems of representation the properties of 

model information itself have to be identified. What is an adeguate 

view of model information with respect to applications? This question 

brings us into a (at least in the past) very controversal area of 

argumentation about the advantages and deficiencies of so-called "data 

models" (hierarchic, network, relational, ...). For general 

considerations we can avoid this topic by adopting a view which covers 

the various ,'data models". This view has been outlined in [DUHI] and is 

reflected in a conceptual system called Information Management Concepts 

(IMC). These concepts have been developed as a means for talking about 

model information, in particular in the context of data base management 

systems. Simultaneously, rules for graphic representation of model 

information in terms of IMC were developed. Both the basic concepts of 

IMC and the related canonical representations will be outlined in this 

section to facilitate the treatment of the topic of "data" (in the 
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sense of representation) and its relationship to information. 

In IMC any portion of model information which can be referred to in a 

communication is called a construct (Gebilde). A construct may be the 

information about a family, a car in an administration, a book in a 

library, a process in a factory. A construct is either an ~!Rm (Atom) 

or an ~e~a~e (Aggregat). Whereas an atom is declared to "be", i.e. 

to be viewed as elementary (in a given situation), an aggregate is a 

compound construct, the composition of which i s relevant in a 

considered communication. A construct in its capacity as a part of 

another construct is a ~R@~2~ (Komponente). A construct cannot be a 

component within itself. 

Depending on the way of immediate composition (first level) an 

aggregate is either a collection (Kollektion) or a nomination 

(Nomination). These two generic types of aggregates differ in that a 

collection is an unordered finite set of constructs, whereas a 

nomination is a (mathematical) function from n~me~ (Name) to 

constructs. The domain of a nomination therefore is a set of names. For 

the property of being a collection or a nomination the nature of the 

immediate components is of no significance. Names only serve for the 

selection of immediate components in a nomination (in the same manner 

as selectors in the Vienna Definilion Language, cf. e.g. [ZEM]). Beyond 

that no meaning of names is involved within the framework of IMC. 

To show examples of atoms, collections, and nominations we first have 

to introduce the above mentioned canonical representation. In IMC a box 

represents a construct. The composition of a construct is shown either 

by nested boxes (fig. 2) or by trees (fig. 3). In a tree representation 

the aggregation of constructs to an aggregate is expressed by t~ 

vertex. A combination of both representation techniques is possible. 

Atoms are always represented hy boxes. In the representation of 

nominations the presence of names is depicted by small circles attached 

to the component representations. The names are written close to the 

circles. A detailed example of a "relation" and the corresponding "set 

network" in I~C representation is given in [DKR]. 

If we look at the representation of the nomination of fig. 2 or 3 we 

notice that the same construct may appear in different contexts. In a 

representation we can point at the various locations where (the 

representation of) the same construct appears, on the conceptual level 

of model information we cannot. Therefore a concept is needed which 
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allows to distinguish between different appearances of one ccnstruct 

(within a considered embracing construct). In IMC the concept of ~R2~ 

(Stelle) has been introduced. A spot can be defined as a sequence of 

pairs (name, construct). In case of a collection the empty name is 

inserted at the name position in the pair. The first pair of a spot 

defining sequence always consists of the empty name and the reference 

construct, in (=relative to) which the spot is considered. So with the 

symbols of fig. ~ the construct in question appears at the spots 

(-,c,) (home address,c2) (city,c3) 

(-,ci) (place of birth,c3) 

(-,c,) (branches, c s) (-,c~) 

which are spots in cio (The lower case c~s stand for the respective 

construct.) The same construct also appears at the spot 

(-,c2) (city,c~) in c 2 and 

(-,c5) (-,c3) in cs. 

Another example is c 7 which appears in c, at the following two spots: 

(-,c,) (ho~e address~c 2) (street,c6) (number,cT) 

(-,c,) (date of birth,c 4) (year,c,) 

It turns outs that the concept of spot is essential for the discussion 

and understanding of some sophisticated aspects in data base management 

systems, not least those concerning the interrelationshi~ between 

information (constructs) and data (representations). 

Fig. 2 and 3 show, by the way, that in canonical graphic representation 

always constructs a t s p 0 t s are depicted. As by definition any 

spo% structure is hierarchic, one sigh% be tempted to label I~C a 

hierarchic system. But it is obvious, that in a 1 1 existing 

information models (in hierarchic, network, relations, etc.) the spots 

form hierarchic trees. 

So far only individual constructs have been considered. Nothing about 

types or declarations has been said nor used tacitly. A type in general 

is a set. But not any set is a type. First of all, it has to be 

determined what are the elements of such a set. In the present context 

we focus on ~e~_~f constructs (Gebildetyp), thus the elements are 

constructs. In the world of data base management systems instead of 
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"element" the terms "occurrence" or "instance" of a type have been 

adopted. 

But not even any set of constructs is a construct type. A type of 

constructs has to be declared for a considered communication, saying 

that only constructs which belong to the specified type(s) are admitted 

for exchange. Sore precisely: As only representations of constructs can 

be exchanged via the channels of an information system, a type 

declaration specifies what constructs will be represented and can be 

"understood" by interpretation. A language, in which type declarations 

are made, should be called a "type definition/declaration language,,, 

but unfortunately is often called a "data definition language". This is 

one example of sloppy terminology which is so characteristic for the 

field of data processing. 

Not even "type declaration language', would be sufficiently precise. As 

will be shown below, also other types have to be declared (on the 

representational level). Therefore, strictly speaking such a language 

is a "construct type declaration language" (CTDL). As far as only the 

composition of constructs by others is specified in a recursive type 

declaration, a graphic construct type definition language can be 

applied in analogy to the canonical construct representation. An 

example for a graphic type definition is shown in fig. 5, an occurrence 

of that type is represented in fig. 6, where in both figures the small 

box in the upper righthand corner provides a place for inserting the 

name of the type or the ~[R@__~es~nation (Typenbezeichnung) as we 

prefer to say. This "type plate" is also used in construct 

representation, if emphasis is put on the fact that the construct is 

occurrence of a particular type (cf. fig. 6 and 10). 

It would be beyond the scope of this paper to discuss all the aspects 

involved in the concept of type in general and of construct types in 

particular. The one or the other will he addressed in the following 

paragraphs. 

After this very short outline, concepts to talk about model information 

and a canonical representation technique are available. The concept of 

type has been emphasized because of its great importance for the 

guestions of representation to be discussed in the next section. 
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~. Data as representations 

For convenience the term "data" is used in the following instead of 

"digital data" indicating that only representations are considered 

which consist of characters (cf. [DIN]). Other representations 

(pictures, sounds, etc.) are not investigated with regard to their 

relationship to information. 

Referring to the configuration of two offices with a channel between 

(fig. I), let the piece of paper on which fig. 7 appears be a 

realization of a communication channel. The question is, whether the 

addressee interprets the five representations there as representations 

of five, four, three, two or one construct. The example suggests the 

answer, that the interpretation of the various representations is the 

subject of agreements between the communicating offices. So according 

to one agreement all representations might be interpreted as "number 

seven", according to another agreement the representation ~ + 3 might 

be taken for an arithmetic expression and not be interpreted as "number 

seven", or there might be a difference on the construct level even 

between a "bar seven"(~) and a "plain seven"(7), etc. 

A multitude of such agreements are taken for granted in everyday 

communication. So in usual text the shape of the characters is 

irrelevant, but in mathematical texts it is not. On the contrary, you 

have to distinguish carefully between different fonts, because they 

have a different meaning which usually is agreed upon at the beginning 

of a paper or is default in mathematical literature. Or: In many 

programming languages the interspersion of blanks in some places is of 

no relevance, in other places it is. 

These two examples may show that the relationship between information 

and representation (data) has to be established in advance in order to 

make possible mutual understanding in communication via a channel. What 

are the provisions to be made? 

For a communication to be possible there must be a prior common 

background of understanding, i.e. a predefined mapping of 

representations onto constructs. In the course of communication further 

agreements may be used to extend this cemmon background: One office 

passes the declarations to the other, the latter one accepts or rejects 

them. The declarations comprise 
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- construct type declaration 

- representation type declaration. 

Construct type declarations were discussed in the preceding section. 

The construct type declaration determines the constructs which can be 

communicated via the considered channel. The construct type declaration 

language is a part of the above mentioned common background. 

The representation type declaration refers to a declared ccnstruct 

type. It determines, what are the admissible representations of 

constructs of this type which can be exchanged in the regarded channel. 

Considering the set of all representations of the occurrences of a 

given type we arrive at the concept of x~presentation ~ 

(Darstellungtyp). The representation type declaration language (RTDL) 

is a further part of the above mentioned common background. 

An example may illustrate the relationship between construct type and 

representation type and their respective occurrences. (The used ad-hoc 

languages are not to be discussed here and should be understood 

intuitively.) Although it is a very simple example, many figures have 

been necessary to depict the ideas presented sc far, which gives an 

indication about the magnitude of usually implied declarations. 

Fig. 8 shows a declaration of the four construct types CALENDAR-DATE, 

MONTH-NAME, YEAR and DAY-NUMBER. The latter three are types of atoms, 

the first one is an aggregate type. Additionally the type composition 

is shown in IMC representation. 

Fig. 9 shows a pertaining declaration of four representation types: 

MONTH REPR, YEAR REPR, and DAY REPR are the representation types for 

the construct types MONTH-NA~E, YEAR, and DAY-NUMBER, respectively. 

DATE PEPR is the representation type for the construct type 

CALENDAR-DATE. 

In spite of the extensive declarations many implicit assumptions still 

remain: The character sets to be used, the arrangement of characters on 

the medium (paper e.g.) and other details. They all have %o be counted 

to the pre-existing common background of the communicating offices. 

Fig. 10 shows two occurrences of the construct type CALENDAr-DATE (and 

of course of the component types) and some occurrences of the 

representation type DATE REPR. 
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This example suggests that the concept of format belongs to the concept 

of representation type. Up to here the assumption has been maintained, 

that only one representation type can be declared for each construct 

type. This restriction should be dropped now. If multiple declaration 

of representation types for one construct type is provided, each of the 

declared representation types could be called a ~_m_a~ (Format) in 

close relation to the common use of this term. Referring to the above 

example of fig. 9, instead of the one representation type DATE HEPR we 

could declare three representation types (= formats) for the 

representation of constructs of type CALENDAR-DATE (two "positional" 

formats, one "key-word" format). 

It can be observed that the separation of construct type declaration 

and representation type decoration (=format declaration) is not 

explicit in existing systems. The layout of the construct type 

declaration is often simultaneously the specification of the input and 

working area format. This might be a reasonable economical approach. 

But to understand the relationship between information and data one 

should be aware of the double function of such a "data definition". 

Applying the view which has been presented sc far of the relationship 

between information (constructs and construct types) and data 

(representation and representation types) we outline a flow of 

information between two offices via one channel: An office B may be 

requested by an office A to retrieve a construct with given properties 

(e.g. from a data base). Office B finds the specified construct (i.e. a 

representation of it), identifies the type of it, chooses one of the 

pertaining representation type declarations and puts a representation 

of the construct in question into the channel. As this representation 

conforms to the representation type declaration established for the 

regarded channel, office A is able to interpret the data (knowing the 

representation type and construct type). 

Some reader might have noticed, that in the CALENDAR-DATE example an 

argumentation is missing, why the representations do not show all the 

details of the represented cons%lucts (cf. fig. 10). Actually, this is 

not necessarily so, it only corresponds to the practice in data 

processing, because it is %he representation which occupies storage, 

and not the construct. More extensive representations could be provided 

in a representation type declaration for various reasons (security, 

less extensive declarations, etc.). Of course, that would require more 

capacity of the involved channels (storage). In any case the question 
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arises, whether such a "representation" is really a representation of a 

construct. Strictly speaking, it is not. Only together with all 

specifications, which allow the interpretation of the construct, a full 

representation is there. Therefore a representation in the above sense 

shows only the ~a~iX!~!__~ (Individualteil) of the represented 

construct, because the representational part common to all occurrences 

of that type is in the type declarations. This leads to the idea, that 

da~ (e.g. in "input data") usually means individual part of the full 

representation rather than the full representation itself. With this in 

mind, the use of the word "data" in the criticized term ',data 

definition" can partly be justified: The "data definition" defines in 

its representation type declaration the admissible data, i.e. the 

admissible individual parts of construct representations. However, it 

should be clear by now, that the omission of the word "type" is 

entirely misleading. 

5. Practice oriented remarks 

In this concluding section some applications of the ideas about 

information and data as discussed above shall be tried. 

First a preliminary remark: There might be the impression, that the 

system of IMC has been offered as a new proposal of a data model %o 

compete with other, well known data models. That would be a 

misunderstanding. IMC is aiming to he a conceptual tool for speaking 

about information, on this level comprising the various data models. 

Nevertheless it is a c o n c e p % u a 1 model and as such offers a 

specific view on model information which allows to form a wariety of 

information structures, but has its own limitations, too. 

It is not the task of this paper to outline the features of hierarchic, 

network, relational or other data models. Hut it might be of interest 

in this context, to what these attributes refer. They refer %o %he 

so-called "data structures" which can be established in a system of the 

respective model and which are supported by the system's manipulation 

functions. With the terminology introduced above we would of course say 

"information structure', instead of "data structure" as meant here. Data 

structure in our understanding as structure of the information 

representation normally is left to the implementor, in order to achieve 

efficiency, security, or any goal else of this nature. For 

communication purposes the possible structures of constructs and 
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related questions concerning model information are of main interest: On 

what levels of aggregation are nominations or collections available, 

what are the restrictions for the nesting of constructs, are there 

special generic types adjusted to the application in question (e.g. 

"relations", which in terms of IMC are collections of equally domained 

nominations, called collectives (Kollektiv)), what is the support for 

orientation in extensive constructs, what properties can be used to 

address constructs (independently of their representation), and many 

other questions. The answers to these questions together with the 

pertaining operations on the constructs render a data model to be 

hierarchic, network or relational (or something else). 

It is a matter of course, that also efficiency and other aspects 

influenced by representation techniques are of relevance. The problem 

of "redundancy" is one of them. It is not intended here to consider the 

benefits and the disadvantages of redundancy. But it has to be 

clarified, that redundancy does not refer to the level of constructs, 

but to the level of their representation. It has been shown, that a 

construct may appear at several spots as a component of an embracing 

construct. Spots, at which the same construct appears (necessarily or 

by chance) are called ~ @ ! _ _ § ~  (Parallelstelle). If the 

appearance of a construct at several spots is r e q u i r e d this 

has to be specified in the construct type declaration hy so-called 

"consistency constraints" (cf. the SOURCE clause of [DDLC]). Once a 

consistency specification of this kind has been established, the system 

(as one of the communicating offices) is free to decide, whether it 

will store the representation of the construct each time it appears (at 

a parallel spot) or less often (usually once). The more often the 

representation is stored, the higher the degree of redundancy is said 

to be. It is conceivable in principle (and actually is done sometimes) 

that the same technique could he applied also for other than 

consistency-conditioned parallel spots. Such a situation is also given 

with the RESULT feature of [DDLC]). On the model information type level 

the RESULT clause specifies that the atom at the specified spot is the 

result of the execution of a specified procedure, which uses constructs 

at other spots as input. In both the SOURCE and the RESULT clause 

additionally is specified, whether a representation of the depending 

atom is maintained permanently (ACTUAL) by the system, or is made up 

only when required for passing it via the communication channel to the 

requesting office (VIRTUAL). In the strict sense, the ACTUAL feature 

causes redundancy. However also another, less restrictive 

interpretation of the ACTUAL and VIRTUAL feature is conceivable, where 
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the system still remains free to follow the specification verbatim (as 

assumed above) or to understand it only as an efficiency constraint 

Doing a closer look to the discussion of redundancy (in the context of 

data base management systems) one encounters a system configuration 

which is a slight modification of that used so far. To show explicitly 

that one of the offices (the "system") is a computerized functional 

unit with a storage as a private channel (the "data base"), a diagram 

like fig. 11 is often preferred rather than fig. 1. With this 

configuration containing two channels or still better three channels 

(input channel, data base, output channel) we have also three places to 

represent constructs. If we consider a representation tyFe declaration, 

the question has to be answered, what is the object channel which the 

declaration is applied to? As a matter of fact this is seldom clearly 

stated. In particular, input format declaration (e.g. sequence of atom 

representations) and data base format declaration (e.g. SOURCE feature, 

RESULT feature) are made up to one complex declaration package, the 

complexity of which is still more increased by packing the construct 

type declaration into the same package. Such declaration packages are 

well known under the label "schema',. The consequence of such an 

"optimization" is a minimization of the number of characters to be 

written by the programmer at the expense of quality of software, in 

particular of clarity. 

Finally some remarks on the relationship between information and data 

on %he one hand and their manipulation on the other hand might be 

appropriate. If would be an obvious question to ask whether constructs 

or their representations are manipulated. Strictly speaking, only 

representations can he handled, as was stated previously. But so-called 

data manipulation languages do not refer to the representational level 

only. Primarily they are designed for the manipulation of constructs. 

This will be illustrated by an example of the retrieval of a construct: 

The properties which are specified as parameters of a request refer to 

a construct rather than to a representation of it. The delivery of the 

found construct is done by putting it into the respective channel in an 

agreed representation, i.e. meeting the output format. Another example 

is "navigation". This term refers to moving from one spot to the other 

in an extensive construct. Also here no reference to the representation 

of this construct is involved. Only upon request the navigator gets 

some representation of the construct (at the spot) where he has arrived 

at. In case of a data base management system, he does not receive the 
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representation on which the retrieval has been performed, but an output 

representation. A counter-example, however, is a library, where the 

representation in the data base (room with book-shelves) is the same as 

in the output channel (librarian's counter). 

Although a ~'data manipulation" language refers %o the level of model 

information, this does not imply that no actual access to 

representations takes place in the system. B~t again, it is up to the 

implementor, which representations in what way he has provided to be 

accessed in order to execute manipulation commands. On the other hand 

the user has several interests to influence also the policies of 

representation and access. He has time, cost, and security 

reguirements. These requirements which refer to storage and computing 

time exert some influence to the information level. A good choice of 

construct types and of manipulation functions as well as a forecast of 

the user's way of acting in the future (traffic density, update / 

retrieval ratio, etc.) should yield a balanced compromise between 

application adequacy and computer efficiency. However, in overall 

efficiency considerations the influence of storage and computing time 

resources will decrease. More and more it becomes evident, that we have 

to move from computer biased concepts, information stractures and 

manipulation facilities to system interfaces, where more preference is 

given to the involved people and the intended application. This goal 

includes to support conceptual differentiation wherever useful. The 

presented view of inforaation and data is intended to be a contribution 

to this goal. 
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I HOUSTON1 

~ street 
~ street 

name 

[JAckSON 

number 

branches 

[WASHINGTON 1 

[ANN A~oR, 1 
t HO~-'STON ] 

f•ly 
name 

i JACKSON I 

~ first name 

FOHN BiJ 

~ place of birth 

[ HOUSTON ] 

date of birth 

~ _ 

~ year ~month 
i~71 day 

LOS ANGELES] 

Figure 2 Constructs in iMC box representation 
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, ,, /C?. 

~ home address 

city 

0 s<eet i 

\ 

C 6 

C 7 

C 3 

branches ¢ 

I WASHINGTON ] 

[ ANN A~BOR ] 

f•iy 
name 

FJAc~SO~ 

~ first name 
[JO~N '~-I 

_ _  place of 
~ birth// 

1 HousTo~]~ 

date of birth 

1~7 day 

[ ~os A~G~Es I 
[CAMBRIDGE 

I ~{ousTON j~.,~ 

f 

C 3 

C~ 

/ 

c 3 

~c~ 

.... ~, -- c 5 

Figure 4 Construct representation of fig. 2 with 
additional lettering for reference purposes 
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EMPLOYEE 

---- ~DSCR 

~ MBE R 

SKILLS 

Jt 

Figure 5 Graphic construct type definition 

PERSON 

¢ 

. J. WA=TERS ] 

NUMBER 

5 7 8 ~  

EMPlOYeE 

SKILLS~ .... 

IsKILLCODE I 

1120 

I ,ISK~LLCODE 

1135 

Figure 6 Occurrence of construct type 
defined in fig. 5 



Figure 7 see next page 
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construct type MONTH-NAME 

atom: JANUARY, FEBRUARY, ... DECEMBER 

construct type YEAR 

atom: 1900~INTEGE~ 1999 

construct type DAY-NUMBER 

atom: 1~INTEGER~31 

non-occurrences: MONTH 

FEBRUARY 

FEBRUARY 

APRIL 

etc. 

construct type CALENDAR-DATE 

nomination: MONTH --> construct type MONTH-NAME 

YEAR --> construct type YEAR 

DAY --> construct type DAY-NUMBER 

DAY 

3O 

31 

31 

,•MONTH 
atom 

CALENDAR-DATE 

YEAR 0 

~A_Y-NUMBE__R 
om .... 

Figure 8 Construct type declarations 
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representation type MONTH REPR 

represented construct type MONTH-NAMZ 

string: 1 or JAN --> atom JANUARY 

12 or DEC --> atom DECEMBER 

representation type DAY REPR 

represented construct type DAY-NUMBER 

string: DECIMAL representation 

representation type YEAR REPR 

represented construct type YEAR 

string: DECIMAL representation 

representation type DATE REPR 

represented construct type CALENDAR-DATE 

string: (DAY REPR "-" MONTH REPR "-" YEAR REPR) 
or 

(YEAR REPR "-" MONTH REPR "-" DAY REPR) 
or 

("D:" DAY REPR /// "M:" MONTH REPR /// 

"Y:" YEAR REPR ; delimiter ",") 

Figure 9 Representation type declarations 

4+3 

seven 

SEVEN 

Figure 7 Five construct representations on paper 
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I'CALENDAR-DATE 
DAY 0 YEA~ 0 

l ' DAY-N~M~'4 ] 19G7 'YEAR 1 
MONTH 0 

4-0CT-1967 
D:4,Y: 1967,M:OCT 1967-10-4 

I CALENDAR-DATE 

_~ MONTH DAY_~ 

--1973 ] 

D:14,M:5,Y:1973 
14-5-1973 

< 
M:MAY,Y: 1973,D: 14 

1973-MAY-14 

Figure 10 Construct type occurrences and representation 

type occurrences of fig. 8 and 9 

Figure 11 see first page (fig. I) 


