
On the ~elationshiR between Information and Data

Gernot Richter, Gesellschaft fuer Mathematik

(G~D), Sf. Augustin

und Datenverarbeitung

Summary

On the background of a general model of information systems a view is

analyzed which explicitly distinguishes between information and its

represeniation. Using a conceptual system (IMC) which has been designed

to talk about information structures and their manipulation, some ideas

on the representation of information are presented. The significant

role of type declarations for the information and representation level

is shown. For the concepts of format and data a definition is outlined.

In the light of these considerations some topics concerning present

data base technology are discussed. This gives the motivation to

conclude with a plea for conceptual differentiation in the field of

data base management systems.

I. A model view of information ~ystems

For information systems a view has been proven to be very useful which

considers them consisting of communicating functional units

(Funktionseinheiten) in the sense of [DIN]. Recently these functional

units have been identified in [ANSI] as roles or work stations

characterized only by their function within the system rather than by

their technical realization. Years ago this kind of functional units

has already been introduced and applied in [ABN] following a suggestion

of C. A. Petri. There the term office (Instanz) has been chosen fox the

functional units under consideration. In information systems the

offices influence each other by communicating messages. So the need has

been recognized to introduce a complementary functional unit which

allows for the exchange of messages between offices. To this kind of

22

functional units the term channel (Kanal) was given in [ABN]. The

concept of interfaces as used in [ANSI] has a direct relation to the

concept of channel: An interface is a system of rules which govern the

communication via a considered channel. Also a channel is characterized

only by its function within the system serving as a facility where

messages can be posted and taken by the communicating offices.

This yields a model view of information systems which provides for the

decomposition into two distinct classes of functional units:

- offices characterized by the processes they can perform

- channels characterized by the states they can assume.

This model view applied to data base management systems recently has

gained some publicity, since the publication of [ANSI] is under

discussion both in the world of scientific research (IFIP/TC-2 and I~G)

and in the area of standardization (ISO/TC 97/SC 5).

With the above model in mind we want to do a close look to the

communication of two offices via one channel. This seems to be an

adequate minimum configuration to examine the interrelation between

information and data.

To illustrate this configuration we use the graphic notation of [PET],

where offices are depicted by boxes and channels by circles (in the

cited paper only elementary offices and channels are considered). This

yields fig. I. In the adopted model communication between both offices

is done by exchanging messages via the linking channel. The arrows in

the above figure only indicate the possibility of access and are n o

functional units.

A further aspect is depicted in fig. I: The exchange of messages makes

only sense if both communicating offices have a common background of

understanding, which allows them to interpret the messages found in the

channel. The assumption of such a "uniwerse of discourse" is a very

useful auxiliary model for the understanding of communication also

between technical functional units.

23

2. Model information and abstraction

So far no reference has been made to a distinction between information

and data. But words as "represent" and "interpret" indicate a kind of

mapping between two things. It is the goal of this section to show that

there are two mappings to be considered. Both have the nature of an

abstraction, i.e. omission of features not to be considered - hut they

start at different points.

One kind of abstraction starts with the so-called initial information

(Ausgangsinformation), which is to be understood as the whole of

knowledge or ideas a person has about something (of the real world or

anything else). For a certain pragmatic context, i.e. pursuing an

intended purpose it might be that not the whole information is needed

but only the "relevant" part of it. The information about a person e.g.

is different for administrative purposes and for medical purposes; the

information about a technical process for teaching purposes will be

different from what is needed for engineering purposes. So it is the

intended purpose which controls the abstraction process. In [DURI] the

result of the abstraction process has been called the (respective)

model information (~odellinformation). In similar considerations of

[STEEL] the above abstraction is called the "engineering abstraction,'

which yields the "engineering model". The term model information

indicates, that we are still on the information level. In the present

context we do not adopt any definition of information; the concept is

used in the sense of knowledge or idea (about something). Thus

information is viewed as being of mental nature.

It is obvious, that depending on the respective intended purpose

various abstractions can be performed on the same initial information.

It is not of interest in this presentation, whether the model

information "exists" or not - whatever that means. However we found the

approach very useful which assumes a level of model information (as did

also other authors).

Model information cannot be communicated directly because of its mental

nature. There must be a representation of it (on a medium) which can be

handed out to the addressee (or which can he stored for later use).

Such a representation is what usually is called "data". The distinction

between information and its representation is the background on which

all the following ideas have been developed.

24

Now it is possible to show the other abstraction mentioned above, which

is of a guite different nature. Consider some messages (here in the

sense of data) which by agreement between the communicating offices

have the same meaning. What is "same meaning" in the present case? Any

message is considered to be a representation of model information. As

already pointed out, exchange of messages is assumed to have the goal

to exchange model information. There are rules for the mapping of

messages to model informa±ion. Such a mapping usually is called

"semantics" and the process of mapping "interpretation". If several

messages are mapped onto the same model information, they all have the

"same meaning". So we have an abstraction from various representations

to the pertinent model information by ignoring the respective

representational peculiarities.

There is one problem which might have been apparent already in the

above discussion. Considering the communication beween an author and

the audience he has the need of representing model information, which

he wants to write about. For this purpose a kind of (graphical)

reference language is beneficial, in which information can be

represented and the interpretation of which is agreed upon. Such a

graphical language will be presented in the following and used for

canonical representation whenever emphasis is laid on the model

information rather than on one of its possible representations.

3. Outlines of a conceptual model of information

Before dealing with any problems of representation the properties of

model information itself have to be identified. What is an adeguate

view of model information with respect to applications? This question

brings us into a (at least in the past) very controversal area of

argumentation about the advantages and deficiencies of so-called "data

models" (hierarchic, network, relational, ...). For general

considerations we can avoid this topic by adopting a view which covers

the various ,'data models". This view has been outlined in [DUHI] and is

reflected in a conceptual system called Information Management Concepts

(IMC). These concepts have been developed as a means for talking about

model information, in particular in the context of data base management

systems. Simultaneously, rules for graphic representation of model

information in terms of IMC were developed. Both the basic concepts of

IMC and the related canonical representations will be outlined in this

section to facilitate the treatment of the topic of "data" (in the

25

sense of representation) and its relationship to information.

In IMC any portion of model information which can be referred to in a

communication is called a construct (Gebilde). A construct may be the

information about a family, a car in an administration, a book in a

library, a process in a factory. A construct is either an ~!Rm (Atom)

or an ~e~a~e (Aggregat). Whereas an atom is declared to "be", i.e.

to be viewed as elementary (in a given situation), an aggregate is a

compound construct, the composition of which i s relevant in a

considered communication. A construct in its capacity as a part of

another construct is a ~R@~2~ (Komponente). A construct cannot be a

component within itself.

Depending on the way of immediate composition (first level) an

aggregate is either a collection (Kollektion) or a nomination

(Nomination). These two generic types of aggregates differ in that a

collection is an unordered finite set of constructs, whereas a

nomination is a (mathematical) function from n~me~ (Name) to

constructs. The domain of a nomination therefore is a set of names. For

the property of being a collection or a nomination the nature of the

immediate components is of no significance. Names only serve for the

selection of immediate components in a nomination (in the same manner

as selectors in the Vienna Definilion Language, cf. e.g. [ZEM]). Beyond

that no meaning of names is involved within the framework of IMC.

To show examples of atoms, collections, and nominations we first have

to introduce the above mentioned canonical representation. In IMC a box

represents a construct. The composition of a construct is shown either

by nested boxes (fig. 2) or by trees (fig. 3). In a tree representation

the aggregation of constructs to an aggregate is expressed by t~

vertex. A combination of both representation techniques is possible.

Atoms are always represented hy boxes. In the representation of

nominations the presence of names is depicted by small circles attached

to the component representations. The names are written close to the

circles. A detailed example of a "relation" and the corresponding "set

network" in I~C representation is given in [DKR].

If we look at the representation of the nomination of fig. 2 or 3 we

notice that the same construct may appear in different contexts. In a

representation we can point at the various locations where (the

representation of) the same construct appears, on the conceptual level

of model information we cannot. Therefore a concept is needed which

26

allows to distinguish between different appearances of one ccnstruct

(within a considered embracing construct). In IMC the concept of ~R2~

(Stelle) has been introduced. A spot can be defined as a sequence of

pairs (name, construct). In case of a collection the empty name is

inserted at the name position in the pair. The first pair of a spot

defining sequence always consists of the empty name and the reference

construct, in (=relative to) which the spot is considered. So with the

symbols of fig. ~ the construct in question appears at the spots

(-,c,) (home address,c2) (city,c3)

(-,ci) (place of birth,c3)

(-,c,) (branches, c s) (-,c~)

which are spots in cio (The lower case c~s stand for the respective

construct.) The same construct also appears at the spot

(-,c2) (city,c~) in c 2 and

(-,c5) (-,c3) in cs.

Another example is c 7 which appears in c, at the following two spots:

(-,c,) (ho~e address~c 2) (street,c6) (number,cT)

(-,c,) (date of birth,c 4) (year,c,)

It turns outs that the concept of spot is essential for the discussion

and understanding of some sophisticated aspects in data base management

systems, not least those concerning the interrelationshi~ between

information (constructs) and data (representations).

Fig. 2 and 3 show, by the way, that in canonical graphic representation

always constructs a t s p 0 t s are depicted. As by definition any

spo% structure is hierarchic, one sigh% be tempted to label I~C a

hierarchic system. But it is obvious, that in a 1 1 existing

information models (in hierarchic, network, relations, etc.) the spots

form hierarchic trees.

So far only individual constructs have been considered. Nothing about

types or declarations has been said nor used tacitly. A type in general

is a set. But not any set is a type. First of all, it has to be

determined what are the elements of such a set. In the present context

we focus on ~e~_~f constructs (Gebildetyp), thus the elements are

constructs. In the world of data base management systems instead of

27

"element" the terms "occurrence" or "instance" of a type have been

adopted.

But not even any set of constructs is a construct type. A type of

constructs has to be declared for a considered communication, saying

that only constructs which belong to the specified type(s) are admitted

for exchange. Sore precisely: As only representations of constructs can

be exchanged via the channels of an information system, a type

declaration specifies what constructs will be represented and can be

"understood" by interpretation. A language, in which type declarations

are made, should be called a "type definition/declaration language,,,

but unfortunately is often called a "data definition language". This is

one example of sloppy terminology which is so characteristic for the

field of data processing.

Not even "type declaration language', would be sufficiently precise. As

will be shown below, also other types have to be declared (on the

representational level). Therefore, strictly speaking such a language

is a "construct type declaration language" (CTDL). As far as only the

composition of constructs by others is specified in a recursive type

declaration, a graphic construct type definition language can be

applied in analogy to the canonical construct representation. An

example for a graphic type definition is shown in fig. 5, an occurrence

of that type is represented in fig. 6, where in both figures the small

box in the upper righthand corner provides a place for inserting the

name of the type or the ~[R@__~es~nation (Typenbezeichnung) as we

prefer to say. This "type plate" is also used in construct

representation, if emphasis is put on the fact that the construct is

occurrence of a particular type (cf. fig. 6 and 10).

It would be beyond the scope of this paper to discuss all the aspects

involved in the concept of type in general and of construct types in

particular. The one or the other will he addressed in the following

paragraphs.

After this very short outline, concepts to talk about model information

and a canonical representation technique are available. The concept of

type has been emphasized because of its great importance for the

guestions of representation to be discussed in the next section.

28

~. Data as representations

For convenience the term "data" is used in the following instead of

"digital data" indicating that only representations are considered

which consist of characters (cf. [DIN]). Other representations

(pictures, sounds, etc.) are not investigated with regard to their

relationship to information.

Referring to the configuration of two offices with a channel between

(fig. I), let the piece of paper on which fig. 7 appears be a

realization of a communication channel. The question is, whether the

addressee interprets the five representations there as representations

of five, four, three, two or one construct. The example suggests the

answer, that the interpretation of the various representations is the

subject of agreements between the communicating offices. So according

to one agreement all representations might be interpreted as "number

seven", according to another agreement the representation ~ + 3 might

be taken for an arithmetic expression and not be interpreted as "number

seven", or there might be a difference on the construct level even

between a "bar seven"(~) and a "plain seven"(7), etc.

A multitude of such agreements are taken for granted in everyday

communication. So in usual text the shape of the characters is

irrelevant, but in mathematical texts it is not. On the contrary, you

have to distinguish carefully between different fonts, because they

have a different meaning which usually is agreed upon at the beginning

of a paper or is default in mathematical literature. Or: In many

programming languages the interspersion of blanks in some places is of

no relevance, in other places it is.

These two examples may show that the relationship between information

and representation (data) has to be established in advance in order to

make possible mutual understanding in communication via a channel. What

are the provisions to be made?

For a communication to be possible there must be a prior common

background of understanding, i.e. a predefined mapping of

representations onto constructs. In the course of communication further

agreements may be used to extend this cemmon background: One office

passes the declarations to the other, the latter one accepts or rejects

them. The declarations comprise

29

- construct type declaration

- representation type declaration.

Construct type declarations were discussed in the preceding section.

The construct type declaration determines the constructs which can be

communicated via the considered channel. The construct type declaration

language is a part of the above mentioned common background.

The representation type declaration refers to a declared ccnstruct

type. It determines, what are the admissible representations of

constructs of this type which can be exchanged in the regarded channel.

Considering the set of all representations of the occurrences of a

given type we arrive at the concept of x~presentation ~

(Darstellungtyp). The representation type declaration language (RTDL)

is a further part of the above mentioned common background.

An example may illustrate the relationship between construct type and

representation type and their respective occurrences. (The used ad-hoc

languages are not to be discussed here and should be understood

intuitively.) Although it is a very simple example, many figures have

been necessary to depict the ideas presented sc far, which gives an

indication about the magnitude of usually implied declarations.

Fig. 8 shows a declaration of the four construct types CALENDAR-DATE,

MONTH-NAME, YEAR and DAY-NUMBER. The latter three are types of atoms,

the first one is an aggregate type. Additionally the type composition

is shown in IMC representation.

Fig. 9 shows a pertaining declaration of four representation types:

MONTH REPR, YEAR REPR, and DAY REPR are the representation types for

the construct types MONTH-NA~E, YEAR, and DAY-NUMBER, respectively.

DATE PEPR is the representation type for the construct type

CALENDAR-DATE.

In spite of the extensive declarations many implicit assumptions still

remain: The character sets to be used, the arrangement of characters on

the medium (paper e.g.) and other details. They all have %o be counted

to the pre-existing common background of the communicating offices.

Fig. 10 shows two occurrences of the construct type CALENDAr-DATE (and

of course of the component types) and some occurrences of the

representation type DATE REPR.

30

This example suggests that the concept of format belongs to the concept

of representation type. Up to here the assumption has been maintained,

that only one representation type can be declared for each construct

type. This restriction should be dropped now. If multiple declaration

of representation types for one construct type is provided, each of the

declared representation types could be called a ~_m_a~ (Format) in

close relation to the common use of this term. Referring to the above

example of fig. 9, instead of the one representation type DATE HEPR we

could declare three representation types (= formats) for the

representation of constructs of type CALENDAR-DATE (two "positional"

formats, one "key-word" format).

It can be observed that the separation of construct type declaration

and representation type decoration (=format declaration) is not

explicit in existing systems. The layout of the construct type

declaration is often simultaneously the specification of the input and

working area format. This might be a reasonable economical approach.

But to understand the relationship between information and data one

should be aware of the double function of such a "data definition".

Applying the view which has been presented sc far of the relationship

between information (constructs and construct types) and data

(representation and representation types) we outline a flow of

information between two offices via one channel: An office B may be

requested by an office A to retrieve a construct with given properties

(e.g. from a data base). Office B finds the specified construct (i.e. a

representation of it), identifies the type of it, chooses one of the

pertaining representation type declarations and puts a representation

of the construct in question into the channel. As this representation

conforms to the representation type declaration established for the

regarded channel, office A is able to interpret the data (knowing the

representation type and construct type).

Some reader might have noticed, that in the CALENDAR-DATE example an

argumentation is missing, why the representations do not show all the

details of the represented cons%lucts (cf. fig. 10). Actually, this is

not necessarily so, it only corresponds to the practice in data

processing, because it is %he representation which occupies storage,

and not the construct. More extensive representations could be provided

in a representation type declaration for various reasons (security,

less extensive declarations, etc.). Of course, that would require more

capacity of the involved channels (storage). In any case the question

31

arises, whether such a "representation" is really a representation of a

construct. Strictly speaking, it is not. Only together with all

specifications, which allow the interpretation of the construct, a full

representation is there. Therefore a representation in the above sense

shows only the ~a~iX!~!__~ (Individualteil) of the represented

construct, because the representational part common to all occurrences

of that type is in the type declarations. This leads to the idea, that

da~ (e.g. in "input data") usually means individual part of the full

representation rather than the full representation itself. With this in

mind, the use of the word "data" in the criticized term ',data

definition" can partly be justified: The "data definition" defines in

its representation type declaration the admissible data, i.e. the

admissible individual parts of construct representations. However, it

should be clear by now, that the omission of the word "type" is

entirely misleading.

5. Practice oriented remarks

In this concluding section some applications of the ideas about

information and data as discussed above shall be tried.

First a preliminary remark: There might be the impression, that the

system of IMC has been offered as a new proposal of a data model %o

compete with other, well known data models. That would be a

misunderstanding. IMC is aiming to he a conceptual tool for speaking

about information, on this level comprising the various data models.

Nevertheless it is a c o n c e p % u a 1 model and as such offers a

specific view on model information which allows to form a wariety of

information structures, but has its own limitations, too.

It is not the task of this paper to outline the features of hierarchic,

network, relational or other data models. Hut it might be of interest

in this context, to what these attributes refer. They refer %o %he

so-called "data structures" which can be established in a system of the

respective model and which are supported by the system's manipulation

functions. With the terminology introduced above we would of course say

"information structure', instead of "data structure" as meant here. Data

structure in our understanding as structure of the information

representation normally is left to the implementor, in order to achieve

efficiency, security, or any goal else of this nature. For

communication purposes the possible structures of constructs and

32

related questions concerning model information are of main interest: On

what levels of aggregation are nominations or collections available,

what are the restrictions for the nesting of constructs, are there

special generic types adjusted to the application in question (e.g.

"relations", which in terms of IMC are collections of equally domained

nominations, called collectives (Kollektiv)), what is the support for

orientation in extensive constructs, what properties can be used to

address constructs (independently of their representation), and many

other questions. The answers to these questions together with the

pertaining operations on the constructs render a data model to be

hierarchic, network or relational (or something else).

It is a matter of course, that also efficiency and other aspects

influenced by representation techniques are of relevance. The problem

of "redundancy" is one of them. It is not intended here to consider the

benefits and the disadvantages of redundancy. But it has to be

clarified, that redundancy does not refer to the level of constructs,

but to the level of their representation. It has been shown, that a

construct may appear at several spots as a component of an embracing

construct. Spots, at which the same construct appears (necessarily or

by chance) are called ~ @ ! _ _ § ~ (Parallelstelle). If the

appearance of a construct at several spots is r e q u i r e d this

has to be specified in the construct type declaration hy so-called

"consistency constraints" (cf. the SOURCE clause of [DDLC]). Once a

consistency specification of this kind has been established, the system

(as one of the communicating offices) is free to decide, whether it

will store the representation of the construct each time it appears (at

a parallel spot) or less often (usually once). The more often the

representation is stored, the higher the degree of redundancy is said

to be. It is conceivable in principle (and actually is done sometimes)

that the same technique could he applied also for other than

consistency-conditioned parallel spots. Such a situation is also given

with the RESULT feature of [DDLC]). On the model information type level

the RESULT clause specifies that the atom at the specified spot is the

result of the execution of a specified procedure, which uses constructs

at other spots as input. In both the SOURCE and the RESULT clause

additionally is specified, whether a representation of the depending

atom is maintained permanently (ACTUAL) by the system, or is made up

only when required for passing it via the communication channel to the

requesting office (VIRTUAL). In the strict sense, the ACTUAL feature

causes redundancy. However also another, less restrictive

interpretation of the ACTUAL and VIRTUAL feature is conceivable, where

33

the system still remains free to follow the specification verbatim (as

assumed above) or to understand it only as an efficiency constraint

Doing a closer look to the discussion of redundancy (in the context of

data base management systems) one encounters a system configuration

which is a slight modification of that used so far. To show explicitly

that one of the offices (the "system") is a computerized functional

unit with a storage as a private channel (the "data base"), a diagram

like fig. 11 is often preferred rather than fig. 1. With this

configuration containing two channels or still better three channels

(input channel, data base, output channel) we have also three places to

represent constructs. If we consider a representation tyFe declaration,

the question has to be answered, what is the object channel which the

declaration is applied to? As a matter of fact this is seldom clearly

stated. In particular, input format declaration (e.g. sequence of atom

representations) and data base format declaration (e.g. SOURCE feature,

RESULT feature) are made up to one complex declaration package, the

complexity of which is still more increased by packing the construct

type declaration into the same package. Such declaration packages are

well known under the label "schema',. The consequence of such an

"optimization" is a minimization of the number of characters to be

written by the programmer at the expense of quality of software, in

particular of clarity.

Finally some remarks on the relationship between information and data

on %he one hand and their manipulation on the other hand might be

appropriate. If would be an obvious question to ask whether constructs

or their representations are manipulated. Strictly speaking, only

representations can he handled, as was stated previously. But so-called

data manipulation languages do not refer to the representational level

only. Primarily they are designed for the manipulation of constructs.

This will be illustrated by an example of the retrieval of a construct:

The properties which are specified as parameters of a request refer to

a construct rather than to a representation of it. The delivery of the

found construct is done by putting it into the respective channel in an

agreed representation, i.e. meeting the output format. Another example

is "navigation". This term refers to moving from one spot to the other

in an extensive construct. Also here no reference to the representation

of this construct is involved. Only upon request the navigator gets

some representation of the construct (at the spot) where he has arrived

at. In case of a data base management system, he does not receive the

34

representation on which the retrieval has been performed, but an output

representation. A counter-example, however, is a library, where the

representation in the data base (room with book-shelves) is the same as

in the output channel (librarian's counter).

Although a ~'data manipulation" language refers %o the level of model

information, this does not imply that no actual access to

representations takes place in the system. B~t again, it is up to the

implementor, which representations in what way he has provided to be

accessed in order to execute manipulation commands. On the other hand

the user has several interests to influence also the policies of

representation and access. He has time, cost, and security

reguirements. These requirements which refer to storage and computing

time exert some influence to the information level. A good choice of

construct types and of manipulation functions as well as a forecast of

the user's way of acting in the future (traffic density, update /

retrieval ratio, etc.) should yield a balanced compromise between

application adequacy and computer efficiency. However, in overall

efficiency considerations the influence of storage and computing time

resources will decrease. More and more it becomes evident, that we have

to move from computer biased concepts, information stractures and

manipulation facilities to system interfaces, where more preference is

given to the involved people and the intended application. This goal

includes to support conceptual differentiation wherever useful. The

presented view of inforaation and data is intended to be a contribution

to this goal.

35

References

[DIN] DIN/Fachnormenausschuss Informationsverarbeitung (~NI), DIN

44300 "Information processing; vocabulary" (German). German

Institute for Standardization, March 1972

[ANSI] ANSI/X3/Sparc/DBMS Study Group, Interim Report. American

National Standards Institute, February 1975

lABS] GMD/Arbeitsgruppe fuer Betriebssystemnormung, "Terminology for

the description of models of job processing computer systems"

(German). GMD, St. Augustin, 1971

[PZT] C. A. Petri, "Grundsaetzliches zur Beschreibung diskreter

Prozesse". In: 3. Colloguium ueber Aufomatentheorie, Haendler,

Peschl, Unger, (Hrsg.), Birkhaeuser Verlag, Basel, 1967

[DURI] R. Durchholz and G. Richter, "Concepts for data base

management systems". In: Data Base Management, J. W. Klimbie

and K. L. Koffeman, (eds.), North-Holland, 197~

[STEEL] T. B. Steel Jr., "Data base standardization a status

report". IFIP-TC-2 Special Working Conference "A technical

in-depth evaluation of the DDL", Namur, January 1975

[ZEM] H. Zemanek, "Abstract Objects" (German). Elektronische

Rechenanlagen 10/5, 1968

[DKR] R. Durchholz, W. Klutentreter, G. Richter, "Design of a data

base management basic system for application programs (DAGS)"

(German). In: Datenmodelle und Systementwuerfe fuer

Datenbanksysteme, E. Falkenberg und W. Klutentreter, (Hrsg.),

GMD, St. Augustin, 1974

[DDLC] CODASYL/Data Description Language Committee (DDLC), "June 73

Report". CODASYL DDL Journal of Development, June 1973

Figure I

a~nd

36

I,,, office %_______ _ office B

office

"user"

Configuration of con~unicating

functional units

office

"system"

Figure 1! Extended configuration of communicating
functional units

37

home address

~ c i t y

I HOUSTON1

~ street
~ street

name

[JAckSON

number

branches

[WASHINGTON 1

[ANN A~oR, 1
t HO~-'STON]

f•ly
name

i JACKSON I

~ first name

FOHN BiJ

~ place of birth

[HOUSTON]

date of birth

~ _

~ year ~month
i~71 day

LOS ANGELES]

Figure 2 Constructs in iMC box representation

i)
 h
om

e
ad
dr
es
s

I
ra

nm
alm

ly ~

fi
r.

~
am

e
~

"'
~

la
ce

~

.
f

~
~

~

.
.
.
.
.

n
a
m
e
~

S
z
~
,
e

7
f
~
i
r
t
h

/
~

k~
i
c
i
t
y

~
)
s
t
r
e
e
t

t
"

-
-

/

X

st
re
et
 f
-
~

~
1

/-
~h
v e
ar

f

~
o
n
t
h

~
d
a
y

na
me

~

]
%
jh
um
be
r

|
~
y

q
]

~
j

-_
_

"~

~
/
~
 b
ra
nc
he
s

~
~
_
_

.o
 ~)s
To,
.

...
...

...
.

t
...

...
...

...
...

...
...

"[

...
...

...
...

...
...

.-.
...
..]

1
F~

os
 ,,
.,~
,s]
--

¢
O

O
0

Fi
gu
re
 3

C
o
n
s
t
r
u
c
t
s
 in
 I
MC
 t
re

e
re
pr
es
en
ta
ti
on

39

, ,, /C?.

~ home address

city

0 s<eet i

\

C 6

C 7

C 3

branches ¢

I WASHINGTON]

[ANN A~BOR]

f•iy
name

FJAc~SO~

~ first name
[JO~N '~-I

_ _ place of
~ birth//

1 HousTo~]~

date of birth

1~7 day

[~os A~G~Es I
[CAMBRIDGE

I ~{ousTON j~.,~

f

C 3

C~

/

c 3

~c~

.... ~, -- c 5

Figure 4 Construct representation of fig. 2 with
additional lettering for reference purposes

40

EMPLOYEE

---- ~DSCR

~ MBE R

SKILLS

Jt

Figure 5 Graphic construct type definition

PERSON

¢

. J. WA=TERS]

NUMBER

5 7 8 ~

EMPlOYeE

SKILLS~

IsKILLCODE I

1120

I ,ISK~LLCODE

1135

Figure 6 Occurrence of construct type
defined in fig. 5

Figure 7 see next page

41

construct type MONTH-NAME

atom: JANUARY, FEBRUARY, ... DECEMBER

construct type YEAR

atom: 1900~INTEGE~ 1999

construct type DAY-NUMBER

atom: 1~INTEGER~31

non-occurrences: MONTH

FEBRUARY

FEBRUARY

APRIL

etc.

construct type CALENDAR-DATE

nomination: MONTH --> construct type MONTH-NAME

YEAR --> construct type YEAR

DAY --> construct type DAY-NUMBER

DAY

3O

31

31

,•MONTH
atom

CALENDAR-DATE

YEAR 0

~A_Y-NUMBE__R
om

Figure 8 Construct type declarations

42

representation type MONTH REPR

represented construct type MONTH-NAMZ

string: 1 or JAN --> atom JANUARY

12 or DEC --> atom DECEMBER

representation type DAY REPR

represented construct type DAY-NUMBER

string: DECIMAL representation

representation type YEAR REPR

represented construct type YEAR

string: DECIMAL representation

representation type DATE REPR

represented construct type CALENDAR-DATE

string: (DAY REPR "-" MONTH REPR "-" YEAR REPR)
or

(YEAR REPR "-" MONTH REPR "-" DAY REPR)
or

("D:" DAY REPR /// "M:" MONTH REPR ///

"Y:" YEAR REPR ; delimiter ",")

Figure 9 Representation type declarations

4+3

seven

SEVEN

Figure 7 Five construct representations on paper

43

I'CALENDAR-DATE
DAY 0 YEA~ 0

l ' DAY-N~M~'4] 19G7 'YEAR 1
MONTH 0

4-0CT-1967
D:4,Y: 1967,M:OCT 1967-10-4

I CALENDAR-DATE

~ MONTH DAY~

--1973]

D:14,M:5,Y:1973
14-5-1973

<
M:MAY,Y: 1973,D: 14

1973-MAY-14

Figure 10 Construct type occurrences and representation

type occurrences of fig. 8 and 9

Figure 11 see first page (fig. I)

