System R: A Relational Data Base-Management System

Morton M. Astrahan, IBM Research Laboratory, San Jose, California
Donald D. Chamberlin, IBM Research Laboratory, San Jose, California
W. Frank King, IBM Research Laboratory, San Jose, California

Irving L. Traiger, IBM Research Laboratory, San Jose, California

INTRODUCTION

System R is a data base management system which provides a high-level, non-procedural
relational data interface. The system provides a high level of data independence by
isolating the end user as much as possible from underlying storage structures. The
system permits definition of a variety of relational views on common underlying data.
Data control features are also provided, including authorization, integrity
assertions, triggered transactions, a Togging and recovery subsystem, and facilities
for maintaining data consistency in a shared-update environment.

The relational model of data was introduced by Codd [1] in 1970 as an approach toward
providing solutions to the various outstanding problems of current data base
management systems. In particular, Codd addressed the problems of providing a data
model or view which is -divorced from various implementation considerations (the data
independence problem) and also the problem of providing the data base user with a
very high-level, non-procedural data sublanguage for accessing data. It should be
stressed here that the relational model is a framework or philosophy for finding
compatible solutions +to these and other problems in data base management; the
relational approach is thought to make solutions more elegant and perhaps simpler but
the approach by itself does not solve these problems. With this caveat in mind, our
first purpose is to briefly describe a related set of data base problems which we are
attempting to solve in a coherent way following the relational approach. Our
solutions are embodied in an experimental prototype data management system called

System R which is currently being designed, implemented, and evaluated at the IBM San
Jose Research Laboratory.

We wish to emphasize that System R is a vehicle for research 1in data base
architecture, and is not available as a product. Furthermore, the ideas discussed in
this paper should not be considered as having product implications.



140

To a large extent, the acceptance and value of the relational approach hinges on the
demonstration that a system can be built which 1is operationally compiete (can
actually be used in a real environment to solve real problems) and has performance at
least comparable to today's existing systems. With the present state of systems
performance prediction, the only credible demonstration is to actually construct such
a system, and to evaluate it in a real environment. The point of this paper, then,
is to describe the set of problems which are being studied in the System R framework,
to discuss the objectives of the system (which amounts to a description or definition
of the term operationally complete), and to describe the architecture of the system,
including overall structure, interfaces, and functional design.

The System R project is not the first implementation of the relational approach;
however, we know of no other system which is really aimed at an operationally
complete capability. Other efforts have demonstrated feasibility in various of the
related problem areas. For example, both the IS/1 system [2] and the Phase/0 SEQUEL
prototype [3] were single-user systems. No concurrent sharing of data was permitted
and hence data control, locking, and recovery issues were greatly simplified. The
INGRES project [4] at U.C. Berkeley is also single-user oriented. In addition, each
of these projects has an incomplete treatment of views, i.e., of providing various
views of data to various users.

The next section describes the overall goals of System R and describes the 1list of
capabilities which we believe to be necessary in an operational environment. The
following section describes the architecture of the system, and describes in overview
terms its major interfaces and the components which support these interfaces

SYSTEM OBJECTIVES

System R is focused on five main goals:

1. To provide a high level, non-procedural relational data interface.

2. To provide the maximum possible data independence for the basic data objects
(base relations).

3, To support derived relational views.

4, To provide facilities for data control consistent with the high level of the data
interface.

5. To discover the performance trade-offs inherent 1in this type of data base
capability.

First, each of these goals will be discussed and illustrated.

1. High Level Non-Procedural Relational Data Interface
The trend toward higher Tevel Tlanguages has long been evident in the programming




141

domain. Set-oriented data sublanguages were introduced in 1962 in the CODASYL
Information Algebra [5]. Codd's ALPHA language [6] and Relational Algebra [7] raised
the level of data sublanguages by letting the user specify the properties of the data
required without describing the access path or detailed sequence of operations to be
used to obtain the data. This trend toward higher level non-procedural programming
[8] is aimed at reducing the number of decisions the programmer must make in order to
express his problem/solution, and at making the decisions more relevant to the
solution (as opposed to being relevant to the programming of a specific computer).
Halstead has examined two programs solving the same problem using his software
physics techniques [9], one written in ALPHA and the other in DBTG-COBOL and for this
case found that the ALPHA solution required 30 times fewer mental discriminations
than the Tower level solution. This observation should be directly translatable into
increased programmer productivity and ease of maintenance. Thus, human productivity
is one strong reason for the goal of supporting a high-level, non-procedural data
interface,

The other reason for moving in the direction of non-procedural interfaces is related
to the optimization of the execution of the program. If the data base were dedicated
to a single application, its structure could be optimized for that application only,
and the application could be writfen in terms of that optimized structure. However,
in an integrated data base environment, such local optimization is likely to be
inefficient. Hence, the system must 9tself optimize the execution of each
application on a data base whose structure is a compromise among the various
applications. The non-procedural, high-Tevel specification better reveals the
application intent and hence {is easier for the system to vuse as a basis for
optimization,

The available relational languages (ALPHA, Relational Algebra) were very formal and
required rather much mathematical sophistication on the part of the user. In
particular, the ALPHA language is based on the first order predicate calculus. The
relational algebra introduces a collection of aggregrate operators (selection,
projection, join, division, etc.) which have relational operands and produce
relational results. The need to discover more user-oriented, non-mathematical
relational languages became apparent and 1is currently being pursued by several
research groups [11,12].

The principal external interface of System R is called the Relational Data Interface
(RDI), and provides relationally complete [7] facilities for data manipulation, data
definition, and data control. To support high-level, non-procedural, set-oriented
applications, the RDI contains the SEQUEL data sublanguage in its entirety.  SEQUEL
is documented in [10].



142

Of course, not all requirements can best be met through a non-procedural approach and
for this reason the RDI contains single-tuple-oriented operators (FETCH, INSERT,
DELETE, REPLACE, etc.) in addition to the set-oriented capabilities of SEQUEL.

We have designed the RDI to be used in two modes:

(a) Directly by an application program {(e.g., a COBOL program) which uses RDI
operators to access the data base.

{b) As the target of a translator program (a special case of an application program)
which is emulating some other type of user interface.

2. Data Independence

Date [13] has defined data independence as the immunity of applications to change in
storage structure and access strategy. Often, however, the notion is associated with
the ability of a data base system to provide various logical views of the data base;
for example to make visible only selected records of a file, and selected attributes
of each record. By view,informally we mean a vrelational window through which an
application can access the data base. The term "window" is used to imply that
changes to the data base which affect the view are visible to the application. We
wish to distinguish these two notions of data independence. In this subsection we
address the only first notion of data independence; the second, which we <¢all the
support of derived views, is discussed in the next subsection.

Typically, data management systems permit two levels of data definition. The lower
Tevel, or “schema", describes the primitive data objects being managed by the system.
In System R, these primitive objects are called base relations. The description of a
base relation includes the relation name, attribute names, description of the units
of each attribute, the domain of each attribute, the order of the attributes within a
relation, the order (if any) of the tuples within a relation, etc. In particular,
the definition of a base table does not include any information about physical
storage or available physical access paths to the data. However, each base relation
has a very direct physical representation, i.e., each tuple of the relation has a
stored representation. Data independence implies that the base relation can be
supported by a variety of physical structures and access strategies.

Clearly data independence 1is important if a system is to allow growth and meet the
changing requirements of various applications. System R provides a rich set of
access structures. Any of these can be used to support a given base relation.

3. Support of Derived Views
The higher level of data independence consists of the ability to define alternative
views in terms of the primitive data objects. This notion appears in most




143

contemporary data management systems and the usefulness of such systems depends in
large measure on the capability of the system to support derived views.

The inability to support views which differ from the primitive views often leads to
programs which are complex, because they are warped to use views which are not
natural but can be supported, and which require extensive maintenance as the system
changes over time.

As an example of the usefulness of derived views, consider a data base containing the
following two types of records: CATALOG  (PARTNO,DESC,PRICE) and  SALES
(SALENO,PARTNO,QSOLD).  The CATALOG file 1is ordered by part number, and gives the
description and price of each part. The SALES file is ordered by sale number, and
gives the part number and quantity sold for each sale. Suppose we wish to print out
all the SALES records for parts which have a price greater than $1000.

We could write a program to scan through the CATALOG file, finding parts with PRICE>
$1000; for each such part, a separate scan could be made through the SALES table to
find all the corresponding records. This program would be highly procedural; it
would require repeated scanning of the SALES table, and would give the system little
opportunity to optimize the query by choosing among alternate access paths.

However, if our system permits the specification of derived views, the user might
specify a view consisting of the join of the two files, as follows: SALES-CAT
{SALENO,PARTNO, DESC,PRICE,QSOLD). The program could then consist of a single scan
through the SALES-CAT view. Besides being easier to write, this program would give
the system flexibility to take advantage of new access paths which may become
available (such as a PARTNO index on the SALES file) without requiring changes in the
program.

A major goal of the System R project is to develop and investigate the technology of
derived views. This problem has three distinct aspects, each of which is being
studied:

{a) Exactly what set of operations on derived views is supportable? As an example of
this issue, imagine a request to delete a tuple from the SALES-CAT view described
above., Since this view is a join of two underlying files, it is not obvious what
actions should be taken on the files to support the deletion. {Should we delete the
SALES record but retain the CATALOG record?) For some kinds of view modification
requests, there may be several possible actions which would produce the desired
result; for other kinds of requests, there may be no possible supporting action.

Codd [18] has described some examples of the latter phenomenon.
(b) How should the view be bound to the available physical structures and access
paths? This aspect of the binding problem concerns the optimization of the view and



144

accesses on the view in terms of available access paths, e.g., indexes, sequential
scan, etc.

{c) When should binding be performed? For dynamic view definition, the binding must
also be dynamic. In System R, we are investigating various binding-time strategies;
dynamic binding will occur for dynamically defined views but for certain often-used
or very demanding views, the binding will be done statically with (hopefully) an
increase in performance.

4, Data Control Facilities

Data Control includes those aspects of a data base system which control the access to
and use of data. We distinguish four types of data control, each of which is being
investigated in System R.

(a) Authorization. This form of control is the most common type, being present in
almost all current systems. Authorization is the mechanism to permit or deny the
creation and manipulation of data structures and views by various users. Any user of
System R may potentially be authorized to create new tables and views, and to
selectively grant authorizations for his objects to other users. The authorization
mechanism of System R is described more fully in [14].

(b) Integrity. Integrity control provides a mechanism for enforcing that the data in
the data base obeys certain rules or predicates which have been declared to the
system. This form of contrel is typically not found in current data base systems but
is left to protocols imbedded in various application programs. In System R, two main
types of control facilities are provided: integrity assertions and triggers.
Integrity assertions are expressed in the SEQUEL language as predicates about the
data in the data base [15]. The system then guarantees the truth of these
predicates. Exactly when the system checks an assertion is a function of both the
type of assertion and the transaction boundary which caused the assertion to be
checked.

Triggers are actions that are invoked when some triggering condition or action is
detected. For example, suppose that the DEPT relation contains an attribute NEMPS
which represents the number of employees in the department. To maintain the validity
of this value, we can declare triggers to update this field whenever an employee is
hired, fired, or transferred.

{c) Consistency. Integrity implies the static correcthess of the data base and
consistency is concerned with the dynamic correctness. Suppose that one application
program 1is ‘transferring a set of employees from Dept. 48 to Dept. 50, while
simultaneously another application program is giving raises to all employees in Dept.
50. The interaction of these programs may have the undesirable resuit that some but
not all of the transferred employees receive the raise. FEven worse, if the
transferring program encounters a failure and backs out its updates, it may develop



145

that a raise has been given to someone in Dept. 48.

In current systems the application would contain specific statements (e.g., "LOCK
DEPT 50"} to avoid these problems. A major goal of System R is to eliminate such
defensive coding which is not a part of the problem being solved but is related only
to the fact that the solution is running in a certain environment. Since the user
cannot know 1in advance the exact environment in which his application will run
{perhaps no other users are currently updating employee records; 1in this case the
Tock s not needed), the system must provide the control needed to enforce
consistency. The approach being pursued is to vrequire that the user define the
boundaries of a transaction, which is a sequence of statements to be executed as an
atomic unit. The system then requests whatever resources it needs 1in the run-time
environment to guarantee atomicity. Furthermore, this same atomic unit is used as
the unit of integrity, i.e., integrity may be suspended within a transaction but it
is guaranteed at the transaction endpoints. If a transaction violates integrity at
its endpoint, then the transaction is backed out.

{d) Recovery. The fourth aspect of data control is concerned with preserving the
integrity of the data if the system experiences a malfunction or if an application
backs up either voluntarily or involuntarily, (e.g., as in the case of deadlock).
The recovery capabilities of System R include the usual checkpoint/restart functions
as well as the ability to back up an ongoing transaction to user-specified points.
These capabilities are examples of functions which are required in order to have an
operationally complete capability.

ARCHITECTURE AND SYSTEM STRUCTURE

We will describe the overall architecture of Sytem R from two viewpoints. First, we
will describe the system as seen by a single transaction, i.e., a monolithic
description. Second, we will investigate its multi-user dimensions. Figure 1 gives
a functional view of the system including its major interfaces and components. The
RDI, as described previously, is the external interface which can be called directly
from & programming language, or used to support various other interfaces. The
Relational Storage Interface (RSI) is the access-method-like level which handles the
access to single ituples of base relations. This interface and its supporting system
(Relational Storage System - RSS) is actually a complete storage subsystem in that it
manages devices, space allocation, storage buffers (cne level store), transaction
consistency and Tocking, deadlock, backout, transaction recovery and Jlogging.
Furthermore, it maintains indexes on selected attributes of base relations.



146

——— = H
; . ; ! i <~-=-— Programs to support
: 1 E ¢ ! various interfaces:
; : i § g ; Stand-alone SEQUEL,
; pot i ] i Query By Example, etc.
1 (I (. i
1 s ! i i
} : {~=-— Relational
i l Data
; . Interface
: Relational
§ Data ; (RD1)
i System |
: (RSS) ]
! : (==—  Relational
i i Storage
i Relational { Interface
! Storage 1 (RSI)
! System i
i (RSS) i
i 1
' |
NS |
Figure 1

Architecture of System R

With this brief description of the RSS facilities, we can return to the RDI and its
supporting system (Relational Data System - RDS). The major functions performed by
the RDS are authorization, integrity enforcement, and nonprimitive view support which
includes all the binding issues discussed previously. In addition, the RDS maintains
the catalogs of external names, since the RSS uses only system-generated internal
names. The RDS contains a sophisticated optimizer which chooses the best access path
for any g¢iven request from among the paths supported by the RSS. The operating
system enviornment for this system is VM/370 [16]. Several extensions to this
virtual machine capability have been made [17] in order to support the multi-user
environment of System R.

ACKNOWLEDGEMENT

The authors wish to acknowledge many helpful discussions with E. F. Codd, originator
of the relational model of data, and with L. Y. Liu, manager of the Computer Science
Department of the IBM Research Laboratory. We also wish to acknowledge the extensive
contributions to System R of Paul L. Fehder, who has transferred to another Tocation,
and Raymond F. Boyce, who served as one of the project managers until his untimely
death in June of 1974.



147

REFERENCES

[1]

[ 2]

L 3]

L 4]

[ 5]

L 6]

L 7]

L8]

L9l

(10]

(1]

E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, June 1970.

M. G. Notley. The Peterlee IS/1 System. IBM UK Scientific Center
Report UKSC-0018, March 1972.

M. M. Astrahan and D. D. Chamberlin. Implementation of a
Structured English Query Language. Presented at ACM SIGMOD
conference, San Jose, California, May 1975; to be published in
Communications of the ACM, October 1975.

G. D. Held, M. R. Stonebraker, and E. Wong. INGRES: A Relational
Data Base System. Proc. AFIPS National Computer Computer
Conference, Anaheim, California, May 1975.

CODASYL Development Committee. An Information Algebra.
Communications of the ACM, April 1962.

E. F. Codd. A Data Base Sublanguage Founded on the Relational
Calculus. Proc ACM SIGFIDET Workshop, San Diego, California,
November 1971.

E. F. Codd. Relational Completeness of Data Base Sublanguages.
Courant Computer Science Symposia, Vol. 6: Data Base Systems.
Prentice Hall, New York, 1971.

B. M. Leavenworth. Nonprocedural Programming. IBM Research
Report RC4968, IBM Research Center, Yorktown Heights, New York.,
August 1974.

M. H. Halstead. Software Physics Comparison of a Sample Program
in DSL Alpha and COBOL. IBM Research Report RJ1460, IBM Research
Laboratory, San Jose, California, October 1974.

D. D. Chamberlin and R. F. Boyce, SEQUEL: A Structured English
Query Language. Proc. ACM SIGFIDET Workshop, Ann Arbor, Michigan,
May 1974,

N. McDonald and M. Stonebraker. CUPID: The Friendly Query
Language. Proc. ACM Pacific Conf., San Francisco, California,



[12]

[13]

14l

[1s]

£16]

[17]

8]

148

April 1975. Available from Boole and Babbage, 850 Stewart Drive,
Sunnyvale, California 94086.

M. M. Zloof. Query By Example. Proc. AFIPS National Computer
Conference, Anaheim, California, May 1975.

€. J. Date. An Introduction to Data Base Systems. Addison
Wesley, 1975,

D. D. Chambertin, J. N. Gray, and I. L. Traiger., \Views,
Authorization, and Locking in a Relational Data Base System.
Proc. AFIPS National Computer Conference, Anaheim, California, May
1975.

K. P. Eswaran and D. D. Chamberlin. Functional Specifications of
a Subsystem for Data Base Integrity. IBM Research Report RJ1607,
IBM Research Laboratory, San Jose, California, June 1975.

Introduction to VM/370. IBM Publication No. GC20-1800. 1IBM,
White Plains, New York.

J. N. Gray and V. Watson. A Shared Segment and Inter-process
Communication Facility for VM/370. IBM Research Report RJ1579,
IBM Research Laboratory, San Jose, California, February 1975.

E. F. Codd. Recent Investigations in Relational Data Base
Systems. Proc. IFIPS Congress, Stockholm, Sweden, August 1974.



