
System R: A Relational Data Base. Management System

Morton M. Astrahan, IBM Research Laboratory, San Jose, California
Donald D. Chamberlin, IBM Research Laboratory, San Jose, California
W. Frank King, IBM Research Laboratory, San Jose, California
Irving L. Traiger, IBM Research Laboratory, San Jose, California

INTRODUCTION

System R is a data base management system which provides a high-level, non-procedural

relational data interface. The system provides a high level of data independence by

isolating the end user as much as possible from underlying storage structures. The

system permits def in i t ion of a variety of relational views on common underlying data.

Data control features are also provided, including authorization, in tegr i ty

assertions, triggered transactions, a logging and recovery subsystem, and fac i l i t i es

for maintaining data consistency in a shared-update environment.

The relational model of data was introduced by Codd [I] in 1970 as an approach toward

providing solutions to the various outstanding problems of current data base

management systems. In part icular, Codd addressed the problems of providing a data

model or view which isdivorced from various implementation considerations (the data

independence problem) and also the problem ofproviding the data base user with a

very high-level, non-procedural data sublanguage for accessing data. I t should be

stressed here that the relational model is a framework or philosophy for finding

compatible solutions to these and other problems in data base management; the

relational approach is thought to make solutions more elegant and perhaps simpler but

the approach by i t se l f does not solve these problems. With this caveat in mind, our

f i r s t purpose is to br ie f ly describe a related set of data base problems which we are

attempting to solve in a coherent way following the relational approach. Our

solutions are embodied in an experimental prototype data management system called

System R which is currently being designed, implemented, and evaluated at the IBM San
Jose Research Laboratory.

We wish to emphasize that System R is a vehicle for research in data base
architecture, and is not available as a product. Furthermore, the ideas discussed in
this paper should not be considered as having product implications.

140

To a large extent, the acceptance and value of the relat ional approach hinges on the

demonstration that a system can be bu i l t which is operationally complete (can

actually be used in a real environment to solve real problems) and has performance at

least comparable to today's existing systems. With the present state of systems

performance prediction, the only credible demonstration is to actually construct such

a system, and to evaluate i t in a real environment. The point of this paper, then,

is to describe the set of problems which are being studied in the System R framework,

to discuss the objectives of the system (which amounts to a description or def ini t ion

of the term operationally complete), and to describe the architecture of the system,

including overall structure, interfaces, and functional design.

The System R project is not the f i r s t implementation of the relational approach;

however, we know of no other system which is rea l ly aimed at an operationally

complete capabi l i ty. Other efforts have demonstrated f eas ib i l i t y in various of the

related problem areas. For example, both the IS/I system [2] and the Phase/O SEQUEL

prototype [3] were single-user systems. No concurrent sharing of data was permitted

and hence data control, locking, and recovery issues were greatly simpli f ied. The

INGRES project [4] at U.C. Berkeley is also single-user oriented. In addition, each

of these projects has an incomplete treatment of views, i . e . , of providing various

views of data to various users.

The next section describes the overall goals of System R and describes the l i s t of

capabi l i t ies which we believe to be necessary in an operational environment. The

following section describes the architecture of the system, and describes in overview

terms i ts major interfaces and the components which support these interfaces

SYSTEM OBJECTIVES

System R is focused on f ive main goals:

I. To provide a high level , non-procedural relational data interface.

2. To provide the maximum possible data independence for the basic data objects

(base relat ions).

3. To support derived relat ional views.

4.

5.

To provide f a c i l i t i e s for data control consistent with the high level of the data

interface.

To discover the performance trade-offs inherent in this type of data base

capabi l i ty.

F i rs t , each of these goals w i l l be discussed and i l lus t ra ted.

I . High Level Non-Procedural Relational Data Interface
The trend toward higher level languages has long been evident in the programming

141

domain. Set-oriented data sublanguages were introduced in 1962 in the CODASYL

Information Algebra [5]. Codd's ALPHA language [6] and Relational Algebra [7] raised

the level of data sublanguages by let t ing the user specify the properties of the data

required without describing the access Path or detailed sequence of operations to be

used to obtain the data. This trend toward higher level non-procedural programming

[8] is aimed at reducing the number of decisions the programmer must make in order to

express his problem/solution, and at making the decisions more relevant to the

solution (as opposed to being relevant to the programming of a specif ic computer).

Halstead has examined two programs solving the same problem using his software

physics techniques [9], one written in ALPHA and the other in DBTG-COBOL and for this

case found that the ALPHA solution required 30 times fewer mental discriminations

than the lower level solution This observation should be d i rect ly translatable into

increased programmer productivity and ease of maintenance. Thus, human productivity

is one strong reason for the goal of supporting a high-level, non-procedural data

interface.

The other reason for moving in the direction of non-procedural interfaces is related

to the optimization of the execution of the program. I f the data base were dedicated

to a single application, i ts structure could be optimized for that application only,

and the application could be written in terms of that optimized structure. However,

in an integrated data base environment, such local optimization is l i ke ly to be

inef f ic ient . Hence, the system must i t se l f optimize the execution of each

application on a data base whose structure is a compromise among the various

applications. The non-procedural, high-level specification better reveals the

application intent and hence is easier for the system to use as a basis for
optimization.

The available relational languages (ALPHA, Relational Algebra) were very formal and

required rather much mathematical sophistication on the part of the user. In

part icular, the ALPHA language is based on the f i r s t order predicate calculus. The

relational algebra introduces a collection of aggregrate operators (selection,

projection, jo in, division, etc.) which have relational operands and produce

relational results. The need to discover more user-oriented, non-mathematical

relational languages became apparent and is currently being pursued by several
research groups [11,12].

The principal external interface of System R is called the Relational Data Interface

(RDI), and provides relat ional ly complete [7] f ac i l i t i e s for data manipulation, data

def in i t ion, and data control. To support high-level, non-procedural~ set-oriented
applications, the RDI contains the SEQUEL data sublanguage in i ts ent irety. SEQUEL

is documented in [I0] .

142

Of course, not a l l requirements can best be met through a non-procedural approach and

for this reason the RDI contains s ingle- tuple-or iented operators (FETCH, INSERT,

DELETE, REPLACE, etc .) in addit ion to the set-oriented capabi l i t ies of SEQUEL.

We have designed the RDI to be used in two modes:

(a) D i rec t ly by an appl icat ion program (e.g. , a COBOL program) which uses RDI

operators to access the data base.

(b) As the target of a t rans lator program (a special case of an appl icat ion program)

which is emulating some other type of user interface.

2. Data Independence

Date [13] has defined data independence as the immunity of applications to change in

storage structure and access strategy. Often, however, the notion is associated with

the a b i l i t y of a data base system to provide various logical views of the data base;

for example to make v i s i b l e only selected records of a f i l e , and selected at t r ibutes

of each record. By v iew, informal ly we mean a re lat ional window through which an

appl icat ion can access the data base. The term "window" is used to imply that

changes to the data base which af fect the view are v i s ib le to the appl icat ion. We

wish to dist inguish these two notions of data independence. In th is subsection we

address the only f i r s t notion of data independence; the second~ which we cal l the

support of derived views, is discussed in the next subsection.

Typica l ly , data management systems permit two levels of data de f in i t i on . The lower

leve l , or "schema", describes the pr im i t i ve data objects being managed by the system.

In System R, these pr imi t ive objects are cal led base re lat ions. The descript ion of a

base re la t ion includes the re la t ion name, a t t r ibu te names, description of the units

of each a t t r i bu te , the domain of each a t t r i bu te , the order of the at t r ibutes within a

re la t ion , the order (i f any) of the tuples within a re la t ion , etc. In par t i cu la r ,

the de f in i t i on of a base table does not include any information about physical

storage or avai lable physical access paths to the data. However, each base re la t ion

has a very d i rect physical representation, i . e . , each tuple of the re la t ion has a

stored representation. Data independence implies that the base re la t ion can be

supported by a var ie ty of physical structures and access strategies.

Clearly data independence is important i f a system is to allow growth and meet the

changing requirements of various appl icat ions. System R provides a r ich set of

access structures. Any of these can be used to support a given base re la t ion.

3. Support of Derived Views

The higher level of data independence consists of the a b i l i t y to define a l ternat ive

views in terms of the pr imi t ive data objects. This notion appears in most

143

contemporary data management systems and the usefulness of such systems depends in

large measure on the capabil i ty of the system to support derived views.

The inab i l i t y to support views which d i f f e r from the primit ive views often leads to

programs which are complex, because they are warped to use views which are not

natural but can be supported, and which require extensive maintenance as the system
changes over time.

As an example of the usefulness of derived views, consider a data base containing the

following two types of records: CATALOG (PARTNO,DESC,PRICE) and SALES

(SALENO,PARTNO,QSOLD). The CATALOG f i l e is ordered by part number, and gives the

description and price of each part. The SALES f i l e is ordered by sale number, and

gives the part number and quantity sold for each sale. Suppose we wish to pr int out

al l the SALES records for parts which have a price greater than $I000.

We could write a program to scan through the CATALOG f i l e , finding parts with PRICE>

$I000; for each such part, a separate scan could be made through the SALES table to

find al l the corresponding records. This program would be highly procedural; i t

would require repeated scanning of the SALES table, and would give the system l i t t l e

opportunity to optimize the query by choosing among alternate access paths.

However, i f our system permits the specification of derived views, the user might

specify a view consisting of the join of the two f i l es , as follows: SALES-CAT

(SALENO,PARTNO, DESC,PRICE,QSOLD). The program could then consist of a single scan

through the SALES-CAT view. Besides being easier to wri te, this program would give

the system f l e x i b i l i t y to take advantage of new access paths which may become

available (such as a PARTNO index on the SALES f i l e) without requiring changes in the
program.

A major goal of the System R project is to develop and investigate the technology of

derived views. This problem has three d ist inct aspects, each of which is being
studied:

(a) Exactly what set of operations on derived views is supportable? As an example of

this issue, imagine a request to delete a tuple from the SALES-CAT view described

above. Since this view is a join of two underlying f i l es , i t is not obvious what

actions should be taken on the f i les to support the deletion. (Should we delete the

SALES record but retain the CATALOG record?) For some kinds of view modification
requests, there may be several possible actions which would produce the desired
result ; for other kinds of requests, there may be no possible supporting action.
Codd [18] has described some examples of the la t te r phenomenon.
(b) How should the view be bound to the available physical structures and access
paths? This aspect of the binding problem concerns the optimization of the view and

144

accesses on the view in terms of avai lable access paths, e.g. , indexes~ sequential

scan, etc.

(c) When should binding be performed? For dynamic view de f in i t i on , the binding must

also be dynamic. In System R, we are invest igat ing various binding-time strategies;

dynamic binding w i l l occur for dynamically defined views but for certain often-used

or very demanding views, the binding w i l l be done s t a t i c a l l y with (hopeful ly) an

increase in performance.

4. Data Control Fac i l i t i es

Data Control includes those aspects of a data base system which control the access to

and use of data. We dist inguish four types of data control , each of which is being

investigated in System R.

(a) Authorization. This form of control is the most common type, being present in

almost a l l current systems. Authorization is the mechanism to permit or deny the

creation and manipulation of data structures and views by various users. Any user of

System R may po ten t ia l l y be authorized to create new tables and views, and to

se lec t ive ly grant authorizations for his objects to other users. The authorization

mechanism of System R is described more f u l l y in [14].

(b) In teg r i t y . In tegr i t y control provides a mechanism for enforcing that the data in

the data base obeys certain rules or predicates which have been declared to the

system. This form of control is t yp i ca l l y not found in current data base systems but

is l e f t to protocols imbedded in various appl icat ion programs. In System R, two main

types of control f a c i l i t i e s are provided: i n teg r i t y assertions and t r iggers.

In teg r i t y assertions are expressed in the SEQUEL language as predicates about the

data in the data base [15]. The system then guarantees the truth of these

predicates. Exactly when the system checks an assertion is a function of both the

type of assertion and the transaction boundary which caused the assertion to be

checked.

Triggers are actions that are invoked when some t r igger ing condition or action is

detected. For example, suppose that the DEPT re lat ion contains an a t t r ibu te NEMPS

which represents the number of employees in the department. To maintain the v a l i d i t y

of th is value~ we can declare t r iggers to update th is f i e l d whenever an employee is

hired, f i red , or transferred.

(c) Consistency. In tegr i t y implies the s ta t i c correctness of the data base and

consistency is concerned with the dynamic correctness. Suppose that one appl icat ion

program is t ransferr ing a set of employees from Dept. 48 to Dept. 50, while

simultaneously another appl icat ion program is giving raises to a l l employees in Dept,

50. The interact ion of these programs may have the undesirable resul t that some but
not a l l of the transferred employees receive the raise. Even worse, i f the
t ransferr ing program encounters a fa i l u re and backs out i t s updates, i t may develop

t45

that a raise has been given to someone in Dept. 48.

In current systems the applicat ion would contain speci f ic statements (e.g., "LOCK

DEPT 50") to avoid these problems. A major goal of System R is to el iminate such

defensive coding which is not a part of the problem being solved but is related only

to the fact that the solution is running in a certain environment. Since the user

cannot know in advance the exact environment in which his application w i l l run

(perhaps no other users are current ly updating employee records; in this case the

lock is not needed), the system must provide the control needed to enforce

consistency. The approach being pursued is to require that the user define the

boundaries of a transaction, which is a sequence of statements to be executed as an

atomic uni t . The system then requests whatever resources i t needs in the run-time

environment to guarantee atomici ty. Furthermore, th is same atomic uni t is used as

the unit of i n teg r i t y , i . e . , i n teg r i t y may be suspended within a transaction but i t

is guaranteed at the transaction endpoints. I f a transaction v io lates i n teg r i t y at

i t s endpoint, then the transaction is backed out.

(d) Recovery. The fourth aspect of data control is concerned with preserving the

i n teg r i t y of the data i f the system experiences a malfunction or i f an application

backs up e i ther vo lun tar i l y or i nvo lun ta r i l y , (e.g. , as in the case of deadlock).

The recovery capabi l i t ies of System R include the usual checkpoint/restart functions

as well as the a b i l i t y to back up an ongoing transaction to user-specif ied points.

These capabi l i t ies are examples of functions which are required in order to have an

operat ional ly complete capabi l i ty .

ARCHITECTURE AND SYSTEM STRUCTURE

We w i l l describe the overal l architecture of Sytem R from two viewpoints. F i rs t , we

w i l l describe the system as seen by a single transaction, i . e . , a monolithic

descript ion. Second, we w i l l invest igate i t s mult i -user dimensions. Figure 1 gives

a functional view of the system including i t s major interfaces and components. The

RDI, as described previously, is the external interface which can be called d i rec t l y

from a programming language, or used to support various other interfaces. The

Relational Storage Interface (RSI) is the access-method-like level which handles the

access to single tuples of base re lat ions. This interface and i t s supporting system

(Relational Storage System - RSS) is actual ly a complete storage subsystem in that i t

manages devices, space a l locat ion, storage buffers (one level s tore) , transaction

consistency and locking, deadlock, backout, transaction recovery and logging.

Furthermore, i t maintains indexes on selected at t r ibutes of base re lat ions.

t46

r- - " i r- --~

t
I

Relational
Data !

I System
(RSS)

I
I Relational
I Storage
I System

(RSS)
i

!

I < - - -
!
!
I
I
I
I <___
I

l
I
I
I
I
l
I <-----

I
I
I
I
I
l
I
I

Programs to support
various interfaces:

Stand-alone SEQUEL,
Query By Example, etc.

Relational
Data
Interface
(RDI)

Relational
Storage
Interface
(RSl)

Figure I

Architecture of System R

With this br ief description of the RSS fac i l i t i e s , we can return to the RDI and i ts

supporting system (Relational Data System - RDS). The major functions performed by

the RDS are authorization, in tegr i ty enforcement, and nonprimitive view support which

includes al l the binding issues discussed previously. In addition, the RDS maintains

the catalogs of external names, since the RSS uses only system-generated internal

names. The RDS contains a sophisticated optimizer which chooses the best access path

for any given request from among the paths supported by the RSS. The operating

system enviornment for this system is VM/370 [16]. Several extensions to this

vir tual machine capabil i ty have been made [17] in order to support the multi-user

environment of System R.

ACKNOWLEDGEMENT

The authors wish to acknowledge many helpful discussions with E. Fo Codd, originator

of the relational model of data, and with L. Y. Liu, manager of the Computer Science

Department of the IBM Research Laboratory. We also wish to acknowledge the extensive

contributions to System R of Paul L. Fehder, who has transferred to another location,
and Raymond F. Boyce, who served as one of the project managers unti l his untimely

death in June of 1974.

147

REFERENCES

[I] E. F. Codd. A Relational Model of Data for Large Shared Data

Banks. Communications of the ACM, June 1970.

[2] M. G. Notley. The Peterlee IS/I System. IBM UK Scient i f ic Center

Report UKSC-O018, March 1972.

[3] M. M. Astrahan and D. D. Chamberlin. Implementation of a

Structured English Query Language. Presented at ACM SIGMOD

conference, San Jose, Cali fornia, May 1975; to be published in

Communications of the ACM, October 1975.

[4] G. D. Held, M. R. Stonebraker, and E. Wong. INGRES: A Relational

Data Base System. Proc. AFIPS National Computer Computer

Conference, Anaheim, California, May 1975.

[5] CODASYL Development Committee. An Information Algebra.

Communications of the ACM, April 1962.

[6] E. F. Codd. A Data Base Sublanguage Founded on the Relational

Calculus. Proc ACM SIGFIDET Workshop, San Diego, Cali fornia,

November 1971.

[7] E. F. Codd. Relational Completeness of Data Base Sublanguages.

Courant Computer Science Symposia, Vol. 6: Data Base Systems.

Prentice Hall, New York, 1971.

[8] B. M. Leavenworth. Nonprocedural Programming. IBM Research

Report RC4968, IBM Research Center, Yorktown Heights, New York.,

August 1974.

[9] M. H. Halstead. Software Physics Comparison of a Sample Program

in DSL Alpha and COBOL. IBM Research Report RJI460, IBM Research

Laboratory, San Jose, California, October 1974.

[IO] D. D. Chamberlin and R. F. Boyce, SEQUEL: A Structured English

Query Language. Proc. ACM SIGFIDET Workshop, Ann Arbor, Michigan,
May]974.

[11] N. McDonald and M. Stonebraker. CUPID: The Friendly Query

Language. Proc. ACM Pacific Conf., San Francisco, California,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

148

April 1975. Available from Boole and Babbage, 850 Stewart Drive,

Sunnyvale, California 94086.

Mo M. Zloof. Query By Example° Proco AFIPS National Computer

Conference, Anaheim, Cali fornia, May 1975.

C. J. Date. An Introduction to Data Base Systems. Addison

Wesley, 1975.

D. D. Chamberlin~ J. N. Gray~ and !. L. Traiger. Views,

Authorization, and Locking in a Relational Data Base System.

Proc. AFIPS National Computer Conference, Anaheim, Cali fornia, May

1975.

K. P. Eswaran and D. Do Chamberlin. Functional Specifications of

a Subsystem for Data Base integr i ty . IBM Research Report RJI601,

IBM Research Laboratory, San Jose, Cali fornia, June 1975.

Introduction to VM/370. IBM Publication No. GC20-1800. !BM,

White Plains, New York.

J. N. Gray and V. Natson. A Shared Segment and Inter-process

Communication Faci l i ty for VM/370. IBM Research Report RJ1579,

IBM Research Laboratory~ San Jose, Cali fornia, February 1975.

E, F. Codd. Recent Investigations in Relational Data Base

Systems. Proc. IFIPS Congress, Stockholm, Sweden, August 1974.

