
System R: A Relational Data Base. Management System 

Morton M. Astrahan, IBM Research Laboratory, San Jose, California 
Donald D. Chamberlin, IBM Research Laboratory, San Jose, California 
W. Frank King, IBM Research Laboratory, San Jose, California 
Irving L. Traiger, IBM Research Laboratory, San Jose, California 

INTRODUCTION 

System R is a data base management system which provides a high-level, non-procedural 

relational data interface. The system provides a high level of data independence by 

isolating the end user as much as possible from underlying storage structures. The 

system permits def in i t ion of a variety of relational views on common underlying data. 

Data control features are also provided, including authorization, in tegr i ty  

assertions, triggered transactions, a logging and recovery subsystem, and fac i l i t i es  

for maintaining data consistency in a shared-update environment. 

The relational model of data was introduced by Codd [ I ]  in 1970 as an approach toward 

providing solutions to the various outstanding problems of current data base 

management systems. In part icular,  Codd addressed the problems of providing a data 

model or view which isdivorced from various implementation considerations (the data 

independence problem) and also the problem ofproviding the data base user with a 

very high-level, non-procedural data sublanguage for accessing data. I t  should be 

stressed here that the relational model is a framework or philosophy for finding 

compatible solutions to these and other problems in data base management; the 

relational approach is thought to make solutions more elegant and perhaps simpler but 

the approach by i t se l f  does not solve these problems. With this caveat in mind, our 

f i r s t  purpose is to br ie f ly  describe a related set of data base problems which we are 

attempting to solve in a coherent way following the relational approach. Our 

solutions are embodied in an experimental prototype data management system called 

System R which is currently being designed, implemented, and evaluated at the IBM San 
Jose Research Laboratory. 

We wish to emphasize that System R is a vehicle for research in data base 
architecture, and is not available as a product. Furthermore, the ideas discussed in 
this paper should not be considered as having product implications. 
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To a large extent, the acceptance and value of the relat ional approach hinges on the 

demonstration that a system can be bu i l t  which is operationally complete (can 

actually be used in a real environment to solve real problems) and has performance at 

least comparable to today's existing systems. With the present state of systems 

performance prediction, the only credible demonstration is to actually construct such 

a system, and to evaluate i t  in a real environment. The point of this paper, then, 

is to describe the set of problems which are being studied in the System R framework, 

to discuss the objectives of the system (which amounts to a description or def ini t ion 

of the term operationally complete), and to describe the architecture of the system, 

including overall structure, interfaces, and functional design. 

The System R project is not the f i r s t  implementation of the relational approach; 

however, we know of no other system which is rea l ly  aimed at an operationally 

complete capabi l i ty.  Other efforts have demonstrated f eas ib i l i t y  in various of the 

related problem areas. For example, both the IS/I system [2] and the Phase/O SEQUEL 

prototype [3] were single-user systems. No concurrent sharing of data was permitted 

and hence data control, locking, and recovery issues were greatly simpli f ied. The 

INGRES project [4] at U.C. Berkeley is also single-user oriented. In addition, each 

of these projects has an incomplete treatment of views, i . e . ,  of providing various 

views of data to various users. 

The next section describes the overall goals of System R and describes the l i s t  of 

capabi l i t ies which we believe to be necessary in an operational environment. The 

following section describes the architecture of the system, and describes in overview 

terms i ts  major interfaces and the components which support these interfaces 

SYSTEM OBJECTIVES 

System R is focused on f ive main goals: 

I. To provide a high level ,  non-procedural relational data interface. 

2. To provide the maximum possible data independence for the basic data objects 

(base relat ions).  

3. To support derived relat ional views. 

4. 

5. 

To provide f a c i l i t i e s  for data control consistent with the high level of the data 

interface. 

To discover the performance trade-offs inherent in this type of data base 

capabi l i ty.  

F i rs t ,  each of these goals w i l l  be discussed and i l lus t ra ted.  

I .  High Level Non-Procedural Relational Data Interface 
The trend toward higher level languages has long been evident in the programming 
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domain. Set-oriented data sublanguages were introduced in 1962 in the CODASYL 

Information Algebra [5]. Codd's ALPHA language [6] and Relational Algebra [7] raised 

the level of data sublanguages by let t ing the user specify the properties of the data 

required without describing the access Path or detailed sequence of operations to be 

used to obtain the data. This trend toward higher level non-procedural programming 

[8] is aimed at reducing the number of decisions the programmer must make in order to 

express his problem/solution, and at making the decisions more relevant to the 

solution (as opposed to being relevant to the programming of a specif ic computer). 

Halstead has examined two programs solving the same problem using his software 

physics techniques [9],  one written in ALPHA and the other in DBTG-COBOL and for this 

case found that the ALPHA solution required 30 times fewer mental discriminations 

than the lower level solution This observation should be d i rect ly  translatable into 

increased programmer productivity and ease of maintenance. Thus, human productivity 

is one strong reason for the goal of supporting a high-level, non-procedural data 

interface. 

The other reason for moving in the direction of non-procedural interfaces is related 

to the optimization of the execution of the program. I f  the data base were dedicated 

to a single application, i ts structure could be optimized for that application only, 

and the application could be written in terms of that optimized structure. However, 

in an integrated data base environment, such local optimization is l i ke ly  to be 

inef f ic ient .  Hence, the system must i t se l f  optimize the execution of each 

application on a data base whose structure is a compromise among the various 

applications. The non-procedural, high-level specification better reveals the 

application intent and hence is easier for the system to use as a basis for 
optimization. 

The available relational languages (ALPHA, Relational Algebra) were very formal and 

required rather much mathematical sophistication on the part of the user. In 

part icular,  the ALPHA language is based on the f i r s t  order predicate calculus. The 

relational algebra introduces a collection of aggregrate operators (selection, 

projection, jo in,  division, etc.) which have relational operands and produce 

relational results. The need to discover more user-oriented, non-mathematical 

relational languages became apparent and is currently being pursued by several 
research groups [11,12]. 

The principal external interface of System R is called the Relational Data Interface 

(RDI), and provides relat ional ly complete [7] f ac i l i t i e s  for data manipulation, data 

def in i t ion,  and data control. To support high-level, non-procedural~ set-oriented 
applications, the RDI contains the SEQUEL data sublanguage in i ts ent irety. SEQUEL 

is documented in [ I0] .  
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Of course, not a l l  requirements can best be met through a non-procedural approach and 

for  this reason the RDI contains s ingle- tuple-or iented operators (FETCH, INSERT, 

DELETE, REPLACE, etc . )  in addit ion to the set-oriented capabi l i t ies  of SEQUEL. 

We have designed the RDI to be used in two modes: 

(a) D i rec t ly  by an appl icat ion program (e.g. ,  a COBOL program) which uses RDI 

operators to access the data base. 

(b) As the target of a t rans lator  program (a special case of an appl icat ion program) 

which is emulating some other type of user interface. 

2. Data Independence 

Date [13] has defined data independence as the immunity of applications to change in 

storage structure and access strategy. Often, however, the notion is associated with 

the a b i l i t y  of a data base system to provide various logical  views of the data base; 

for  example to make v i s i b l e  only selected records of a f i l e ,  and selected at t r ibutes 

of each record. By v iew, informal ly  we mean a re lat ional  window through which an 

appl icat ion can access the data base. The term "window" is used to imply that 

changes to the data base which af fect  the view are v i s ib le  to the appl icat ion. We 

wish to dist inguish these two notions of data independence. In th is  subsection we 

address the only f i r s t  notion of data independence; the second~ which we cal l  the 

support of derived views, is discussed in the next subsection. 

Typica l ly ,  data management systems permit two levels of data de f in i t i on .  The lower 

leve l ,  or "schema", describes the pr im i t i ve  data objects being managed by the system. 

In System R, these pr imi t ive  objects are cal led base re lat ions.  The descript ion of a 

base re la t ion includes the re la t ion name, a t t r ibu te  names, description of the units 

of each a t t r i bu te ,  the domain of each a t t r i bu te ,  the order of the at t r ibutes within a 

re la t ion ,  the order ( i f  any) of the tuples within a re la t ion ,  etc. In par t i cu la r ,  

the de f in i t i on  of a base table does not include any information about physical 

storage or avai lable physical access paths to the data. However, each base re la t ion 

has a very d i rect  physical representation, i . e . ,  each tuple of the re la t ion has a 

stored representation. Data independence implies that the base re la t ion can be 

supported by a var ie ty  of physical structures and access strategies.  

Clearly data independence is important i f  a system is to allow growth and meet the 

changing requirements of various appl icat ions. System R provides a r ich set of 

access structures. Any of these can be used to support a given base re la t ion.  

3. Support of Derived Views 

The higher level of data independence consists of the a b i l i t y  to define a l ternat ive 

views in terms of the pr imi t ive  data objects. This notion appears in most 
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contemporary data management systems and the usefulness of such systems depends in 

large measure on the capabil i ty of the system to support derived views. 

The inab i l i t y  to support views which d i f f e r  from the primit ive views often leads to 

programs which are complex, because they are warped to use views which are not 

natural but can be supported, and which require extensive maintenance as the system 
changes over time. 

As an example of the usefulness of derived views, consider a data base containing the 

following two types of records: CATALOG (PARTNO,DESC,PRICE) and SALES 

(SALENO,PARTNO,QSOLD). The CATALOG f i l e  is ordered by part number, and gives the 

description and price of each part. The SALES f i l e  is ordered by sale number, and 

gives the part number and quantity sold for each sale. Suppose we wish to pr int  out 

al l  the SALES records for parts which have a price greater than $I000. 

We could write a program to scan through the CATALOG f i l e ,  finding parts with PRICE> 

$I000; for each such part, a separate scan could be made through the SALES table to 

find al l  the corresponding records. This program would be highly procedural; i t  

would require repeated scanning of the SALES table, and would give the system l i t t l e  

opportunity to optimize the query by choosing among alternate access paths. 

However, i f  our system permits the specification of derived views, the user might 

specify a view consisting of the join of the two f i l es ,  as follows: SALES-CAT 

(SALENO,PARTNO, DESC,PRICE,QSOLD). The program could then consist of a single scan 

through the SALES-CAT view. Besides being easier to wri te,  this program would give 

the system f l e x i b i l i t y  to take advantage of new access paths which may become 

available (such as a PARTNO index on the SALES f i l e )  without requiring changes in the 
program. 

A major goal of the System R project is to develop and investigate the technology of 

derived views. This problem has three d ist inct  aspects, each of which is being 
studied: 

(a) Exactly what set of operations on derived views is supportable? As an example of 

this issue, imagine a request to delete a tuple from the SALES-CAT view described 

above. Since this view is a join of two underlying f i l es ,  i t  is not obvious what 

actions should be taken on the f i les  to support the deletion. (Should we delete the 

SALES record but retain the CATALOG record?) For some kinds of view modification 
requests, there may be several possible actions which would produce the desired 
result ;  for other kinds of requests, there may be no possible supporting action. 
Codd [18] has described some examples of the la t te r  phenomenon. 
(b) How should the view be bound to the available physical structures and access 
paths? This aspect of the binding problem concerns the optimization of the view and 
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accesses on the view in terms of avai lable access paths, e.g. ,  indexes~ sequential 

scan, etc. 

(c) When should binding be performed? For dynamic view de f in i t i on ,  the binding must 

also be dynamic. In System R, we are invest igat ing various binding-time strategies;  

dynamic binding w i l l  occur for  dynamically defined views but for  certain often-used 

or very demanding views, the binding w i l l  be done s t a t i c a l l y  with (hopeful ly) an 

increase in performance. 

4. Data Control Fac i l i t i es  

Data Control includes those aspects of a data base system which control the access to 

and use of data. We dist inguish four types of data control ,  each of which is being 

investigated in System R. 

(a) Authorization. This form of control is the most common type, being present in 

almost a l l  current systems. Authorization is the mechanism to permit or deny the 

creation and manipulation of data structures and views by various users. Any user of 

System R may po ten t ia l l y  be authorized to create new tables and views, and to 

se lec t ive ly  grant authorizations for his objects to other users. The authorization 

mechanism of System R is described more f u l l y  in [14]. 

(b) In teg r i t y .  In tegr i t y  control provides a mechanism for  enforcing that the data in 

the data base obeys certain rules or predicates which have been declared to the 

system. This form of control is t yp i ca l l y  not found in current data base systems but 

is l e f t  to protocols imbedded in various appl icat ion programs. In System R, two main 

types of control f a c i l i t i e s  are provided: i n teg r i t y  assertions and t r iggers.  

In teg r i t y  assertions are expressed in the SEQUEL language as predicates about the 

data in the data base [15]. The system then guarantees the truth of these 

predicates. Exactly when the system checks an assertion is a function of both the 

type of assertion and the transaction boundary which caused the assertion to be 

checked. 

Triggers are actions that are invoked when some t r igger ing condition or action is 

detected. For example, suppose that the DEPT re lat ion contains an a t t r ibu te  NEMPS 

which represents the number of employees in the department. To maintain the v a l i d i t y  

of th is value~ we can declare t r iggers to update th is  f i e l d  whenever an employee is 

hired, f i red ,  or transferred. 

(c) Consistency. In tegr i t y  implies the s ta t i c  correctness of the data base and 

consistency is concerned with the dynamic correctness. Suppose that one appl icat ion 

program is t ransferr ing a set of employees from Dept. 48 to Dept. 50, while 

simultaneously another appl icat ion program is giving raises to a l l  employees in Dept, 

50. The interact ion of these programs may have the undesirable resul t  that some but 
not a l l  of the transferred employees receive the raise.  Even worse, i f  the 
t ransferr ing program encounters a fa i l u re  and backs out i t s  updates, i t  may develop 
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that a raise has been given to someone in Dept. 48. 

In current systems the applicat ion would contain speci f ic  statements (e.g.,  "LOCK 

DEPT 50") to avoid these problems. A major goal of System R is to el iminate such 

defensive coding which is not a part of the problem being solved but is related only 

to the fact  that the solution is running in a certain environment. Since the user 

cannot know in advance the exact environment in which his application w i l l  run 

(perhaps no other users are current ly updating employee records; in this case the 

lock is not needed), the system must provide the control needed to enforce 

consistency. The approach being pursued is to require that the user define the 

boundaries of a transaction, which is a sequence of statements to be executed as an 

atomic uni t .  The system then requests whatever resources i t  needs in the run-time 

environment to guarantee atomici ty.  Furthermore, th is same atomic uni t  is used as 

the unit  of i n teg r i t y ,  i . e . ,  i n teg r i t y  may be suspended within a transaction but i t  

is guaranteed at the transaction endpoints. I f  a transaction v io lates i n teg r i t y  at 

i t s  endpoint, then the transaction is backed out. 

(d) Recovery. The fourth aspect of data control is concerned with preserving the 

i n teg r i t y  of the data i f  the system experiences a malfunction or i f  an application 

backs up e i ther  vo lun tar i l y  or i nvo lun ta r i l y ,  (e.g. ,  as in the case of deadlock). 

The recovery capabi l i t ies  of System R include the usual checkpoint/restart functions 

as well as the a b i l i t y  to back up an ongoing transaction to user-specif ied points. 

These capabi l i t ies  are examples of functions which are required in order to have an 

operat ional ly complete capabi l i ty .  

ARCHITECTURE AND SYSTEM STRUCTURE 

We w i l l  describe the overal l  architecture of Sytem R from two viewpoints. F i rs t ,  we 

w i l l  describe the system as seen by a single transaction, i . e . ,  a monolithic 

descript ion. Second, we w i l l  invest igate i t s  mult i -user dimensions. Figure 1 gives 

a functional view of the system including i t s  major interfaces and components. The 

RDI, as described previously, is the external interface which can be called d i rec t l y  

from a programming language, or used to support various other interfaces. The 

Relational Storage Interface (RSI) is the access-method-like level which handles the 

access to single tuples of base re lat ions.  This interface and i t s  supporting system 

(Relational Storage System - RSS) is actual ly  a complete storage subsystem in that i t  

manages devices, space a l locat ion,  storage buffers (one level s tore) ,  transaction 

consistency and locking, deadlock, backout, transaction recovery and logging. 

Furthermore, i t  maintains indexes on selected at t r ibutes of base re lat ions.  
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Architecture of System R 

With this br ief  description of the RSS fac i l i t i e s ,  we can return to the RDI and i ts 

supporting system (Relational Data System - RDS). The major functions performed by 

the RDS are authorization, in tegr i ty  enforcement, and nonprimitive view support which 

includes al l  the binding issues discussed previously. In addition, the RDS maintains 

the catalogs of external names, since the RSS uses only system-generated internal 

names. The RDS contains a sophisticated optimizer which chooses the best access path 

for any given request from among the paths supported by the RSS. The operating 

system enviornment for this system is VM/370 [16]. Several extensions to this 

vir tual  machine capabil i ty have been made [17] in order to support the multi-user 

environment of System R. 
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