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INTRODUCTION 

Opt:Imization by a digital computer of a given structural design necessarily 

implies the reduction of a continuum to a finite number of degrees of freedom, be it 

rather large. In what follows it is understood that this discretization is achieved 

by a finite element method, although most of the properties to be exhibited are shared 

by finite difference procedures. The main variables discribing the response of the 

structure to its environment are either 

- a finite dimensional vector of generalized displacements, noted q 

- a finite dimensional vector of generalized deformations, noted e 

- a finite dimensional vector of generalized stresses, noted s. 

The action of the environment is limited here to the specification of sets of gene- 

ralized loads, a given set being noted as a finite dimensional vector g. 

The sources of such loads are multiple; they may be of gravitational, aerodynamical 

or therm~l origin. 

The optimization itself consists in the determination of finite sets of design variables 

for which the following hierarchy may be conveniently adopted 1,2 : 

i. T~ansverse dimensional design variables. 

They are most easily described in terms of the diseretized model of the structure. 

If we conceive the structure as made of a set of interconnected bars and plates, 

the local cross-sectional area of a bar, or thickness of a plate are design 

variables of this type. It is understood that the specification of such variables 

in a finite number of locations is accompanied by the specification of interpola- 

tion functions allowing the transverse dimensions to be known everywhere. 

It must be noted that alterations of the transverse design variables in thin- 

walled structures does not in principle modif~ either the external geometry of the 

structure~ nor the topology of the interconnexions of its component parts. 

2. Configuration variables. 

Some of them may still keep the external geometry invariant, while altering the 

length of bars and plates and modifying the relative angles between component 

parts. More generally they can also modify the external shape and the permissibi- 

lity of this depends on the function the structure has to fulfill. Clearly there 

is more freedom in this respect for a bridge design, while there is very little 

for an aircraft wing, where the external shape is largely dictated by aerodynamic 

considerations. Configuration variables are those that do not belong to the first 

group but ~hat still keep the topology of component interconnexions invariant. 



3. Material properties. 

While variables of the two preceding groups have continuous variations between 

upper and lower bounds, the choice of material properties for each component is of 

discrete type. For this reason the optimization of the choice of materials is 

largely one of direct engineering judgment, possibly a problem of direct compari- 

son between few designs involving different options. An exception must however be 

made for composite materials such as fiber and matrix where fiber orientation is 

a continuous variable very similar to a configuration variable. 

4. Topological variables. 

Again differences in topology in the interconnexions cannot be mapped as a conti- 

nuous change of variables. Any particular choice is mostly based on previous expfi- 

rience and engineering intuition, although purely technological considerations 

are usually also involved. 

Our conclusions about design variables is that little can be done presently in the 

matter of a useful mathematical formalism concerning the two last groups, except 

perhaps for very simple component parts. Moreover the changes in configuration varia- 

bles have essentially non linear repercussions on the response of the structure, 

while the changes in transverse dimensions lead to simple properties of linearity or 

convexity. For this reason most of the efforts towards computerized optimization of 

structures is presently concerned, as in this paper, with the first group of variables 

only. 

The optimality criterion itself may be very complex when aiming at a significant 

estimation of cost. For this reason, optimization in civil engineering where cost of 

materials) manufacture) manpower) delays) stock and investment are essential ingredients 

is totally different from optimization in aerospace as envisaged in this paper. The 

consideration of weight is so predominant in ghls last case) that it usually super- 

sedes all other factors and leaves a very simple functional to be minimized) one that 

is both linear and homogeneous in the design variables of the first group. Moreover 

the cost of aerospace structures being high and the consequences of a bad design 

extremely heavy, the investments in scientific computation of the structural response 

and the search for optimality are more easily accepted. 

We must now describe the types of constraints imposed on either the design varia- 

bles themselves or on the structural response. 

The transverse dimensional design variables are usually bounded from below and from 

above for reasons of manufacture and handling or for safegard against haphazard 

environmental actions that would unreasonably complicate the mathematical description 

of the loading cases. If c denotes the set of design variables we have thus for each 

component 

O < c . ~ c ~ .  
l 1 

The result of a continuous approach to design variables may conflict with the use of 

a standardized scale of ga~dge thicknesses) in which case the gauge closest to the 



value obtained will generally be tried for the final answer. 

The structural response itself receives at least the two following constraints : 

i. For a specified set of external loads the elastic limit of the materials involved 

may not be exceeded, or a limit well below the elastic limit is set to obtain 

a lower bound to the safe number of loading cycles in fatigue. 

2. For a specified set of external loads there may be no loss of or even bifurcation 

of the stability of equilibrium. 

In many cases haphazard exceptional loading cases are specified for which bifurcation 

of the equilibrium is allowed, provided the structure continues to resist elastically 

with a redistributed state of stress. Loads may be envisaged under which the elastic 

limits are exceeded and the structure becomes permanently damaged, provided there is 

no catastrophic collapse leading to loss of lives. 

While structures optimized under constraints of type i and 2 can be tested against 

such geometrically or materially non linear phenomena, it does not seem reasonable at 

present to include them in the optimization procedure itself. 

The following constraints are also technically significant : 

3. Some linear combination of the displacements must satisfy a given equality or 

inequality under a given set of loads. 

In this category we find the prescription of limitation of a global rigidity 

characteristic of the structure, such as the torsional rigidity of a wing under 

tip torque or of an automobile chassis. 

Another example is the requirement that the trailing edge of an aircraft spoiler, 

straight in the retracted position, should remain straight when fully opened in the 

air stream 3 

4. Specified values or bounds are set to the low frequency vibration spectrum of the 

s t r u c t u r e ,  

STRUCTURAL RELATIONS 

The relations between the structural response variables and the loads can convenien- 

tly be decomposed and presented in matrix form as follows 4. 

There are purely kinematical relations linking generalized displacements and strains; 

they imply compatibility of t h e  strains, 

e = sTq (I) 

and a dual relationship involves the equilibrium between loads and stresses 

g = Ss (2) 

The global kinematical matrix S depends solely on the topology of element inter- 

connexions and is independent of the values of the dimensional design variables and of 

mater ial properties. 

The conjugate character of displacements and loads and of stresses and strain appears 



clearly in the virtual work theorem 

T q g = qTss = "'~sTq) T s = (3) eTs 

Assuming the material properties to be linear elastic, we add the constitutive equations 

s = Je J positive definite. (4) 

From this we can derive the global stiffness relation between loads and displacements 

g = K q ( 5 )  

K = SJS T = K T the global stiffness matrix. 

K is certainly non negative, it is not restrictive, even if we have to suppress some 

rigid body modes by adding artificial kinematical boundary conditions, to assume it 

also positive definite. The elements of J, hence also those of K, are linear homogeneous 

functions of the design parameters 
~K 

K= ~ c i - ~ "  
1 1 

c. > O (6) 
1 

8J 
J= ~ ci ~-~" 

I l 

The matrices of partial derivatives depend only on material properties. 

WEIGHT FUNCTIONAL and CONSTRAINTS 

The weight functional is obviously a positive linear form in the design parameter 

w = Z PiCi Pi > 0 (7) 
i 

the coefficients Pi depending on the material properties. It has the lower 

~ = Z. Pi ci 
L 

b o u n d  

(8) 

Consider now the constraints stemming from upper bounds to the stressing of the 

material. In an isotropic continuum the H~ber-Hencky-Von Mises bound on the elements 

~.. of the local stress tensor lj 

+ + + , 2 + 2 2 , , 262 
(~ii-~22)3 (~22-~33)2 (T33-rll)2 6~T12 T23+r31) < e 

(where ~ is the elastic limit under uniaxial stress) is very convenient to use. 
e 

It is better adapted to our purpose, when expressed in terms of the strain tensor el" 3 

~ .  2 2 2 . 
(~ii-e22)2 ÷ (e22-e33)2 + (e33-ell)2 + o(~12+c23+e31 ) .< 2(i+v)2~ 2 e 

(v is Poisson's ratio). For anisotropic materials the quadratic form has more 

complicated coefficients but remains essentially positive definite. 

This explains that in any given component (finite element) of the structure the elastic 



l~lit is nowhere exceeded if the set e(e ) of generalized strains in this component is 

subjected to suitable constraints (finite in number) of the form 

T 
E positive definite m a : r i x  e(e) Ee e(e) < C~e e 

c~ > O, 
e 

(9) 

As e(e ) is a subset of e, we may write 

e. e.~ ) : Be e Be a Boolean matrix 

and, in view of equation (i), each constraint of this type is translated in a constraint 

on the displacement vector 

qTsBTE B sTq .< ~ (9') 
e e e e 

Such constraints are independent of the values of the design variables but depend on 

the material properties. 

A constraint of global rigidity type is equivalent to the requirement of a minimum 

value for the strain energy under the prescribed load system; hence it can be 

presented in the form 

i T 1 T 
~qg:~g Fg ~ ~ > O 

where g i s  known and F, the  g l o b a l  f l e x i b i l i t y  m a t r i x  

(10 )  

F = K -I ÷ q : Fg (11)  

depends non linearly on our definition of design parameters. 

If s under a given loading system gs a linear constraint 

T 
m q =y 

is imposed on the displacements~ we obtain the constraint 

T 
m Fg=y 

that involves again the flexibility matrix. 

The elastic stability constraints will be analyzed later. 



ISOSTATICITY 

The property of a structure to be isostatic is well known from simple examples 

of pin-jointed trusses. The concept can be extended to a continuum 5, the degree of 

hyperstaticity being identified with the degree of linear connectivity. The definition 

of isostaticity from the view point of a discretized model is that the homogeneous 

equation associated to (2) has only the trivial solution 

S s =O -> S =O 

Then, provided the structure is isostatically supported, S is square and non singular 

and the generalized stresses can be directly determined for any loading conditions from 

the equilibrium equations as 

s=S-Ig 

We may note that this situation is seldom met in practice for more general thin-walled 

structures, ~ecause discretization induces artificial hyperstaticity, even if the 

continuum is simply connected, 

An isostatic structure can be designed to be fully stressed under a single loading 

case. The case of constant strain elements (corresponding to first degree polynomial 

approximations to the displacement field) is particularly obvious in that respect. 

The plate thickness or bar cross-sectional area is taken to be constant within the 

element so that a single design parameter c and a single constraint (9) are to be 
e 

considered, The generalized stress S(e ) is known from statics and its relation 

to the generalized strain is 

~J 
e 

S(e  ) = c e ~ e ( e )  
e 

where ~J / ~c is a positive definite matrix independant from c . 
e e e 

The w e i g h t  o f  t h e  e l e m e n t  i s  Pe Ce w h e r e  Pe i s  some p o s i t i v e  c o n s t a n t .  C l e a r l y ,  s i n c e  

c s h o u l d  be  m i n i m i z e d ,  i t s  minimum v a l u e  i s  o b t a i n e d  by s a t i s f y i n g  t h e  c o n s t r a i n t  (9) 
e 

~Je i ~Je -i i 
I T (-~-c ~) - g e s = e e -2- S(e) (Tf -1 (el -f h ~ 
C e e C 

e e 

as an equality, 

If several loading cases are to be considered it is also clear that in each element 

the design parameter has to be choosen by the same equality constraint for the largest 

of the h values generated by the different loading cases. Hence, in general, for 
e 

each case, at least one of the elements will be stressed to its limit capacity. 
6 

This concept of fully stressed design has been extended to hyperstatic structures 

as an approximation to real minimum weight design under stress constraints alone, 



HYPERSTATICITY 

Isostatlc structures are not efficient when, as is mostly the case, several types 

of loadings are to be taken into account. Cooperation of all the resisting members due 

to redundant coupling helps to reduce local peak stresses and is finally conducive to 

lighter and stiffer structures. 

Hyperstatic structure possess self-stressing states, each of which is an s vector, 

solution of the homogeneous equation associated to (2) (g=O). 

If X is a ma=rix, whose columns form a basis for the subspace of self-stressings, 

we may write 

SX = 0 -> xTs T = O (12) 

and, as general solution to equation (2), 

s = S~g + Xx (13) 

Where S g is any particular stress vector in equilibrium with the loads and x an 

arbitrary vector of ~ntensitles of self-stressings, usually termed redundancies. 

Neither the particular pseudo-inverse S '~ , nor the matrix X depend on the design 

parameters, they depend only on the topology of interconnexions. 

The determination of the redundancies rests on compatibility conditions for the 

strains 
j-i 

e = s 

They are the existence conditions for inversion of (I), that is, in view of (12) 

xTe = O -~ xTj -I S~g + xTj-Ix x = O (14) 

Because X is a base matrix (independent columns), this set of equations for x has 

a positive definite, hence invertible, matrix. 

The presence of j-i causes the redundancies to depend non linearly on the design 

parameters. The satisfaction of the stressing constraints becomes therefore 

difficult and iterative search techniques are needed, 7,8,9. 

STRESS CONSTRAINTS AND CONVEXITY OF THE SET OF ADMISSIBLE LOADS 

When several loading cases are considered, the following question arises : 

to which extent may the loads be linearly co~ined without overstressing a given 

design ? Consider the general linear combination 

n 

i 

where the "design" loads g(m) are specified. 

(is) 



The %m' positive or negative, are loading factors. It is easily shown that, when all 

the constraints (9) are satisfied, they belong to a convex set of % space. Observe 

that in g-space each form (9 ~) of the constraints requires the q-vectors to belong 

to a convex, but generally unbounded set (even independent of the design variables). 

The intersection of all these convex sets is itself convex and bounded (again provided 

the kinematic degrees of freedom have been removed). The linear transformation (5) 

maps this convex set into a convex bounded set of g space. Hence if all the stressing 

constraints are satisfied for each design load, they remain satisfied for the linear 

co~ination (15) if (sufficient condition) the combination is convex 

n 

% ~ i m = 1,2 ... n Z % = i. (16) 
m i m 

Indeed each g(m) lies in the convex set of admissible loads and the convex combination 

being the smallest convex set containing the g(m)' is also contained in the admissible 

set. The convex admissible set of loads depends of course through the mapping (5) 

on the values of the design parameters. 

STABILITY OF EQUILIBRIUM AND CONVEXITY OF THE SET OF ADMISSIBLE LOADS 

Under a given loading vector %g a stability matrix S (not to be confused with the 

kinematical matrix) can be obtained that enables the criterium of elastic stability 

to be placed in the form 

A 

u T S u + u T K u >~ O for every u (17) 

where u is a vector of perturbation of displacements. Assuming the gradients of 

the displacements at equilibrium in the continuum to be negligible before unity 

(small strains and rotations)p the ~ matrix may be taken to be proportional to be 

loading factor % , we write 

S= - ~ S 

Changing the stability crlterium to 

u T Su 
~ ~< i ~ = ~ (18) 

uTKu 

Let ~ and ~ be respectively the maximum and minimum of the Rayleigh quotient ~. 

Case I ~ < ~ < O 
i i 

For every u ~ < O and, as -- < -- < O 

the structure is unconditionally stable for positive loading factors, the negative 

values being limited by % >~ i/ ~ • 



Case 2 0 < ~. < 

i i 
For every u ~ • O and, as -- • -- > O 

the structure is unconditionally stable for negative loading factors, the positive 

values being limited by I ~ I/ 

Case 3 K < o < 

is the general one as compression stresses prevail usually somewhere for positive 

as well as negative loading factors. 

The loading factors are bounded in both directions 

Consider r~ow again the case of a linear combination (15) of several loading cases 
A n 

We have S = -Z I S 
I m m 

and the stability condition 

n 

- Z % uT S u + uT K u >~ O 
i m m 

for any Perturbation u 

In the positive hyperoctant of l-space we solve the eigenvalue problem for given 

1 >~ 0 
m 

n 

aKu=l 1 S u 
m m 

i 

the s t a b i l i t y  c o n d i t i o n  be ing  then uTKu ( l - a )  ~ 0 or  s 

Since u T K u > O, a .< i . 

uTs u 
m 

But if ~m = max m 
uTKu 

uTSm u ~ -'m uTKu for any u 

n n 

and auTKu ffi E %m uT SmU "< uTKu ( E I m ~m ) 
I i 

Whence the stability criterion is certainly satisfied if 

~. ~ ~ .< 1 (19) 
m m 

When all the upper bounds ~L are positive this condition bounds the positive 

hyperoctant in X-space by a hyperplane passing through the coordinates I/ ~ on each 

axis. If one or several of the upper bounds are negative, the positive part of the 
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hyperplane is a boundary but the hyperoctant itself is unbounded. 

In the hyperoctan~ A I ~ O, other A m ~ O, it is sufficient to replace uTsI u by its 

minimum ~ I uTKu and the stability conditions is seen to be satisfied by 

m 
AI ~- I + X A m Vm <:I (20~ 

2 

This produces the bounding hyperplane for this hyperoctant. The generalization to 

the other hyperoctants is obvious. 

In the usual case where ~m< O < [m for all m, it is seen that the convex polyedron 
m 

defined by its vertices I/ ~m and i/~ m on the m axis is a domain of stability in 

A-space. 

The domain of stability is in fact a larger one. The characteristic surface 

bounding the domain in the positive hyperoctant will be shown to be convex. Suppose 

we know the critical perturbation shape u that, for a given set A m ~ O belonging to 

the characteristic surface, yields the critical eigenvalue ~= i . Thus 

K u = Z % S u (21) 
mm 

A first order perturbation gives 

(I + d~)K(u + du) = X (Xm + dam) Sm (u + du) 

Or, after simplifying by (21) and keeping first order terms, 

S u - do Ku (22) (K - El m S m) du = E d A m m 

The homogeneous equation, identical to the homogeneous adjoint since the matriK is 

symmetrical, has the non trivial solution 

du = do u do arbitrary 

Hence the existence condition for a solution to the non homogeneous problem is 

E d A u T S u - do u T K u = O (23) 
m m 

For do = O we stay on the tangent plane 

E d % u T Su = O (24) 
m 
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to the characteristic surface. Keeping first order perturbations on the loading 

factorsp let us now examine how the critical perturbation on displacements and the 

elgenvalue are affected to second order 

= + dl m) S m (u + du + dv) (i + de + d8 )K(u + du + dr) Z (%m 

In view of (21) and (22) this already reduces to the second order terms balance 

(K -~ km Sin) dv = ld% m S m du - d~ K du - dE K u 

The existence condition for dv, or a simple cancellation of terms obtained from (21) 

as 

dvTKu = El d v T S u 
m m 

yields 

dB uTKu = E d% uTs du - d~ u T K du 
m m 

The right-hand side can be transformed by premultiplication of (22) by u T, hence 

d8 u T K u = du T K du - Z% du T S du 
m m 

T 
Now as u K u > O andp by hypothesis 

EX v T S v 
m m 

max = i 
T 

v v Kv 

We obtain d B ~ O 

This shows in particular that~ when we move in the tangent plane to the characteristic 

surface~ the eigenvalue == i receives a positive second order increase and we penetrate 

into the unstable region, The characteristic surface is therefore convex. 

A similar conclusion is reached for the characteristic surfaces of the other 

hyperoctants. 

This constitutes another proof that the domain of stability is convex in %-space. 

The two preceding convexity properties provide a justification for considering a 

finite number of loading cases~ the vertices of a convex polyedron. 
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