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I. Introduction 

The most widely treated problem in compartmental analysis of bio- 

logical systems [1,2,3] concerns the choice of the compartmental stru~ 

ture of the system (identification of the compartments and of their r~ 

lationships: compartmentalization)and the evaluation of the system pa- 

rameters via a suitable input-output experiment (identification of the 

transfer rate constants: estimation). 

However, prior to actually performing the identification experi- 

ment, the following problem has to be considered: can the chosen expe- 

riment provide the desired information about the system? i.e., can all 

parameters characterizing the adopted compartmental model be estimated 

from the chosen experiment? (%dentifiability problem: [4] ). 

This problem is particularly important in the study of "in vivo" 

phenomena as the experiment is often non repeatable because of induced 

harm, high cost, troubles etc. (e.g., radioactive tracer experiments). 

The problem is to be answered, therefore, after the compartmentaliza- 

tion but before the estimation. In such a way the problem can be cha- 

racterized as the a priori structural identifiability problem because 

it has to be faced only with reference to assumptions about the model 

structure and not about the values of its parameters (values which can 

be obtained only through the planned experiment); the a posteriori i- 

dentifiability, on the contrary, refers to the actually estimated va- 

lues of the parameters and it is connected to the statistical evalua- 

tion of the reliability of the estimates. 

In this paper the structural identifiability problem is conside- 

red for multi-input multi-output compartmental systems of any structu- 

re, where each input enters one compartment only and each output is r~ 
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lated to one compartment. A testing procedure for the identifiability 

of such systems is presented and a description of the techniques em- 

ployed for a digital computer implementation of the whole procedure is 

given. Finally we apply the above procedures to a compartmental model 

of copper metabolism. 

2. Some concepts'mn compartmental systems 

It seems useful to review some general concepts about compartmen- 

tal systems. 

A compartment is a quantity of material which kinetically behaves 

in a characteristic and homogeneous way. It must be emphasized that a 

compartment may or may not coincide with a physiologically realizable 

region of space. 

A compartmental system consists of interconnected compartments 

which exchange material either by physical transport or by chemical re 

action. A compartmental system is therefore characterized by compart- 

ments and intercompartmental relations. 

The differential equations describing the dynamical behaviour of 

a compartmental system are obtained from the mass balance equation for 

each compartment: 

+ m i + u i " E f' - f i=1,n (I) j~i 3i oi 

jg0 

~i = fij 

j~0 

where; 

qi is 

m i is 

the amount of material of the i-th compartment; 

the net rate of production of material by metabolism (internal 

input); 

u i is the rate at which material enters the i-th compartment from the 

environment external to the system (external or perturbation in 

put); 

foi is the excretion flow from the i-th compartment to the environment; 

fji is the transfer flow from the i-th to the j-th compartment; 

f.. is the transfer flow from the j-th to the i-th compartment. 
z3 

The classical compartment theory assumes linearity and time-invariance 

of the system; therefore eq. (I) can be written is the form: 

qi = . . kij qj + mi + ui - kji qi - koi qi 

j~O j~O 

(2) 
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where: 

k.. is the (non negative) rate constant from the j-th to the i-th com- 
13 

partment; 

koi is the (non negative) rate constant from the i-th compartment to 

the environment. 

In steady state m i is assumed to be constant, the perturbation exter- 

nal input u i is equal to zero, the rate of change of qi is zero by de- 

finition and each qi assumes a constant steady state value qis' 

With reference to the (small) deviations xi=qi-qi s caused by ui, 

equation (2) can be rewritten in the form: 

= kij x +u i- kji x -k x (3) 
jgi 3 j~i 1 O1 1 

j~O j~O 

For a tracerr equation (3) also holds under the following assumptions: 

i) the system is in steady state; 

ii) the injected tracer has a metabolic fate identical to the fate of 

the non-labeled substance; 

iii) the mixing of the injected tracer with the non-labeled substance 

within each compartment is complete and rapid in comparison with 

transfer rates of the substance between compartments; 

iv) the amount of the injected tracer is negligible in comparison with 

the size of the compartment; the steady state is not altered by 

the injection; 

v) there is no isotopic fractionation for radioactive tracer. 

For an n compartmental system, the kij rate constants can be grouped 

into a square, n order matrix K, the main diagonal of which is null, 

and the k . rate constants into an n order row matrix K . 
o! o 

As far as the structural identifiability problem is concerned, we 

must observe that matrices K and K o are not yet known (as no estimation 

has been performed), but we know which of their entries are nonzero, as 

this derives from compartmentalization. Namely, we know only matrices 

H and Ho, obtained from K, K ° through the following statement: 

hrs=O if krs=O 
Ir=O,n 

with !s=1 ,n (4) 

I hrs=1 if krs~O 

Matrix H may be viewed as the connection matrix of a directed graph 

with nodes corresponding to compartments and branchesto the rate cons- 

tants (fig.l) . 
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10] 

Figure I - Directed graph of a compartmental system 
and corresponding H and H ° matrices. 

For what follows it is useful to know whether a given compartment 

i can influence compartment j: with reference to the above graph, it 

corresponds to the existence of a path from compartment i to compart- 

ment j. As is well known, this problem may be solved by checking we- 

ther the ij entry of one of the successive powers of H is nonzero; the 

order of the first power of H in which such element is nonzero is equal 

to the number of branches of the minimum path from i to j. A system 

is said to be strongly connected when every compartment can be reached 
E n H1 from every other compartment; in such a case matrix R = 1=I has 

all nonzero entries. A system is said to be open (closed) when there 

is some exchange (no exchange) with the environment; the corresponding 

condition is Ho~O(Ho~O). 

The variables x i in (3) can be clearly considered as components 

of the state vector x of a dynamical, linear, time invariant system: 

= Ax + Bu (5) 
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y = Cx (6) 

where u= u. is the input and y is the output formed by the measured 
1 

variables. 

It can be easily seen that the elements of A are related to the e 

lements of K and K by: 
o 

aij = kij i~j (7) 

n 

a , .  = - k  . -  ~ k . .  (8 )  
l z  o l  j = l  3z  

Matrix A is therefore diagonally dominant and consequently its eigenva 

lues cannot be purely imaginary and have a non positive real part [7] ; 

usually however they are real and negative. 

3. Statement of the problem 

As previously said, in this paper we consider multi input - multi 

output compartmental systems of any structure where each input enters 

one compartment only and each output is related to one compartment. 

The assumption about the structure is completely general (previous 

work in this field considers only strongly connected system [8,5] ; the 

general case is treated also in [6] ) ; as a consequence no restrictions 

have to be made on matrix K (non-negativity of its entries is the only 

assumption). 

The assumption about the inputs corresponds to the more usual ca- 

se in tracer experiments. If we label the r b inputs (rb~n) with index 

j, (j=1,rb) , for the (n x r b) matrix B the following condition holds: 

I I if input I enters the i-th compartment 

bi I = (9) 
I 0 otherwise 

The assumption about the outputs corresponds to a large class of prac- 

tical cases of tracer experiments. If we label the r c outputs (r c<n) 

with index k, (k=1,rc) , for the (r c x n) matrix C the following condi- 

tion holds: 

c . II I if output m is taken from compartment i 
= ( 1 0 )  

m i  [ 0 otherwis~ 

The most general input-output configuration where the input can frac- 

tion into several compartments and the output is related to more than 
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one compartment (the observed output variable Yr is a linear combina- 

tion of some state variables x s) is now under study. 

As far as the identifiability problem is concerned, it must be no 

ted that if the aim of identification is to have a model of the system, 

by which either the response to a given input or the input causing a de 

sired response may be computed, than any equivalent realization (A,B, 

C) is acceptable. In such a case, as is well known, necessary and suf 

ficient condition for identifiability is that the system be controlla- 

ble and observable; all the required information about the system is 

included in the transfer function matrix. 

In the case of biomedical applications, however, identification 

has diagnostic aims, and determining the transfer function matrix of 

the system (i.e. one of the equivalent (A,B,C) triples) may be insuffi 

cient, while it is necessary to evaluate all the transfer rate cons- 

tants krs , which are of immediate physiological significance. In the 

latter case controllability and observability of the system are only 

necessary conditions; moreover the number of mutually independent coef 

ficients of the transfer functions is to be at least equal to the num- 

ber of nonzero krs transfer rate constants. In fig.2 this situation is 

clearly illustrated: the system is controllable and observable, but is 

not structurally identifiable as only four rate constants can be uni- 

quely estimated. 

[i] E0 B = C = O I 

Figure 2 - Example of a controllable, observable 
but non structurally identifiable com 

u 

partmental system. 
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4. Outline of the procedure 

With reference to what has been discussed in section 3, testing 

the structural identifiability of a compartmental system by a given in 

put-output experiment (namely when the topological structure of input- 

state-output connection is completely known) consists of: 

I) testing wether the necessary conditions for controllability and ob- 

servability are satisfied with respect to the system structure (i.e. 

independently on the numerical values of nonzero kij parameters); 

2) comparing (again with respect to the system structure and therefore 

independently on the numerical values) the number of not yet determined 

nonzero parameters of K and K ° matrices, and the number of mutually i~ 

dependent coefficients in the numerator and denominator polynomials of 

the r b x r c input-output transfer functions. 

As far as topic I is concerned, as seen above, the problem is to 

be faced independently on the numerical values taken by the entries of 

A; therefore it seems not suitable to refer to usual controllability 

and observability criteria, based on the ranks of respectively contro ! 

lability matrix P (constructed on the basis of the pair A,B) and obse~ 

vability matrix Q (constructed with A,C). On the contrary, it is use- 

ful to consider the following theorems [6] , which make use only of co~ 

nection matrices H and H 
O 

Theorem I: The existence of at least one path reaching every uncontro ! 

led compartment from a controlled one is a necessary condition for a 

compartmental system to be CC; the existence of at least one path from 

every unobserved compartment to an observed one is a necessary condi- 

tion for a compartmental system to be CO. 

Theorem 2.1: A compartmental system is CC in a structural sense if ev~ 

ry uncontrolled compartment is reachable from at least a controlled one 

along any path. 

Theorem 2.2: A compartmental system is CO in a structural sense if the 

re is at least one path from every unobservable compartment to an ob- 

served one. 

As far as topic 2 is concerned, the subject is somewhat complex 

and the discussion may be developed as follows. 

From input and output behavior, the identification will allow one 

to determine, for instance, the values of numerator and denominator p~ 

lynomials of the transfer functions related to every input-output pair 

(as controllability and observability have already been tested, the 

transfer function matrix uniquely corresponds to any minimal realiza- 

tion of the system)= As seen above, the problem consists in checking 

wether the number of obtainable mutually independent coefficients is 
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equal or less than the number of nonzero parameters k . of the consi- 
l] 

dered compartmental model. Even if the relations between coefficients 

and k . are not linear, yet the given condition brings to the solva- 
13 

bility of the problem. 

Getting the analytical expressions of the numerator and denomina- 

tor polynomial coefficients as functions of k. ~ is extremely cumberso- 
13 

me; even if it may be used in the numerical estimation, if the system 

results to be identifiable, it is clearly more suitable to adopt a cri 

terion which simply allows one to test whether the system is identifia 

ble or not without computing the functions of kij. This is particula~ 

ly useful if the systems turn out to be not identifiable and either a 

different experiment is to be planned, or a simpler model (identifia- 

ble through the planned experiment) is to be adopted. 

For this purpose, the authors have suggested some test procedures 

[61 and here a new one is presented. 

Consider the following expression for the transfer function ma- 

trix ~(s) (cf [6] for computational details): 

C.adj (sI-A) .B _ I I CB(sn-1+~Isn-2+ "+en-1 ) + 
G(s) = det (sI-A) det (sI-A) 

+ CAB(sn-2+~isn-3+..+~n_2 ) +" "+ CAn'2B(s+~I)+CAn-IB } 

(11) 

where det(sI-A) = sn+~isn-1+ ~2sn-2+..+~ n 

[~(S)]ml can be computed via (11) by taking [CB]ml, [CAB]m I ..... ~An-IB]ml 

instead of the corresponding matrices. 

In all we have rbr c transfer functions [~(S)]m I =Nml/D from every 

input 1 to every output m. 

Polynomial D, which is common to all transferences, is characteri 

zed by n coefficients ~1,..,~n, and therefore it allows to write n e- 

quations in the parameters k... 
i3 

Analogously, the rbr c numerators Nml are characterized by rbrc(n-1) 
n-1 

coefficients; in fact the coefficient of s is I if the polynomial is 

of degree n-1. A knowledge of them allows one to write at most as ma- 

ny equations. However this number of equations must be reduced if the 

following situations occur: 

I) Nml has degree p=n-l-v<n-1 ; 

2) Nml has a w-th degree factor in common with D ; 

3) Nml has a z-th degree factor in common with one or more other nume- 

rators. 

Hence it must be checked wether these situations occur and, in this 
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case, v, w and z are to be evaluated. This purpose may be reached on- 

ly by operations on the structure of the graph representing the system. 

In fact: 

- situation I) corresponds to the case in which in (11) all products 

C AiB, i=O, !.~.v-I are null, which is easy to check on the graph,on 

the basis of the length (number of branches) of the shortest path 

from 1 to m: this length is v. 

situation 2) corresponds to the case where the subsystem controllable 

from 1 and observable from m does not coincide with the whole system 

as w compartments are not included (which is easily checked on the 

graph). In fact the reduced transfer function is a ratio of polyno- 

mials, where the denominator polynomial D' has degree n-w; if the 

transference is presented in standard form, with denominator polyno- 

mial D, then the numerator necessarily includes the factor D/D' 

- situation 3) corresponds to the case where the subsystem ml has a com 

mon cascade part (c.c.p.) with another subsystem m'l' which may be 

checked on the graph if there exist two nodes f, g such that: i) each 

node of c.c.p, is reachable from i and l' only through a path ente- 

ring f and reaches m and m' through a path outgoing from g; ii) each 

node of c.c.p, can reach outer nodes only through g and can be reached 

from outer nodes only through f; the value of z is equal to the lowest 

power such that [AZ]fg~O (see fig.3)o 

The nu_mber of independent equations in the kij system parameters is: 

N = n+rb°rc(n-1) ~i vi- Ejwj- Ek(tk-1)Zk (12) 

wherer as seen above, the first addendum is related to the denominator, 

the second one is the maximum number of equations obtainable from the 

numerators, which is reduced by the terms indicated in the three sums, 

corresponding respectively to situations I), 2), 3) ; the first sum re- 

fers to all numerators having degree less then n-l, the second one to 

numerators having some factors in common with the denominator and the 

third one to all cascade parts which are common to more ml subsystems; 

t k is the number of m 1 subsystems having the same k-th cascade part. 

N is to be compared with the total number N k of the non zero kij 

to be determined. If N<N k the system is not identifiable by the cho- 

sen experiment and it is necessary either to modify the experiment or 

to adopt another model of simpler structure. 

If N>N k the system is identifiable; if N>N k the system can be i- 

dentified by a simpler experiment or the planned experiment allows one 

to identify a more complex model; however if the chosen experiment and 



97 

the adopted model are used, it is possible either to utilize all equa- 

tions to improve the estimates, or to delete N-N k equations to have a 

simpler computation (for this purpose we may eliminate either those e- 

quations which have complex analytical structure, or those which cor- 

respond to the most noisy channels, or those with highest parametric 

sensitivity). 

6 

"1 O" 

0 1 

0 0 

0 0 
B = ; C = 

O O 

O O 

0 0 

O O 

[ oooo o 
O 0 O O 0 0 

Figure 3 - Compartments 4 and 5 form the common 
cascade part between the four subsy~ 
tems. 
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5. Flow chart 

AS seen in section 3 and 4 controllability and observability are 

necessary conditions for structural identifiability. 

Referring to theorems 2.1, 2.2 and to matrix RI=R+I , matrices 

RIB and CR I can be used to test controllability and observability in a 

structural sense: [RIB]lifO denotes compartment i reachable from input 

1 and [CR1]mi~O denotes compartment i observable from output m. The 

system is CC and CO if each row of RIB and each column of CR I have at 

least one positive non zero entry. Note that controllability and obse[ 

vability always hold for strongly connected systems (see [5] ). 

Once controllability and observability have been tested, identifi[ 

bility analysis can be performed following the line described in sec- 

tion 4. As the number of parameters obtainable from the denominator is 

always n, the numerators are considered. Putting matrices RIB and CR I 

in boolean form, (RIB) b and (CRI) b respectively, their product T=(CRI) b 

x (RIB) b is computed. Each entry [T]m I represents the number of com- 

partments controllable and observable from input 1 and output m. From 

T and A,B,C (see (12)) it is possible to know the number of parameters 

obtainable from the numerators, provided there are no common cascade 

parts. Note that for strongly connected compartmental systems each e[ 

try of T is equal to n, therefore T needs no computation (see above and 

section 2). 

Given two subsystems ml and m'l', the possible common cascade part 

is a set of compartments S such that: 

i) [RIB]i I>0 ; [RIB]il, >0 ; 

[CR1]mi>O ; [CR1]m,i>O Vi 6 S 

ii) k.. = O Vi 6 S , V j ~ S except i=f; 
13 

k. = O Vi 6 S , V j ~ S except j=g. 
3x 

If a common cascade part is found, a further simplification must be pe~ 

formed. Note that for strongly connected systems there are no common 

cascade parts due to their peculiar structure. 

In fig.4 a general flow chart of the whole procedure is presented. 

6. Example 

The above presented procedure for testing identifiability was ap- 
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~input data 
H ,Ho,B,C / 

1 
~o°°~o°,. \ umber of ) 

on zero hij / 

:heck strong 
connection 

NOr~/ strongly " ~ S  

check 
~ontrollability/ ~coeffiCient s =n 

I k_ ~o check > compute 
servability C ~, \ 

~top)  /denominator~ 
~oeffiCnients / 

I 
compute > 

A 

< > /numera to r>  
compute ~coefficients 

T '~rom A,B,C 

I 
oefficients / 
rom A,B~C,T/ 

simplify 
numerators 

ly independent 
coefficien- i 

r CheCk 
identifiabiiity 

print result 

Figure 4 - The general flow chart of the procedure 



100 

plied to a compartmental model of copper metabolism, currently under 

investigation at the Istituto di Biologia Animale of the University of 

Padovao The model is shown in fig.5. 

3 2 
A 

D4 

5 

Figure 5 - A compartmental model of copper metabolism. 
Legend of compartments: I- Plasma copper ; 
2- Liver copper; 3- Copper-Ceruloplasmin ; 
4- Copper-Albumin; 5- Copper in red blood 
cells; 6- Tissue copper. 

Input-output tracer experiments can be performed with inputs in 

1,5 and outputs in 1,3,4,5 variously combined. Structural identifiab! 

lity was analyzed with the program described above on an IBM 370/158 

computer through a batch terminal. Results are reported in table I. 

The system is strongly connected and is therefore always CC and CO. 

Remark also that the simplest input-output configurations with 

input and output in compartment I and with input in 5 and output in I 

do not allow to identify the adopted model. 
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Input(s) in 
zompartments 

I 

I 

I 

I 

I 

I 

5 

5 

5 

5 

5 

5 

1,5 

1,5 

1,5 

1,5 

1,5 

1,5 

Output(s) in 
compartments 

I 

1,3 

1,4 

1,5 

1,3,4 

1,3,4,5 

I 

1,3 

1,4 

1,5 

1,3,4 

I ,3,4,5 

I 

1,3 

1,4 

1,5 

1,3,4 

I ,3,4,5 

Result 

Not identifiable with I degree of freedom 

Identifiable with 3 redundant equations 
II I! 4 I! st 

II II 4 II il 

II It 8 II II 

" " 1 3 . . . .  

Not identifiable with I degree of freedom 

Identifiable with 2 redundant equations 
i i  If 4 If f! 

" " 4 " " 

11 go 7 II io 

" " 1 2 . . . .  

" " 4 " " 

" " 1 1  . . . .  

. . . .  1 4  . . . .  

. . . .  1 4 . . . .  

. . . .  2 1  . . . .  

. . . .  3 1  . . . .  
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