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Abstract 

As it is well known from the classical applications in the elec 

trical and mechanical sciences, energy is a suitable Liapunov func- 

tion: thus, by analogy, all energy functions proposed in ecology are 

potential Liapunov functions. In this paper, a generalized Lotka-Vol 

terra model is considered and the stability properties of i~s non-tri 

vial equilibrium are studied by means of an energy function, first 

proposed by Volterra in the context of conservative ecosystems. The 

advantage of this Liapunov function with respect to the one that can 

be induced through linearization is also illustrated. 

I. Introduction 

As is well-known, one of the most classical problems in mathe- 

matical ecology is the stability analysis of equilibria and, in parti- 

cular, the determination of the region of attraction associated to 

any asymptotically stable equilibrium point. It is also known that 

the best way of obtaining an approximation of such regions is La 

Salle's extension of Liapunov method[~, [2] . 

Nevertheless, this approach has not been very popular among 

ecologists, the main reason being that Liapunov functions (i.e. func- 

tions that satisfy the conditions of Liapunov method) are in gener&l 

difficult to devise. 

The aim of this paper is to show how the energy function first 

proposed by Volterra and more recently by Kerner [~ turns out to be 

quite often a Liapunov function even for non-conservative ecosystems. 

In order to avoid complexity in notation and proofs, the only case 

that is dealt with in the following is the one of second order (pre - 
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dator-prey) systems~ but the authors strongly conjecture that the 

results presented in this paper could be easily generalized to more 

complex ecological models. 

2. The Volterra Function 

Consider the simple Lotka-Volterra model 

dx 
x <a-by) <1.a) 

dt 

~ = y <-c +dx) (1.b) 
dt 

where x and y are prey and predator populations and (a~b~c,d) are 

strictly positive constants. This system has a non-trivial equilibrium 

(x,y) given by (x,y) = (c/d, a/b) which is simply stable in the sense 

of Liapunov. Moreover~ any initial state in the positive quadrant gives 

rise to a periodic motion. 

This can easily be proved by means of the energy function proposed 

by Volterra 

V = (xl~ - log(xl~))+ p(y/~ - log(y/Y~ - (l + p) (2) 

where 

p = b~/d~ 

since this function is constant along any trajectory and its contour 

lines are closed lines in the positive quadrant. 

In other words~ the Volterra function (2) is a Liapunov function 

because it is positive definite and its derivative dV/dt is negative 

semidefinite (identically zero). 

In the following~ the Volterra #unction will be used in rela- 

tion with non-conservative ecosystems of the form : 

dx 
- x(a - by + f(x,y)) 

dt (3) 

dy 
- y(-c +dx + g(x,y)) 

dt 

where f and g are continuously differentiable functions. Moreover9 we 

assume that there exists a non-trivial equilibrium (Z~)> 0 and that 
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the positive quadrant is an invariant set for system (3) so that it 

can be identified from now on with the state set of the system. 

3. The Volterra Function as a Liapunov Function 

Consider the generalized Lotka-Volterra model (3) and the Vol- 

terra function V given by eq. (2). Then, the derivative of the Vol- 

terra function along trajectories is given by 

dV ~v dx +~[dY x 
Z[ = 9~ " ~ Sy dt ( ~ -  1) (a - by + f (x ,y ) )  

b~ (~ - I) (-c + dx + g(x,y)) + Z[ y 

dV 
In order to study Z~ in a neighborhood of the equilibrium (~,~), 

it is possible to expand this function in Taylor's series up to 

the second ordem terms, i.e. 

dV dV d . d r /  9 
d C dV)Ii J~ + ~ I ~Y ÷ Zx Z~" I 

~,~ ~,~ ~,~ 

+ I d 2 .dV) (2x)2 1 d 2 .dV)/ (Sy)2 

d 2 (dV)] SxJy 

+ ZxZF ~ ~,T 
c4) 

Since 

dVt d .dV) --[ dt 
d ,dV)] 

d 2 .dV)l 2fx 

- - -  <~ I = -~- dx 2 ~,y 

d 2 dV I 2% 
dy 7,y 

d 2 .dv)l f bgx = ~  + ~ -  ~x~ ~ I ~ , ~  x 
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where fx~fy,gx,[v__ are the partial derivatives of f and g evaluated 

at (Z,y], eq. (4) becomes: 

x Y 
! "'--- ~ -  + ~ ' 1  

dV I i x I (5) 

L * j 

dV 
Therefore the second order approximation of ~ turns out to be a homo- 

geneous quadratic form; by studying the negative or positive defini- 

teness of such a form, it is possible to derive sufficient conditions 

for the Volterra function to be a Liapunov function. More precisely, by 

applying the ~rell-known Sylvester conditions and performing easy com- 

putations, it results 

x dV 
~-~ negative definite 

(b~F + d~)2<~bd~y 
Y 

(6) 

(bg x + df-¥)2< 4bd#xgy 

dV 
~T positive definite (7) 

Notice that these conditions are only sufficient for Liapunov methods 

to be applicable; thus, even if these conditions are not satisfied, 

it is possible that the Volterra function turns out to be a Liapunov 

function (see Ex. 2). 

As far as the study of stability properties in the large is 

concerned, the Volterra function is definitely advantageous with me- 

spect to quadratic forms. This is apparent in the case of global sta- 

bility; in fact, global stability can be inferred by means of Volter- 

ra function, whose contour lines in the state set are closed, while 

this is never possible by means of a positive definite quadratic form 

since the contour lines are not closed (see Ex. I and 2). 
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~. Examples 

This section is devoted to clarify by means of some examples 

what has been previously exposed. 

Example I 

The first example is a simple symmetric competition model bet- 

ween two species described by the following equations (see May [~ ): 

dx 
= x(k I - x -~y) EY 

dy 
E~ = Y<k2 - y - ~xl 

where k1~ k 2 and < are positive parameters. 

Provided that 

{ ~- k 2 '> k I jcyk 2 < k I 

or 

g%k I > k 2 ~k I < k 2 

a non-trivial equilibrium (~,~) exists and is given by 

k 2 - k I gk I - k 2 
, ) 

Thus, the matrix F of the linearized system is given by 

F = 

and its eigenvalues have negative real parts, provided that its trace 

is strictly negative and its determinant is strictly positive. These 

conditions are obviously satisfied if ~ < I. On the other hand~ also 

the sufficient conditions given by eq. (6) work well. In fact 

T =-14 o 
x 

and 
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(b~x + df )2 = 2(i +~)24 4bd~x~ x = 4~ 
Y 

provided that ~ < I o 

However~ the Volterra function guarantees the global stability 

of the equilibrium. This can be easily understood when taking into 

account that there is no ermor in the Taylorls expansion (4], becau- 
dV 

se the functions f and g are linear. Thus~ ~ is negative definite 

in the state set and global stability follows from La Salle's condi- 

tions. 

Example 2 

Consider the well-known modification obtained from the classical 

Lotka-Volterra model, when assuming~ in the absence of predation, a 

logistic grow-th for the prey : 

dx 

dy 
-- = y (-c + dx) 
dt 

k> 0 

If ad ~ kc a non-trivial equilibrium 

c a kc) 

exists and linearization around it yields 

kc bc 

d d 

F = 

da - kc 

b 

which has eigenvalues with negative real parts. On the other hand ~ 

it turns out that 

X 

 bd xiy = C x + d )2 = 0 

Therefore eqo (6) is not satisfied. Nevertheless, by means of a direct 

computation~ it mesults 
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dV k (x - W)2 
dt b~f 

dV dV 
i.eo ~ i s negative semidefinite. Since the locus ~ = 0 is not a 

trajectory of the system (easy to check), K/~asowskyi conditions are 

met with and asymptotic stability can be inferred. Moreover, since 
dV 
~ is negative semidefinite in the whole state set, global stability 

can be straight forwardly deduced. 

6. Concluding Remarks 

The energy function proposed by Volterra has been used in this 

paper to analyze the asymptotic behaviour of non-conservative ecosy- 

stems of the predator-prey type. The main result is that the Volterra 

function turns out to be a well-defined Liapunov function for a large 

class of systems and therefore allows the discussion of the local and 

global stability properties of such systems.The Volterra function seems 

to be definitively advantageous with respect to the Liapunov functions 

that can be obtained through linearization particularly in the case of 

global stability. 
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