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A plausible macroscopic model of genetic regulation by feedback repression, 

evolved from the original formulation of Goodwin, is considered. This model has the 

form of a second-order non-linear dynamic system, ~ = fl(x,y), # = f2(x,y), where 

x(t) ~ 0 describes the mRNA which codes for the protein y(t) ~ 0, the latter acting 

as a repressor. Published analytical, analog, and digital studies of this model do 

not report the existence of any periodic solutions. A stochastic analysis has pro- 

duced some irregular undamped oscillations, but these appear to be due to the stoch- 

astic elements so introduced. 

The model i = f1(x,y), ~ = f2(x,y) is known to be approximate. In particular it 

neglects delays of synthesis and transport of x,y from the place of production to the 

place of effect. Periodic solutions are found when a constant delay is introduced 

into y(t), or a variable one into x(t). In the latter case, analytical expressions 

for the amplitude and period are determined by means of a Poincarg-type expansion. 

In the presence of delay, sustained oscillations of x and y are found to exist in a 

wide parameter range. 
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INTRODUCTION 

Under the influence of classical thermodynamics and statistical mechanics it was 

believed for a long time that chemical, biochemical, and biological reactions, des- 

cribed by a system of non-linear ordinary differential equations, have only monotoni- 

cally varying transients toward or away from a state of static equilibrium. This 

rather entrenched belief started to evolve with the discovery of sustained oscilla- 

tions in a purely chemical reaction involving an inorganic catalyst (oxydation of 

malonic acid by KBr03 in the presence of Ce ions) 1,2). The presence of temporal os- 

cillations resulted in spatial oscillations [photographs in Herschkowith-Kaufman3)]. 

In due course many oscillatory phenomena were found in biochemistry [survey in Hess 

and Boiteux4)]. Present interest appears to centre on glycolysis 5,6), which consti- 

tutes the next natural step in chemical (and mathematical) complexity. The present 

paper considers oscillations in a cellular system and, more specifically, the so- 

called epigenetie oscillations. Although the experimental evidence for the existence, 

and especially biological relevance of self-sustained epigenetic oscillations, is 

still a subject of debate 7-9), the study of mathematical models of such oscillations 

has been pursued quite intensively I°-13). This paper falls in the scope of the latter 

activity. 

A plausible macroscopic model of genetic regulation by feedback repression, 

evolved from the original formulation of Goodwin l°), is 

where x(t) ~ 0 is a mRNA which codes for the protein y(t) ~ 0, the latter acting as a 

repressor. All reaction constants in (I) are positive, and x,y represent instantaneous 

concentrations. This model is analoguous to the Jacob-Monod system 14,1S). The study 

of (I) did not disclose any self-sustained oscillations 12), except when (i) was re- 

placed by a roughly similar stochastic process 13). Some rather irregular undamped 

oscillations were then found, but these oscillations appear to be due entirely to the 

stochastic elements so introduced. A modification of the non-linear term to the form 

, - '  , > o (2) 

as well as an increase of the differential order from two to three, by introducing an 

intermediate metabolite, also failed to produce a qualitative change in the hoped-for 

directioni2). Periodic solutions were reported in a rather narrow parameter range, 

when m = 0, n = 2 in (2), and the number of intermediate metabolites is increased to 

six or more (differential order increased to eight or more) i6). 

The situation is radically changed, as will be shown, when pure delay is intro- 

duced into (i) without any increase of differential order. Such a modification con- 

stitutes an improvement of the model because it permits us to take into account the 

finite times of transcription, synthesis, and transport (diffusion) between the place 
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of production and effect of x and y. The biological arguments behind an unambiguous 

definition of these times are still a subject of studyiT). Mathematically no loss of 

generality occurs when x, y, and t are normalized. Keeping the same names for the 

normalized variables, the modified version of (i) has two reaction constants and four 

delays: 

i f~= [,~(~-~,~]-'- b~(~-~,~, ~(t)= ~t~-~l - ~ - ~ I .  (3) 

The existence of a constant steady state (static equilibrium) x0 = cy0, Y0 = -½ + 

+ /4 + I/(bc), is unaffected by the delays, but the effect on stahility may become 

strong. For constant delays the variational and characteristic equations of (3) at 

(x0,y0) are 

where ~ = (I + y0) -2. 

In general, (5) admits an infinity of roots s i [eigenvalues of L(T,y)]. 

be a sufficiently smooth function and 

an  i n i t i a l  c o n d i t i o n  a s s u r i n g  t h e  e x i s t e n c e  o f  u n i q u e  s o l u t i o n s  o f  (3) and ( 4 ) .  I t  

i s  known t h a t  i n  g e n e r a l  t h e  e i g e n v a l u e s  s .  a r e  e n u m e r a b l e  and can  be  o r d e r e d  a c c o r d -  
2 

i n g  to  t h e i r  m o d u l i ,  i . e .  so t h a t  I s i + i ]  ~ I s i l .  Suppose  f o r  s i m p l i c i t y  t h a t  a l l  s i 

a r e  n o n - d e g e n e r a t e .  The s o l u t i o n  o f  (4)  and (6) c a n  t h e n  be  w r i t t e n  i n  t h e  fo rm  

~(~)  = Z C g e C. = complex constants (7) 
L = - ~  s 1 

Let O(t) 

where the Ci, i < 0 are so chosen that y(t) is real-valued. When @(t) is sufficiently 

smooth (as assumed), the sequence {C i} will not cause a divergence of the series in 

(7). A sufficient condition of stability of the steady state (x0,Y0) is therefore 

Re s i < 0 for all i, whereas a sufficient condition of instability is Re s i > 0 for one 

i. The case Re s i = 0 for some i and Re s i < 0 for all others is a critical one (in 

the sense of Liapunev). The s i depend continuously on ~i, ..., T4. If a critical 

case exists in the permissible range of delays, a bifurcation of the form 

stable (x0,Y0) + unstable (x0,Y0) + stable periodic solution (8) 

becomes possible. Whether this bifurcation actually occurs depends on the form of 

the non-linearity in (3). The objective of this paper consists in ascertaining the 

conditions of such an occurence. 
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PERIODIC SOLUTIONS ATTRIBUTABLE TO PURE DELAY 

A preliminary step in the study of periodic solutions of (3) is the determina- 

tion of purely imaginary roots s. of (5). Since (5) contains six parameters, it is 
1 

expedient to examine a few special cases before drawing any general conclusions. 

Consider first the case T3 = T4 = 0. The delays Ti and T2 appearing only in the 

combination % = Tl + %2, one of them may be omitted and the other replaced by ~. The 

requirement s = iw, w = real, leads to the condition that the two algebraic equations 

- ~  * b~ + ( I ~ , F ~ ' . ~  = 0 , ( b , ~ ) w  - ( ~ + ~ o ) - ~ & - ~  = 0 (9) 

resulting from (5), should admit at least one real root %,~. Such a root can only 

exist when bey~ > i. This inequality is never satisfied, because (3) implies 

1 = bcy0(l +y0) > bcy~. Constant delays Tz and T2 are therefore not a primary cause 

of periodic solution of (3) via the bifurcation (8), so TI, T2 can be omitted in what 

follows. 

As a second special case consider T~ = 0, T3 = T. The algebraic equations ana- 

loguous to (9) admit a real root ~ = ~0, T = To, 

z ~L~ ~ ~ ± ~ , 

for all b,c. An analysis of the critical case shows, however, that the bifurcation 

(8) does not take place, the equilibrium (x0,y 0) becoming simply unstable when ~ > T0. 

The bifurcation (8) is also absent when the non-linearity in (3) is given by (2), 

m = I, 2, and n = 0, !, 2, ½. Hence %3 = const is also not a primary cause of perio- 

dic solutions of (3), 

The third special case T3 = 0, %~ = T is more favourable. A real root ~ = ~0, 

L = T0 exists for all b,c~ but instead of T0 = ~/(2~0) in (i0), one has 

~. = I--~. m.Wr- t~ L "-~ i ~  ~" - b= - ~ . ~ ) I  modulo ~o w ( I i )  

For example, b = 0.5, e = 0.I yields ~0 = 0.074, ~0 = 33.4. The bifurcation (8) 

occurs for a wide range of b,c, and T ~ %o. Illustrative forms of the resulting pe- 

riodic solutions are shown in Fig. 1 [a) in the phase plane x-y, b) in the phase 

plane i-#, and c) x and y as a function of t]. When ~/~0 - 1 << i, the amplitude of 

these periodic solutions is a rather irregular function of the excess delay • - T0. 

The occurrence of the bifurcation (8) is strongly favoured by the presence of a 

variable delay depending on x,y. 

and 

For example, when T4 = 0, T3 = T, To given by (i0) 

~,o, ,~ > 0 , (12) 

periodic solutions of (3) exist for a wide range of ~o~- Illustrative forms are 

shown in Fig. 2 (the same representation as in Fig. 1 is used). For the same values 
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of b and c the oscillation periods in Fig. 2 are, however, much shorter than those in 

Fig. I. When ~0,6 << T0, the periodic solutions are almost sinusoldal. The bifurca- 

tion (8) occurs also when x 2 in (12) is replaced by y2 or x 2 + y2 In fact, any 

smooth function g(x,y) will do, provided it assures a finite value of max • as x,y 

increase. Terms of an odd degree in the expansion of g(x,y), linear ones included, 

have no effect on the amplitude limitation of the resulting periodic solutions. They 

merely cause some dissymmetry in the form of x(t), y(t). In the context of reaction 

dynamics the presence of a variable delay component, such as g(x,y) in (3), implies a 

transport time between the place of production and effect which depends on the pro= 

duct concentrations. 

In the case of small g(x,y) the amplitude and period of periodic solution of (3) 

can be expressed analytically by means of a Poincar~-type expansion. Consider, for 

example, TI = T 2 = %4 = 0, T 3 = T given by (12), and let p > 0 be a small parameter. 

The periodic solution is sought in the form 

(13) 

where N(T,x,y) is the non-linear part of (3), L(T,y) is given by (4), h. are undeter- 
i 

mined constants, and xi(~), yi(~) undetermined periodic functions of period 2~. The 

substitution of (13) into (3), followed by a series expansion in powers of U, leads 

to the usual linear recursive system 

where the functions f. are unambiguously defined. 
I 

For i = 0 one obtains 

which is simply the eigenfunction of (4) corresponding to the critical eigenvalue 

(the so-called generating solution). The absence of secular terms in (14) yields, 

after some lengthy algebra, 

' (16) 

where gl, g2, g3 are some formally complicated hut numerically small expressions. 

The equations (15) and (16) possess a qualitatively correct dependence on b,c, and T, 

and for small g0/T0, g/T0 they agree quite well with the directly computed periodic 

solutions of (3). For example, when b = 0.5, c = 0.i, 60 = 0.01 To, ~ = ~ 1.34, the 

computed amplitudes of y(t) differ from A 0 by less than 0.1%. 
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When other delays are introduced into (3) together with T3, there is generally 

no qualitative change~ the sole effect being a weak deformation of the periodic solu- 

tions. When both T3 and T4 are non-zero, there exists a small region in parameter 

space where (5) simultaneously admits two critical roots. After the "composite bi- 

furcation" the solution of (3) is still oscillatory, but apparently no longer perio- 

dic. 

CONCLUSION 

When pure delays are introduced into the Goodwin model of the Jacob-Monod mode 

of gene regulation, self-sustained stable periodic oscillations are found to exist in 

a wide parameter range, the parameters characterizing reaction rates, product synthe- 

sis, and transport times. Constant and concentration-dependent delays are both found 

to be primary causes of periodic oscillations. 
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Figure captions 

Fig. i: Periodic oscillations for the case of a constant delay 

a) in the phase plane x-y 

b) in the phase plane i-# 

c) x and y as a function of t. 

Fig. 2: Periodic oscillations for the case of a variable delay 

a) in the phase plane x-y 

b) in the phase plane i-~ 

c) x and y as a function of t. 
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Fig. I Periodic solution of (3), TZ = T2 = T3 = 0, T4 = T. 

X 

~ .  465  

.70 ~ T . If~3 

. 60  . 

\ \ \ \  . ~ . ~ o . z  

.30 t ~" ,33. 5 
To, 2 arl~,~ . ez~ 9 

O0 

. .  0 2  

@ 

i I I I .J 

-£0  -.fO O0 40 .~0 

2 

f.c: 
o 

c/  

T.#3.3 

I ......... I L r I I 

~o ~ ¢2o 



153 

F i g .  2 

.6O 

.50 

.40 

-20 

O0 
~ 0  

OO 

--fO 

-.20 

Periodic solution of (3), TI = T2 = T~ = 0, T~ = TO + ~0 - ~x2(t) 

a j  

i / 
I I I I I 

3.5 ~0 ~'.6 

. 2  O0 . f  

J i J .9' 
5.0 

J l y "  

. 2  

.70 

.60 

;50 

.z/O 

.30 

.20 

.=tO 

0.0, 

~ ~J 

I I I I I I 

Oo ~ 8 ~2 



!54 

Note: The references cited are illustrative, 

completeness or a chronologically proper sequence. 

No effort was made to assure 

i) B.P. Belousov, Sb~ Ref. Radiat. Med. (1958), Moscow (1959), p. 145. 

2) A.M. Zhabotinskii~ Dokl. Akad. Nauk SSSR 157 (1964), p. 392. 

3) M. Herschkowitz-Kaufman, CR Acad. Sci. C. 270 (1970), p. 1049. 

4) B. Hess and A. Boiteux, Annu. Rev. Biochemistry 40 (1971), p. 237. 

5) E.E. Selkov, Eur. J. Biochem. 4 (1968), p. 79. 

6) J. Higgins, R. Frenkel, E. Hulme, A. Lucas and G. Rangazas, "Biological and Bio- 
chemical Oscillators", Academic Press (1973), p° 127. 

7) W.A. Knorre, Biochem. Biophys. Res. Commun. 31 (1968), p. 812. 

8) B.C. Goodwin, Eur. J. Biochem. i0 (1969), p. 515. 

9) W.A. Knorre, "Biological and Biochemical Oscillators", Academic Press (1973), 
p. 425. 

i0) B.C. Goodwin, "Temporal organization in cells", Academic Press (1963). 

ii) B.C. Goodwin, Adv. Enz. Regul. 3 (1965), p~ 425. 

12) J.S. Griffith, J. Theoret. Biol. 20 (1968), p. 202 and 209. 

13) J. Tiwari, A. Fraser and R. Beckman~ J. Theoret. Biol. 39 (1973), p. 679, and 
45 (1974), p. 311. 

14) J. Monod and M. Cohen-Bazire, CR Acad. Sci. 236 (1953), p. 417 and p. 530. 

15) J. Monod and F. Jacob, Cold Spring Harbour Ss~p. Quant. Biol. 26 (1961), p. 389. 

16) P. Rapp, Bio. Systems 5 (1975), No 112. 

17) Correspondence Ninio-Lodish, Nature 255 (29 May 1975), p. 429. 


