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ABSTRACT 

This paper considers a lake in which a pollutant is dumped at a 

rate whose maximum value is constant. We assume that the quantity of 

pollutant eliminated by natural processes is proportional to the total 

amount of pollutant contained into the lake. With this process we asso- 

ciate a cost which is the sum of two terms : the first one represents 

the cost of cleaning up a fraction of the pollutant and the second term 

is a measure of the damage done to the environment. 

We then determine the optimal dumping policy, i.e., the policy 

which minimizes that cost integrated over a fixed period of time by 

solving an optimal control problem 
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I .  I n t r oduc t i on  

We are concerned with the time history of the pollution of a lake 

by a pollutant dumped at a time rate where maximum value is constant. 

Two cases are examined : either the pollutant is non-degradable 

(purely cumulative system), or the pollutant is disappearing exponential- 

ly with time (phenomenon of sedimentation, renewal of lake's water or 

radio-active decay). 

The goal is to compute the cleaning policy such that the discounted 

sum of the costs (cleaning plus damage to the environment) extended over 

a fixed period of time is minimal. That goal is achieved by solving an 

optimal control problem. This is done in the four distinct situations 

obtained by combining constant or linear marginal cost of cleaning up 

with constant or linear marginal cost of damage to the environment. 

We shall find that while in conventional environmental economics 

(static case), the optimal strategy consists in setting a cleaning up 

standard, the optimal strategy in this case amounts to a fixed standard 

in a few instances and to selecting time varying clean up standards in 

most cases. 

2. Statement of the problem 

The sources of pollution are emitting the pollutant at a constant 

t i m e  r a t e  qo" At t i m e  T t h e  f r a c t i o n  q (T)  i s  dumped i n t o  t h e  l a k e  and 

the fraction qo - q(~) is cleaned up. This gives rise to the cleaning 

cost : 

Cqo ~ , C > O, p ~ 1 (1) 

and q(~) is constrained according to : 

0 ~ q ( ~ )  ~ qo (2) 

On the other hand, if Q(T) is the total amount of pollutant con- 

tained into the lake at time T, the cost due to the damage done to the 

environment will be : 

bQ [ Q ( ~ ) ] n  ML--~-~-M J ' b > o, n >, I (3) 

where the quantity QM will be defined later. 
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be : 

The total cost extended over a fixe period of time ~ [o, T] will then 

Cqo[qO - q(T p + bQM~Q(T)]n hj [--~--M] e -at dt (4) 

o 

where a > 0 is the discount factor. 

If we assume that the quantity of pollutant disappearing by a natu- 

ral process (e.g. sedimentation, renewal of lake's water or radio-active 

decay) is proportional to the total amount of pollutant Q(~) contained 

into the lake, Q(T) and q(T) are related by the following ordinary dif- 

ferential equation : 

dQ(T) : -fQ(T) + q(T) (5) 
dT 

where f $ 0 and f : 0 for the purely cumulative system. 

We call social horizon, the inverse 1/a of the discount factor. 

Through the relation : 

I =a I~ e-atdt (6) 

the social horizon can be interpreted as a discounted sum of intervals 

of time : the largest the discount factor, the smallest is the social 

horizon. 

Next, we define the quantity QM of (3) : it is the amount of pol- 

lutant contained into the lake at the social horizon for the purely 

cumulative system when no clean up is performed and when the initial 

amount Q(o) is zero : 

~l/a ] qo 
= qo dT = T (7) 

% o 

We a re  l o o k i n g  f o r  a p o l i c y  q ( T ) ,  ~ E [ o , T ] ,  which  m i n i m i z e s  (4) 

u n d e r  t h e  c o n s t r a i n t s  (2) and ( 5 ) .  

Defining the non dimensionnal variables : 

qo - q Q 
t : aT, u : - - ,  x :- (8) 

qo Qm 
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and the parameters : 

b f (9) 
tf = aT, k = Tc' ~ : 

we obtain the following optimal control problem : 

F~lnd the optimal control u~(t), tE[o,tf] and the corresponding op- 

timal trajectory x~(t), t~[o,t~ which minimizes 

Itf [ kxn(t) + uP(t)]e_td t 10) 

Jo 
with k > O, n ~ i, p ~ i~ under the constraints : 

o 

x(t) : -Zx(t) + 1 - u(t)~ 0 ,< u(t) ~< i, ts[0,tf] ii) 

with ~ ~ O~ starting with initial condition x(O) = x ° ~ O. We ask further 

that the optimal control u~(t), t~[o,tf] belongs to the class of piecewise 

continuous functions. 

Recall that u(t) = I corresponds to no pollution and u(t) : 0 to 

maximum pollution; also, ~ : 0 for a purely cumulative system. 

We shall study the 4 cases corresponding to p and n equal to 1 or 

2, for finite and infinite terminal time. 

3. Techn ique  of  a n a l y s i s  

To solve the problem, we use the maximum principle of Pontryagin 

[ i]. Hence, consider the hamiltonian 

H(t,h~x~u) : ho(kX n + uP)e -t + ~(-~x + 1 - u) (12 

where ~o = -I if tf ~ ~ and ho ~ 0 if tf : ~ [2]. 

The optimal control u~(t) must satisfy the condition 

H(t~h(t),x(t)~u~(t)) % H(t,l(t),x(t)~u) Nus[0,1] (13 

whenever ~(t) satisfy the ordinary differential equation : 

h(t) = - 6H = _h nkxn-l(t)e-t + ~(t) 
~x o 

(14 
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Furthermore, since x(tf) is free, X(tf) must satisfy the transver- 

sality condition : 

k(tf) = 0 (15) 

The problem is thus reduced to the solution of the two points boun- 

dary value problem given by relation (11), (13), (14) and (15!, when tf 

is finite. Indeed, condition (15) does not hold when tf is infinite [2]. 

In this last case, we must integrate the system for arbitrary initial 

condition ~(0) in order to compute the cost and find which ~(0) minimizes 

it : the problem is reduced to parameter optimization. 

4. R e s u l t s  

The solution of the two points boundary value problem (tf finite), 

as well as the solution of the parameter optimization (tf infinite) are 

straightforward, so that the details will not be given here. More details 

can be found in [3]-[ 5]. 

In the sequel, MCD will stand for marginal cost of damage and MCC 

for marginal cost of cleaning up. 

4.1. ~9~!~u!_~_!~_i_!l_9~{_fg~{!~!_~[_i~_i_!l 

For a finite tf we get : 

u~(t) : 0 x~(t) : e-£t(xO 1 1 ' -~) +i" 

if k ~< £ + i or k > £ + i and tf ~< ~ £n k 
k-i-£' 

and 

{ u (t) = i te[0,tl[ 

0 ts [tl,tf] 

U (t) : -it o 
e x 

e-£(t-tl)(e-£tl x o i 1 - ~) + 

t~ [O, tl) 

t [t1,tf] 

where t I : 1 k £+1 (tf -~n k-~) 



320 

t k 
k,~1+l o.. k>1+l  ~ f f < . ~ - I n  k - l - !  

f f  t 

i 

f. 

k > I + l  f f  > ~ In " k - l - I  

1 
T 

f" f f  

I 

I 
I 

I, 

Fig. 1 

t 

4 
f 

L~ " '~ ' ' ,~ '~  I 

X "  

! 

k<  1~1 

¢ 
f u,[_ 
-IV 

t 

k >1+l 

f 

7" 

f 



321 

i k 
if k > ~, + i and tf > ~ ~n 

k- 1------~ 

For tf = ~, we get : 

~( u t) = 0 if k < ~ + i, and u~(t) = i if k > ~ + i. 

When k = ~ + 1, any control is optimal; indeed in that case it is possible 

to integrate the cost by parts and then realize that it depends only 
o 

upon x 

We see that the optimal policy does not depend upon the initial 

level of pollution x ° but depends upon the par#meters k,~ and tf. For 

k > i + ~ and tf sufficiently large but finite, there is a switch from 

u = i to u = 0; that switch disappears when tf becomes infinite. For 

all other cases the optimal policy is constant. 

The situation is described on fig. 1. 

4 . 2 .  ~ ~ _ ~ _ ~ _ ~ _ ! l _ ~ _ ! ! ~ _ ~ J ~ _ ~ _ ~ _ ~ !  

For a finite tf we get : 

-(~+1) (tf-t) 
• ( = k [1 - e ] u t) 

-(~+l)tf 
i f  k . <  2 ( ~ + 1 )  / [i- ~ ] 

"/ [ U t) = 1 

-(~+1) (tf-t) 
k [1 - e 

1 k-2(~+l) 
where t I = tf + ~-~ n k 

-(~+l)t 
if k > 2 ( ~ - + i )  J [ i -  e 

For tf = ~, we get : 

k 
u ( t )  = ~ - - ~ - ~ - ~  = u if k ,< 2(Z + 1) 

t s [ O , t  I ) 

ts [tl,t f ] 

u (t) = 1 if k > 2(~ + 1) 
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Again, the optimal policy does not depend upon the initial level of 

pollution x °, but depends upon the parameters k, £ and tf. The optimal 

policy is constant for an infinite tf but is partly or totally of expo- 

nential type when tf is finite. 

The situation is described on fig. 2. 

4.3. L~9~_~g~_i~_~_9l_~9_9gnfig~_~g_i[_ff_!l 

For a finite tf, there is in the plane (t,x) a locus AB (see fig. 3 

and 4) along which the optimal control will switch from u = 1 to u = 0. 

The equation of that locus is : 

-(2~+l)(tf-t) -(£+l)(tf-t) 
x = ~[(£+1)(2£+1)-2k~-2k[(£+1)e -(2£+1)e ] 

-(tf-t) 
2 k £ ( ~ + l ) [ 1 - e  ] 

That locus has a vertical asymptote given by t = tf and an horizon- 

tal one g i v e n  b y  x = x w i t h  

££+i)(2£+2)-2k 
x = 2k(£+1) 

For tf ÷ ~, the limit of the locus is its horizontal asymptote. 

by : 

There is further, under certain conditions, a singular arc given 

u = 1 £(£+1) x = £+i 
s 2k ' s 2k 

(i) x s ~ i/£ ~ no singular arc. 

For a finite tf, if we define ~ as the intersection of the locus 

AB and the x axis, we get : 

u (t) : 0 

u ( t )  : 

if x° ~ ~, and 

ts[0,t 1) if x ° > 

ts [tl,tf] 

where (tl,x(tl)) is a point of the locus AB. 

The results are the same for tf = ~ provided we replace ~ by ~ and 
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the curve AB by its horizontal asymptote x = x. 

(ii) x s < 1/£ ----} there is a singular arc. 

For a finite tf, we get : 

u*(t) = 0 t ¢  [ O , t  1 ) 

u s t~[tl~t 2 ) 

0 t¢ [t2,tf] 

1 ~Xs-i 
where t I = - ~ ~n - -  

~x°-i 
and the horizontal x . 

S 

if x ° # x 
S 

and t 2 is at the intersection of the locus AB 

u~(t) = 1 t¢ [O,t 1 ) 

U s te [tl,t 2 ) 

0 ts It 2 ,tf] 

o £t2 
if x < x < X e 

S S 

u (t) = 1 ta[0,t 1) 

0 t~ [tl,tf] 

gt2 o 
if x e $ x 

S 

where (tl,x(tl)) is a point on the locus AB. 

For tf : ~, we get : 

u~(t) = I 0 tE[0,t 1) if x ° 
X 

[ u s t % t I s 

~x -1 
1 Zn s where t I : - 

~x°-i 

u t) : I t¢[0,t I ) 

u s t >~ t 1 

X 
_ 1 ~ n  _ ~ s .  

w h e r e  t I - - ~ Xo 

o 
if x < x 

S 

We see that in this case, the optimal control depends upon both the 

initial level of pollution and the parameters of the problem. 
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4.4. ~ t ~ _ ~ _ L ~ _ z _ ~ Z _ ~ n ~ _ ! ~ _ ~ _ £ ~ _ z _ ~  

For a finite tf, there is in the plane (t~x) a locus AB (see fig. 5) 

along which the optimal control will change from the boundary value 

u(t) = 1 to values in the interior of the interval [0,1]. The equation 

of that locus is : 
sl(tf-t) s2(tf-t) 

k(Sl-S2)-£(£+l)[s2e -sle ] £+1 

x : s (tf-t) s2(tf-t) + 
kh[e 1 -e ] 

where h = £(£+1) + k, s I l+h~ _ 1-71~1 
= 2 ' s2 2 

That locus has a vertical asymptote given by t = tf and an horizontal 

one given by x = ~ with : 

= £+lkh (h - £s 2) 

For tf ÷ ~, the limit of the locus is its horizontal asymptote. 

For a finite tf, if we define ~ as the intersection of the locus 

AB and the x axis, we get : 

k ka I slt ka£ s2t o - 
u (t) = ~ + ~ e  + ~ e  if x ~ 

s2t f 
h- [hx°-  (£+1)] (£+s2)e 

slt f h[(£+sl)e -(£+s2)e s2tf]  

slt f h-[hx°-(~+l)](~+sl)e 
a 2 = sltf s2tf] 

h[(£+sl)e -(£+s2)e 

where a I = 

u t) = 1 te[0'tl) o 

if x 
£+1 sl(t-tl) s2(t-tl) 

+ ale + a2e t~[ti,tf~ 

>~ 

£+l+Sl(£+s2)x(t 1) £+l+s2(£+Sl)X(t 1) 
where a I = a 2 = 

Sl(Sl-S2) , s2(sl-s2) 

and (tl,x(tl)) is a point of the locus AB. 

For tf = ~, we get : 



328 

x a , 

' B 

4 # 
t 

r 
~ x 0 

u~ . . . . . . . . . . . . . . . .  

.-o~ x 

1, u_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ t f  i t 

2' ........................................ 

xo>xao  
u~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

xo<~  t 
m 

Fig. 5 



329 

k u~(t) = ~ [ i  ÷ 
hx°-(~+l) eS2 t] 

~÷s I 
if x°4 

u~(t) : 1 

k k[~+l+s2(~+Sl)~ 

+ s2(sl-S'2)(Z+Sl) 

s2(t-~ 1 ) 
e 

if x ° > ~, and t I is defined by : t I = - ~n -~ 
x O 

te [0,t 1 ) 

t >~t I 

All the above results have been written for ~ > 0, but the results 

for the limit case Z = 0 (purely cumulative system) can be everywhere 

obtained by taking the limit of the above results when ~ ÷ 0. For more 

details, the interested reader is refered to [3]. 

5. C o n c l u s i o n s  

When the MCD is constant (n = 1), the optimal policy does not de- 

pend upon the initial level of pollution but depends only upon the para- 

meters of the problem in the following way : for a given initial level 

of pollution, a large value of the ratio b/c (cost of damage/cost of 

cleaning up) leads to a more severe policy (more cleaning up) while 

large values of either the discount factor (a) or the disappearing coef- 

ficient (f) lead to a less severe policy. 

Moreover, in that case (n = 1), the optimal policy for an infinite 

tf is always constant. This last fact can be checked a priori. Indeed, 

by performing an integration by parts on the cost of damage, it is easy 

to see that the total cost takes on the form : 

k Ix(0)+1] + [uP(t)-~-~u(t J = ~+i 

Hence we shall find the optimal control by solving : 

min ~u p k U] 
Z+I 

0~<u~l 

So the case MCD constant leads, like for the static case, to setting 

a cleaning up standard. 
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When the MCD is linear (n : 2), the optimal policy is influenced 

by both the initial level of pollution and the parameters of the problem. 

In this case the optimal strategy varies with time but monotonically. 

This study gives quantitative results : if the parameters of the 

problem can be known, then we just have to apply some formula to find 

what the optimal strategy should be. An important factor is the discount 

coefficient a. It is probably the most uncertain parameter in the pro- 

blem because it is not a physical parameter. Rather it has to be chosen 

according to what value we give to the future. The formulae we gave 

allow us to measure the impact of that parameter on the optimal strategy. 

An other parameter we have to decide upon a priori, is the terminal 

time tf. We can see from the results that given the same initial level 

of pollution~ the optimal policy for finite tf is in all cases at least 

as polluting and in most cases more polluting than the optimal policy 

for infinite tf. 

Finally we can say that the results do not contain any revolutio- 

nary idea : rather they are in accordance with common sense. 
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