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Let X and Y be the sets of strategies of two antagonistic players, and
for t ¢ [0,T] <R, T > O,

E(x,y,t) ¢+ Xxy¥ ~» R
may be a payoff function in the parametric two-person zero-sum game

G, = (X, Y, £(x,y,t)) , te [0,T],

t
where it is to maximize over X and to minimize over Y.

Definition 1: If v(t) = val(G.) is the value of G, t ¢ [0,T], then the

marginal value of the family of games {Gt}ts[o T] in the point t =20
’

is defined as

vi(0) := 1im LELZ O

L0
We consider conditions - different from that given for instance in [3],
[SJ - for the existence of the marginal value, which enable us to derive
from the marginal value theorem a method for solving a wide class of
constrained games,
Let X, Y be not empty closed convex subsets of real topological linear

spaces,

Definition 2: A function g:Xx¥Y »+ R is ‘sup-inf compact', if the level
sets {x e X | glx,y) 2 al, vye ¥, aeR, and {y ¢ Y | gi{x,¥y) € b}, x ¢ X,
b ¢ R, are compact.

Let X(t}), Y(t) denote the sets of optimal strategies in G., t ¢ fo,T].

Theorem 1: {(marginal value theorem)

If {i) f{x,y,t) is concave (convex) in x (in y) for t ¢ [O,Tﬂ,
(ii) f£(x,y,0) is upper (lower) semicontinuous in x {in vy},
(iii) f(x,y,0) has a saddle point on Xx Y,

(iv) £'(x,y,0) := Wlt=+0

f(X,y,t)"f(X.y,O)
t

exists, and

0(1,x) < - £'(x,y,0) s 0(1,y) , for t ¢ (O,T],

where 0(1,x) is independent of v and 0(1,x) + O for t » +0 and



fixed x ¢ X, 0{1,y) is independent of % and O(1,y) » O for
t + +0 and fixed y £ Y,
{v) E'(x,y,0) and £{x,y,t) for t ¢ (0,T] are sup-inf compact
on X xY,
then v;(O} exists and

(1) vy (0) = max min  £'{x,y,0)
xeX (0) yeY(0)

min max £ ({x,y,0) .
YEY (0) xeX(0)

Proof:

Because of (i}, (iil) and {v) the sets X(t), Y(t) are not empty and there
exist the values v(t), for t ¢ [0,T]. Let X, € X(t), y, e Y(t),

t € [0,T], then we have

(2) E(xy¥ert) = T(xg,y,,0) ¢ vi{t) - v(0)
S f{thyort) - f(xt;YO;O) .
For t ¢ {O,T] we get from (iv)
(3) A A ote,x) + e ix,y,0) € £(x,y,t) - £(x,y,0)
xeX ve¥
£ 0(t,y) + t-£'(x,y,0) ,
and with {2)

(4) te £ (x .y, .0 + Olt,x ) € £(x ,ye,t) - £(x,,v,,0)

n

vit) - v{0)}

Eg

f(xtryolt) - f(xt,yo,O)

n

t'f‘(xtryoro) + O(tyyo) .

From (v} we get

(5} £'{x,v,0) » min £'(x,y,0) =: £'{x,y(x),0) > ~-=
veY
and
£'(%x,y,0) & max £'(x,y,0) =: £ {x(y);¥,0) < 4= ,
xeX

such that with (4):
{6) tvf‘(xg,y(xo},o) + O(t,xo) £ vty - v{O}

§ B E{xly ),y g,0) + OlE,y)
which means that

(7) lim v(t) = v(0) .
t++0

Dividing in (4) by t,{5) yields



(8) £'(Xg,Yr0) + 0(1,xo) < f'(X(yo),yo.O) + 0(1,y0) , and
B (% ,¥ 5,00 + 000,y ) 2 f‘(xoyy(xo),O) +001,x,)

which by (v} means, that the x are elements of compact sets inde-

tr Yt
pendent of t. Therefore {Xt}t++0 » vy }i,4o have accumulation points

-~

% e X, § € Y and convergent subsequences {xg.} ocix ) o

{ytn}naN C{yt}t++0 , such that

lim x, =% ,
110 n
lim y, g
n+ee N
By (ii) we get for all x ¢ X
(9) f(x,9,0) £ lim £(x,yt ,0) & 1lim £(x,y¢ ,0) ,
t 510 n £,++0 n
n n
and with (iv) and (5)
(10} vit,) - f(XthnrO) > £0,ye ) - f(x,ytn,O)

;tncf‘(x,y(x) ;O) + O(tnrx) ’

(11) 1lim (V(tn) - f(X,Yt 0)) 20,
t_++0 n
n

and by (7)

(12) lim  £(x,y, ,0) < v(0) .
ty>+0 n

Because of (9) this gives
(13) £f{x,9,0) € v{0) for all x £ X ,

i.e. ¥ is an optimal strategy in G,. Analogously you show £ e X(O).
From inequality (4) it follows

vit) - v(0)

(14) £'(xg,y,,0) + 0(1,x) < -

€ £1{x ,¥,,0) + 0(1,yo) ’

for all x_ e X(0), y € Y(0) ,
such that
(15) sup  £'(x,y,,0) + 0(1,x)¢ LEL = V()
xeX (0) t
< inf f'(xt,y,O) + 0(1,y) .
YEY (O)
Since y *+ £'(x,y,0}) is lower semicontinuocus, also y » sup f'(x,y,0)
xeX (0}
is lower semicontinuous. Similarly, x + inf £'(x,y,0) is upper semi-
continuous. ye¥ (0)



Let P and Q be the sets of accumulation points of
, respectively, and for p ¢ P, g ¢ 0

Weleso

{x

t(p) e (pra+o € Feleaso v

{x tipo and

{yt(q)}t(q)++o C {yt}t»+0

may be convergent subseguences such that

t{p}ifo ey TP t(q}iio e@ T
From {15) we get now
(16) inf sup £'{x,q9,0)
gqeQ xeX(0)
£ inf lim sup f'(x,yt(q),o)

qeQ t{(gq)++0 xeX(0)

€ lim  sup  £'(x,y.,0)
t++0 xeX{0)
< lim vit) - v(0)
o) t
< Iim vit) - v{0}
t>+0 t
< lim inf f'(xt,y,o)
t+4+0 yeY (0)
& sup  lim inf f‘(xt(p),y,o)

peP t{p)++0 yeY{(O)

¢ sup inf £'(p,y.0) .
peP ye¥ (0)
By (13} we have
(17) PcCcX(0), Q<cY{(O) ,
and (16) yields
(18) inf sup £'({x,y,0)
ve¥(0) xeX (0}
£ inf sup £'(x,vy,0)
yeQ xeX (0}
< 1lim vi{t) - v{0)
£+ +0 t
< Tim v(t) - v(0)
£++0 t
£ sup inf £'(x,y,0)
xeP yeY(0)
& sup inf £1{x,y,0) .

xeX(0) ye¥Y (0)



On the other hand there holds the sup-inf inequality

(19) sup inf £f'(x,y,0) ¢ inf sup £'{x,y,0) .
xeX{0) yeY¥(0) ye¥ (0) xeX(0)

Thus v (0) = lim XiEl_i_Xigl exists and by the sup-inf compactness
©*+0

of £'(x,y,0) we get
v;(G) = max min £ {x,y,0)

xeX(0) yeY(0)

[

min max £ {x,y,0) .
yeY{0) xeX(0)

Theorem 2:
Let x. € X(t), y(t) e ¥(t), t ¢ (0,T].

For any accumulation points %, § of {xt} , respectively,

t++0 ¢+ Weleaso
it holds then under the assumptions of Theorem 1:

(20) £4(%,9,0) = v;(O) .

Proof:

Let xtn + & , for tn + +0, then we get from (15) with the results of
Theorem 1:

==l

xeX (0) tn++0 x-+X (0)

(21) sup £'(x,9,0) ¢ lim sup f‘(x,ytn,O)

€ v {0) = val{x(0),¥(0),£f' (x,y,0)) .

-~ ~

Since ¥ € Y(0) that means, ¥ is an optimal strategy in the game
(x(0),¥(0),£'(x,y,0)). Similarly, % is an optimal strategy in this game.

Now we come to an application of the results above to constrained games.

Let U, V be normed real vector spaces, CcU, KecV not empty closed convex

cones, g: X » U , h: Y » V continuous and concave relative tb the cones,

and ¢: X x¥Y » R be upper-lower semicontinuous, concave-convex and sup~
‘-inf compact.,

We consider the constrained game

(22) (CG) := ({xex | g(x)ec}, {yeY | niy)eR}, ¢(x,y)) .
With

d(g(x),C) := inf {lglx) - cf ,
ceC

d{h(y),X) := inf Jh{y) - k|| ,
keK

we define for t > O



(23) fix,y,t) = d(h(y),K) - d(g(x),C) + td(x,y) .

A solution method for (CG) is given by the following

Theorem 3:

Let {tn}ndN be a positive real nullsequence and (CG) may have admissable
strategies.

Then (i) the unconstrained games (X,Y,f(x,y,tn)) have optimal strategies
xtn, ytn B
{ii} {xtn}ngN' {ytn}naN have accumulation points %, § and &, ¥
are optimal strategies for (CG).

(113) Lim {o(xe ove ) + T (d(h(y),K) - &(g(x),0)} = 8(,9) = val(ce)
n

Ti->oo

Proof:

First we show that d(g(x),C) is continuous and convex in x.

d(.,C) is continuous on U, g{.) is continuous on X, thus d{g{.},C) is
continucus on X. g is concave on C, i.e, for Xq0%,y € X and O &€ o £ 1

it holds g(ax1 + (1-a)x2) - ag(x1) - (1-a)g(x2) € C. Then for all ¢ £ C:
g(ax1 + (1-a)x,) - aglxy) - (1-w)g x,) + c € C, which gives
Jlag(x1) + (1-a)glx,) - cll
= Jglox, + (1-0)x,) - (glox, + (1-0)x,) -
- alglxy) = (1ma)g(x,) + o) |

2 inf ﬂg(ax1 + (1-a)x,) - aj .
deC

Theorem 3.4 in [6] states, that d(.,C) is convex. Thus we have
d(gloxy + (1-0a)x,),C) s dlag(xy) + (1-a)g(x,),C)
< wdlglx),0) + (1-0)dlglx,),C).

It is £(x,v,0) = d(h(y),K) -~ d(g(x),C). We show X(0) = {x e X I
gly) eCc}l, Y(0) = {y e Y | h(y) € K}. Let x_ € X(0), y, € ¥(0), then
for all x ¢ X, v ¢ ¥ it is valid

d(h(y,) X)) - dlg(x),C) < d(hly),K) - d(g(x,),C)
$ d(h(y),K) - dlg(x,),C) .

It follows d{h(yo),K) < d{h{y),K) for all y e Y.

Since (CG) should have admissible strategies, there exists a y €Y
with h(y) ¢ K. So d(h(yo),K) £0, i.e. h(yo) e K. Analogously it can be
shown that g(xo) ¢ C, under the assumption that there exists an x € X
with g(x) £ C. Now let & € X, ¥ € Y such that g(X) e C, h(}) € K. Then
d{g(¥),C) = d(h(§),K) = 0 and for all x ¢ X, ¥y € Y we have



-d(g{x),C) £ 0 ¢ dlgly),x) ,

i.e. ® ¢ X(0), ? e Y{0). Further we have v(0) = O,

f{x,y,t) is sup-inf compact for t > O, because f£'(x,y,0) = ¢(x,y)

has this property and f(x,vy,0) is bounded from above {(below} in x {in y).
From this fact part (i} of the theorem follows.

We have shown that the assumptions of theorem 1. are fulfilled, such that
(ii) and (iii) follow from the theorems 1. and 2., respectively from the
proofs.

To solve the problem of finding optimal strategies of the games
(X,Y,£(x,v,t)), you often have to take algorithms which need for con-
vergency the function £(.,.,t) to be strictly concave-convex, as for
example the successive approximation method given in [1]. If f does not
possess this property, we can do the following:

Let Y (x,y) be a strictly concave-convex upper-lower semicontinuous real
valued function on X xY, whic¢h is bounded from above (below) in x (in y)
by some a(y) € R (b(x) € R). Then we define

Flx,y,t) := £(x,y,t) + t2y(x,y) .

If the conditions of theorem 1, are fulfilled for £, then also for F.
We show this for the condition (iv):

fix,v,t) - £{x,y,0)
t

then we define OF{1,x) 1= Of(1,x) + teb(x) , OF(1,y) g Of(1,y) + tealy)

and get

If 0:(1,x) ¢

- £'(x,y,0) Of(1,y) , £t > 0,

f(x,y,t} - £(x,vy,0)
t

Op(1,x) < +teplx,y) - £1(x,y,0) ¢ O(1,¥).

Since F({x,y,0) = f(x,y,0}, F'(x,y,0) = £'(x,y,0) this states 1.(iv)
for F. Furthermore, let V(t} := val(X,Y,F(x,y,t)), then V(0) = v(0)
and V;(O) = v}{0}. Thus in order to compute v;(o), instead of
(X,¥,f(x,y,t)) we can solve the games (X,Y,F{x,vy,t)), which have unique
solutions (for t > 0O).

Under certain conditions it can be shown that the accumulation points

of the corresponding optimal strategies for t -+ +0 are uniquely deter-
mined, such that the whole sequences are converging to optimal strategies
of the game (X(0), Y(0), £'(x,y,0)).

This kind of regularization is particularly interesting for the above
given method for solving constrained games.
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