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ABSTRACT 

Recently an effort was made to design nuclear reactor systems 

via state-variable feedback techniques. On the other hand, a great 

amount of research has been concentrated on the muitivariable state 

feedback control methodology, for its own, and a variety of useful 

results have been derived. The purpose of the paper is to apply a ge- 

neral multivariable state feedback control technique to nuclear reactor 

systems (e.go multiregion reactors, coupled core reactors, etc.). Two 

fundamental design tasks are considered, namely, noninteraction and 

realization of desired transfer functions. This technique requires 

the system under control to be given in its phase canonical form and 

provides explicit expressions for the feedback control law matrices 

required. Two nuclear reactor examples are considered and fully work- 

ed out. 

I. INTRODUCTION 

The application of the state variable feedback control technique 

to nuclear reactor systems seems to be a promising approach with many 

advantages over the classical and the optimal control techniques pro- 

viding a kind of link between them. Some studies concerning the appli- 

cation of this technique to nuclear reactors are involved in It J-L7 ~ 

In general, the objective of this technique is to realize exactly given 

dynamics by feeding back some or all of the state variables through 

appropriate gains. The desired system dynamics is usually described 

by a given transfer function which is completely specified by its zero- 

es, poles and d.c. gains. 

The work described in [I]-[3] is constrained to single-input 

single-output reactor systems and derives the solution (ii.e. the feed- 

back gains) by a direct comparison of the transfer function of the 

closed-loop system with that of the desired model, and an equation of 

the equal-power terms. The full theory of this method may be found in 

4~. These results were extended in [5] to reactor systems having m 

inputs and m outputs through Gilbert's technique of canonical decoupling 
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[ • .  A similar technique is described in L~ . A further extension of 
F~ 

this method to the case where additional compensation is required to 

meet the desired criteria was made in bJ. 

From the point of view of pure control theory this problem has 

received independent attention and a substantial amount of results are 

already available ~J- b9J. Particular attention was given to two sub- 

problems of the general state variable feedback control design problem, 

namely the decoupling problem ~J-b0~, and the eigenvalue control pro- 

blem ~1]. 

The purpose of the present paper is to investigate the applicabi- 

lity to multi-input multi-output nuclear reaotors of a recent state 

variable feedback control technique ~ , b~ , [2~ which is based on 

the assumption that the system under control is given in, or transform- 

ed into, its phase canonical form. The main problem is that of non- 

interacting system design, and the method provides simultaneous input- 

output and state variable decoupling. The pole and d.c. gain assign- 

ment can be accomplished simultaneously with the decoupling, but to 

control the zeros additional compensators are used as in L7J. Decoup~ 

ling (noninteraction) in an actual coupled-core reactor is obtained by 

negating the neutron coupling between the cores. For comparison pur- 

poses the nuclear reactor examples studied in ~J-bJ are considered 

and completely worked out by the present technique. 

2. STATE EQUATIONS OF MULTIPLE-CORE REACTORS 

A coupled-core reactor is a critical reactor composed by two or 

more independently subcritical cores. The coupling effect is the re- 

sult of mutual exchange of leakage neutrons between cores. In such 

reactors in order to apply successful control to the power levels of 

the cores independently, the effects of the neutron coupling must he 

balanced, i.e. a decoupled or noninteracting system is to be designed. 

Consider a multiple-core reactor in which each core is coupled 

only with the neighbouring cores. Assume for simplicity one delayed 

neutron group for each core, and small neutron travel time between 

cores. Then, including the negative temperature feedback, the state 

equations (linearized) for a 3-core system are* 

*Details of derivation together with an introduction of nuclear 
reactors in state space are given in [2]. 
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dx I Dl1+151 D12 ~In~ n~ 
dt - r ! Xl + ~2 x2 + ~1x4 TI x7 + %~i x10 

dx2 D21 2D22+~2 D23 ~2n~ n~ 
dt - T1 xl ~2 x2 + T--~ x3 + 12x5 --rr~ X8 + q X11 

dx 3 D32 D33+I~ 3 ~3n~ n~ 
dt - T 2 x2 r3 x3 +13x6 r3 x9 + q x12 

dx 4 B I dx 7 dx10 
dt - rl x1-AIx4' dt - klXl-mlx7' dt - x13 

dx5 B2 dx8 dx11 
dt - r 2 x2-12x5' dt - k2x2-m2x8' dt - x14 (i) 

dx6 ~3 dx9 dx12 
dt - r 3 x3 - i3x6 ' dt - k3x3-m3x9 ' dt -x15 

dXl 3 dXl 4 dXl 5 
dt - -81x13+~lUl ~ dt - -@2x14+~2u2 ~ dt - -@3x15+~3u3 

Yl = x1~ Y2 = x2r Y3 = x3 

Here Xl,X2,X 3 are power levels in cores 1,2,3 correspondingly, x4,x5,x 6 

are concentrations of delayed neutrons x7sxS,x 9 are control rod rates, 

and ul,u2,u 3 are the control inputs for cores 1,2,3 respectively. The 

parameters involved have the following interpretation with i=1,2,3. 

T 
i prompt neutron generation time in core i 

8i delayed neutron fraction in core i 

n9 steady state neutron power level in core i 1 
D.. neutron coupling coefficient from core j to core i 
13 

I i decay constant of the delayed neutron emitter in core i 

~i reactivity-temperature proportionality constant of core i 

k i temperature-power proportionality constant of core i 

m i heat removal coefficient of core i 

@i inverse time constant of rod controller in core i 

In this model the control rods are assumed to he driven by elec- 

tric motors and hence each error signal produces a proportional motor 

speed. Since the reactivity is proportional to control rod position 

(not to control rod speed) one must integrate the output of the control 

rod driver to obtain the reactivity. A signal flow graph of this model 

indicating the coupling among the cores as well as the control channels 
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is given in Fig. I. 
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Fig. I. Signal flow graph of the 3-coupled-core reactor 

In matrix form this 3-core reactor system (as any multiple core 

reactor system) can be written as: 

dx(t) 
dt _ Ax(t)+Bu(t), y(t) = Cx(t) (2) 

where x(t) = Ix I,x2, .... x15] T is the state vector, u(t)= [u] ~u2,u3] T 

is the input vector, y(t) = [yl,Y2,Y3] T is the output vector, and the 

matrices A,B,C have obvious definitions. It is the state-space model 

(2) which will be utilized in the present paper. 

3. THE STATE-VARIABLE FEEDBACK CONTROL PROBLEM 

3.1 Statement of the ' problem 

In general u(t) is an m-dimensional and y(t) is a p-dimensional 

vector. Introducing the linear state feedback control law 

u(t) _-Kx(t) + Nw(t) (3) 

where w(t) is a new input vector of dimensionality m', and KiN are 

matrix-valued gains of appropriate dimensions~ yields the closed-loop 

system 
dXc/dt = (A+BK) x c + BNw, y = Cx c (4) 
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Here it is assumed that p=m'=m. The problem under consideration is to 

calculate the numerical values of the gain matrices K and N which cause 

the system to be input-output and state variable decoupled, and to pos- 

sess required dynamic performance. 

Mathematically, input-output decoupling (or noninteraction) impl- 

ies that the input-output transfer matrix is diagonal, whereas state 

variable decoupling implies that in state space the system is composed 

by m noninteracting subsystems each one having one input-output pair. 

The transfer matrix of the closed-loop system (4) is equal to 

Hc(S ) = C(sI-A-BK)-IBN. It is well known that Hc(S) is invariant under 

a nonsingular similarity transformation x' = Qx. In fact~ the transfor~ 
c I 

med closed-loop system is dx~/dt : Q(A+BK) Q-IxI+QBNw, y= CQ" xl and has 

the transfer matrix H'c(S):CQ-I ~sI-Q(A+BK)Q- J-IQBN = Hc[S). It is 

assumed here that the system (2) is transformed in its input-Luenberger 

canonical form prior to the application of the state feedback control 

canonical form the matrices A,B have the form A : L JJ IAi~ law. In this 

B : B i , where the blocks Aij and B i are 

~-~i - I 

i i  

: i-~ .... ~7--a : - .... 
A* * Aii L~ii .. ~ii J L ~i j 

S. _-: 
1 

fm.~ 

..... .... ] 
~1...0j - 

ith position (5) 

AiJ : ~ °i J : ~- 

and the matrix C is not required to have any special form. 

By using a new similarity transformation Xc=M~ to the closed-loop 

system (4) yields the system 

d~ : A~ + Bw, y:C~ (6) 

where 

i= M -I (A+B~I M, ~ = M-IBN, C = CM (7) 

Clearly, a Luenberger canonical system with matrices A = diag[A I .... , 

Am] B T [B~ BT], C [C I ,Cm], where oi are defined in ~6] 
' - ' ' ' ' '  m = '''" 
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and 

. : | .... u ..... | Oi- I , B i : , : (8) 

_ / 
ith position 0 

is input-output decoupled and consists of m decoupled (noninteracting) 

single input single-output subsystems. 

Hence, the combined input-output and state variable decoupling 

problem under consideration here is reduced to that of selecting K,N, 

and M so as to satisfy the conditions in (7), with A,B,C having the 

form (8). The control of the system poles is accomplished by suitably 

choosing the parameters ~ij' j=1,2, .... oi, i=1,2,...,m, whereas the d.c. 

gains are controlled by suitably selecting CSk" Of course it must be 

noted here that not all of tjk are free to be selected arbitrarily, 

since they are constrained by the zeros of the system under control, 

i.e. by the structure of system (2). 

3.2 Solution of the problem 

The pure input-output decoupling problem has been studied by Falb 

and Wolovich [8J, and the canonical decoupling problem has been consi- 

dered by Gilbert [9j. They show that the necessary and sufficient con- 

dition for a matrix pair {K,N} to exist such that the state feedback 

control (3) yields an input-output decoupled closed-loop system is the 

nonsingularity of the matrix 

- d I eta B ] 
0 = CmA~ ~ (9) 

where the indexes d i(i=1,2 .... ,m) are defined as 

//sin{ J:ciAJB ~ 0,j : 0,1 ..... n-l} 

di =~n I, " (.10) 
- if c. A3B= 0 for all j 

1 

The present method is based on the fact that the decoupleability of 

system (2) by the control law (3), as well as the indexes d i are inva- 

riant under a non-singular similarity transformation M. We shall con- 

sider two cases: (i) the system (2) has no inherent coupling in the 

sense of Gilbert 9 i.e. IDI~0, and (ii) the system has weak inherent 

coupling, i.e. ]DI7 ~ 0 but IH(s)I~ & 0. 
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No inherent couplin_gg 

Decompose the matrix M in blocks Mij ~ M~,13 and M**ij, equidimensio- 

A~. and Ag~ in the Luenberger nal with the corresponding blocks Aij 13 , 13 

form of (2) and write M = ~4ij ] and MT E ~ IM**T~ lj : M [ ij J" Introducing 

the matrices 

M, 
-- ' -- -- -L 13 -- -k ij -- -- L l]J 

the first two conditions in (7) can be grouped as 

A*+ B*K : M*iM -I A**+ B**K M**iM -I B*N=M*B S**N-M**g (11) 

Clearly, B*e=I (unity matrix), and hence the two relations in (11) 

involving B** give 

= E**~-I-A **, N = g**fi (12) 

Taking into account the fact that B*=0 the other two relations in (11) 

yield 

A*M M*~, M B=0 (13) 

The third condition (7) together with conditions (13) constitute the 

set of equations which determine M. If this set of linear algebraic 

equations has a solution matrix M with IMI60 then (12) provides the 

desired state feedback matrix pair required. 

Weak inherent coupling 

In this case prior to applying the feedback law (3) with K,N 

being given by (12) ~ one uses a i-dimensional precompensator of the 

type 

d~/dt = X~+g~ with u : F1u+F2x (14) 

and obtains an overall precompensated system with state vector x and 

matrices A,B,C, where 

Ix] o ; =  Z ?= :o 

Of course care must be taken here to transform the matrices A and B in 

the Luenberger canonical form. Usually, one starts by using a l- 

dimensional precompensator [i.e. with ~=,I). If there still exists 

weak inherent coupling one uses a 2-dimensional precompensator, and so 

on until the resulting system has no inherent coupling. 
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3.3 Control of zeros 

The state variable feedback is adequate if one desires, simulta- 

neously with the decoupling, to control the poles and the d.c. gains 

only. To control one or more zeros one must use suitable precompensa- 

torswhich implies that the state dimensionality of the overall system 

is increased. However, when introducing precompensators prior to de- 

coupling special care is required, since even if the uncompensated sys- 

tem has not inherent coupling, the compensated one may have. A first 

method of overcoming this difficulty was proposed in ~J and is summa- 

rized in the following theorem. "Given a system of the type (2) having 

no inherent coupling, the series compensator x = Ax+Bu, u=x+Eu, where 

A,B and E are diagonal matrices of dimensions mxm and B is nonsingular, 

does not introduce inherent coupling if ~i) E=0 or (ii) E is nonsingu- 

lar". This theorem implies that to preserve decoupling when adding 

precompensators every compensator must involve both a pole and a zero 

or only a pole. The drawback of this method is that there is the possi- 

bility of loosing zeros. This is avoided if the system is decoupled 

prior to the introduction of the precompensators, since the addition of 

series precompensators to a system that is already decoupled does not 

influence decoupling. 

The second method of introducing precompensators is based on exact- 

ly this observation and was also proposed in ~] in the form of the 

following theorem. "Suppose that the kth decoupled subsystem of a sys- 

tem decoupled by state feedback, or by other means, has z k zeros and 
c n k poles, whereas the kth precompensator has z k zeros and n~ poles. 

nk+n ~ poles of each augmented subsystem can be controlled by Then the 

state feedback, but the Zk+Z ~ zeros are not affected by state feedback". 

In fact, by reordering the state variables, the kth precompensated sub- 

system has the transfer function Fk(S) F~(s),_ where Fk(S) is the trans- 

fer function of the kth subsystem of the original decoupled uncompensat- 

ed system, and F~(s) is the transfer function of the kth cascade compen- 

sator. Now, from single-input single-output state variable control 

theory it is known that all n +n~ poles are controlled, but the zeros k K 
c 

are fixed to be the zeros of Fk(S)Fk(S ) . Thus, combining the results 

of section 3.2 with the second method outlined here, the following con- 

trol design procedure is proposed. 

Step I: Transform the system under control into its Luenberger input 

canonical form. 

Step 2: Specify the Luenberger canonical decoupled model by using the 

desired poles and d.c~ gains. 
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Compute the required state feedback pair {K,N} and the simi- 

larity transformation M. 

Introduce cascade precompensators to the decoupled single 

output subsystems in order to control the zeros as desired. 

4. APPLICATION EXAMPLES 

Example I 

As a first example consider a special case of the coupled-core 

reactor model (I) r namely one with identically-coupled identical cores, 

in which the delayed neutrons and the control rod dynamics are neglect- 

ed. By a convenient relabelling of the state variables the state equa- 

tions of this system take the form 

2D ~no D D no 
~I: - -~ xl- 7 x2 + ~ x3+ ~ x5 + --T u1' ~2 : kxl-mx2 

X D xl 2D x~ 0un° D n . . . . .  x4 + _ x5 + _oo u2' ~4=kx3_mx4 (15) 
3 - T T T x r 

D D 2D -ano no 
x5 : ~ xl + --~ x3- ~- x5 T x6 + --r u3, x6:kx5-mx6 

where DrT, m~k, and n o are the common neutron coupling coefficient, 

effective generation time, heat removal coefficient, power-temperature 

proportionality constant, and steady state power level, respectively. 

Here xl,x3,x 5 are the neutron power levels, and x2,x4,x 6 the tempera- 

tures in cores 1,2,3 respectively. The parameter values are D=0.1t 

T=0.1 sec, k=10-5r no=105W, ~=10-3/deg and m=10-2sec -I. 
Hence, the state equations in (115) take the form 

Xl = 2x1-103x2 + x3 + x5 + I06ui ' ~2 = 10-5x1-10-2x2 

~3 = Xl-2X3 - 103X4 + x5 + t06u2 ' x4 =: 10-5x3 -' 10-2x4 

X5 : Xl + x3 -2x5 -I03X6 + i06U3 ' ~6 = I0-5x5 - I0-2x6 

The measured outputs are Y1=xl,Y2=x3and Y3:X5. These equations can be 

written in the form (2) with matrices 



259 

A - o 

- -2  _ 1 0 3  I i I 0 
I 

10 .5 _I0 -2 ' t 0 0 
. . . . . . . .  . . . . . . .  

1 0 i -2 -1 
I 

0 0 '~ I0 -5 -10 -2 

1 0 i I 0 
i 

0 0 1 t 0 0 

I 0 

0 0 

I 0 

0 0 

-2 -10 -3 

10 -5 _10-2 

B T _ 
O- 

Co= 

10 0 0 0 

0 0 10 6 0 

0 0 0 0 

i 
1 0 0 

0 0 11 
t 

0 0 ~0  

0 o 

0 0 

1 0 6 0 

0 0 0 
I 

0 ~ 0  0 
I 

0 11 0 

(16) 

Prior to applying the control techniques the decoupleability of the sys- 

tem is checked• Since 

c I B I 0 0 

D = Ic2 B =10 6 0 I 0 

L c3B 0 0 I 
0 

for which JDJ~0, there is no inherent coupling, and so the system is 

directly decouple.able without the need to introduce any precompensator. 

To find the similarity matrix Q which transforms the system in the 

Luenberger form (5), we construct a matrix 

[ oi-I ~-I o_I m ~ 
L = bol , Aobol,...,A ° bol,b02,...,A O b02,...,Aom b ° 

consisting of n linearity independent columns of the controllability 
n-,1 

matrix P = [Bo,AoBo ..... A o Bo3. 

10 6 

0 

0 
T, - -  

- 0 

0 

0 
k 

Here oi=o2=o3=2 , and so 

-2xi0 6 0 10 6 0 10 6 

10 0 0 0 0 

10 6 10 6 -2XI0 6 0 10 6 

0 0 I0 0 0 

10 6 0 10 6 10 6 - 2 x 1 0  6 

0 0 0 0 10 

Setting go=0, ek= ~ o i (k=1,2,... ,m), and letting Yk be the ekth 
i=I 

row of L -I , the matrix Q is given by 

Y1 

• a I-I 

Q - YIAo 

¥2 

• am, l 
¥mAo 
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In the present case EO=0,EI:O1=2 , E2=01,+o2=4 , e3=Ol+O2+G3=6, and 

n -1 __ 

Hence 

10 6 2 x 1 0  -1  0 10 -1  0 - 1 0  -1  

0 10 -1  0 0 0 0 

0 - 1 0  -1  10 6 2 x 1 0  - 1  0 - 1 0  -1  

0 0 0 10 -1  0 0 

0 - I 0  -1  0 - 1 0  - 1  10 - 6  2 x 1 0  -1  

0 0 0 0 0 10 -1  

4--Slth row 

4---s2th row 

~--e3th row 

Q = 

YI 

YIAo 

Y2 

Y2Ao 

¥3 

L Y3Ao 

= i0 -! 

0 1 0 0 

10 -5 -10 -2 0 0 

0 0 0 1 

0 0 10 -5 -10 -2 

0 0 0 0 

L o o o o 

0 0 

0 0 

0 0 

0 0 

0 i 

10 -5 _10 -I 

Q-I = 10 

10 3 10 5 0 0 0 0 

1 0 0 0 0 0 

0 0 10 3 10 5 0 0 

0 0 1 0 0 0 

0 0 0 0 10 3 10 5 

0 0 0 0 1 0 

The matrices of the input Luenberger canonical form are found to be 

A=QAoQ-I = 

B:QB°= I 

0 1 

-3xi0 -2 -2.001 

! 

0 0 I 0 

10 - 2  1 i 1 0 - 2  

0 0 0 1 I 0 
I 
I 10 - 2  1 I _ 3 x 1 0 - 2  - 2 . 0 0 1 |  10 - 2  ! 

| ! 
0 0 | 0 0 | 0 

I J 

' 10 - 2  1 t _ 3 x 1 0 - 2  10 - 2  1 , I 

0 i O  ~i 0 

t I 0  ~ o 

0 ~ 0  I 0 
J ! 

0 I 1  1 0  

0 I O  I 0 
! t 

0 ' , 0 t l  

-I 
, C=CoQ = 

I! ' ' 

1 1 0 6  t 0 
- -  ! .......... 

0 tj 1 0 4  
,I 
I 

o ', o 

0 

1 

0 

1 

1 

- 2 . 0 0 1  

(17) 

0 0 

106 I 0 0 

"o lO o 11 
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The above suggest that the canonical decoupled model appropriate in 

the present case has the matrices 

I I 
0 1 J t 

I 0 i O 
~Ii ~12 m, I 

I 

I 0 i i 
O I I O 

1~'21 0"22 ii 
. . . . . .  ~ . . . . . .  _L 

l I O i 
0 I 0 I 

I I 
I I ~31 ~32 

i = 0 

! 0 I 
t l l  t 1 2  ~ t 0 

. . . . .  L - - - -  4 

' ' ( 1 8 )  ,~ : 0 I e 2 1  e22  , 
I 

0 i O Ie31 e 3 
I i 

The canonical decoupling 

M ='uijlL" J is a 6x6 matrix, 

conditions are A*M=M*A, M'B=0 and CM=C where 

and 

[i10ooo] r ,I ,2  167 
_~, : 0 0 1 0 0 , , ,  = / , ~ a , ~ 2 . . ~ , 3 6  l 

o o o o 1 L~51~52" "~56J 

Solving these conditions for M(IMI)~0) 

~22,~32,t32 ] subject to the constrains ~{2:102DiI (i=I,2,3). The 

inverse matrix M -I equal to M-1=106diag[t~,____ ~, t[~ _-I --I .'1 ]. , c2~ 2, c32,c32 

The required feedback gain matrices are given by K=M**AM-I-A** and 

N:M**B, 

A ~ * = 

S**= 

Hence 

where 

3x10 2 

10 -2  

10 -2  

~41" ~461 

m61" m66J 

- 2 . 0 0 1  

1 

1 

= 10-6 

one obtains M=10-6diag[~12,e12,e22 , 

10 -2 - 1 10 -2  1 

-3xi0 -2 - 2 . 0 0 1  10 - 2  1 

10 -2  1 -3xi0 -2 - 2 . 0 0 1  

0 e12 0 0 0 0 1 

0 0 0 c22 0 0 3 0 0 0 0 0 c32 

x ~. ~32 

I ~ll ~12 0 T 0 -I 
J 

= -A**, N=I0 -6 K L ---; .... ' ~21 ~22 ' O- . . . .  i_ L ...... (19) 

The feedback matrix gains for the original system (16) are No:N , and 
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-5 , -2 , ' 0 , 0 , 0 10 O"12 ' C L I I - t 0  ~ 1 2  ' 0 ~ ' ' 

0 ", 0 ' - ' ' ' K o = K Q = 1 0 -  i ' 5 ' - 2  ' ' tl0 ~^~ ,C~^ i-i0 C~) m 0 , 0 

I i :_ ZZ:Z_ __, , ' ' ' -~ ' -2 
0 0 ' ' 0 , i 0  ~ ,oC^. - i 0  ~ 31 J /  , l ~I 

[!_,001x10 
-6!099x10 -3~ -I0 -6 : 0 -i -i°-6 : 0 1 ! I ! 

-I0 -6 ! 0 !2.001xi0 -6 10.99xi0 -31 -i0 -6 : 0 
. . . . . . . . . .  ~ J : 

' ' I X10_6 i 0 i -i0 -6 : 0 ~ -i0 -6 ,~ 0 , 2.001 .99XI0 

The closed-loom transfer function is found to be 

Hc(S) = C(sI-A-BK)-IBN = Co(SI-Ao-BoKo)-IBoNo 

Fe12(s+10-2) t22(s+10 -2) ~32(s+I0-2) 1 
= diag 

5 z  j ] ~  
L 

We observe that the resulting closed-loop system is composed by three 

noninteracting second-order systems. Clearly, we can control the poles 

and the d.c. gains of each subsystem by selecting the parameters 

~ij' i:I,2,3, j=I,2, and t12 , i:I,2,3 of the canonically decoupled mo- 

del (18). The zeros ~however are fixed at s=-10 -2 and cannot be control- 

led by the state feedback ~I~9)~. The most important advantage of this 

canonically decoupled system achieved is that besides the input-output 

decoupling one also has decoupling between states belonging to different 

subsystems (cores). This implies that the three subsystems composing 

the whole system are completely noninteractinq and so one can control 

the output (power level) as well as the state responses of each sub- 

system independently. 

Now, let us examine the problem of controlling the zeros. Suppo- 

se for example that each subsystem in the canonically decoupled model 

must have two poles at sl,2=(-3+j/3)/2, a zero at s=0, and a d.c. gain 

equal to 106/3. This means that the desired transfer function of each 

subsystem is 106/(s2+3s÷3). The denominator implies that each subsystem 

has an undamped natural frequency ~n:/3 and a damping ratio ~=3/2~ n = 

/~/~. Now, since the zero at s=-10 -2 of each subsystem cannot be con- 

trolled by state feedback, a cascade precompensator must be added to 

each subsystem with a pole at s:-10 -2 and a zero at the desired position 

s=0. Hence, one obtains the equality 

I [ --~~i2(s+I0-2) I- 106 (i=I , ,2 3) 

s+10 -2 s 2 - ~ i 2 s - ~ i l  s 2 + 3 s + 3  
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from which it follows that ~i2=I06 and a ~iI=~i2=-3 (i=1,2,3). In sta- 

te space form each subsystem has the equations 

[- [ ][:x] [:] E JI:] x I 0 1 x I x I 
d Z + Ui' Yi: ti1'102eil 
dt x2 i ~iI ~i2 2 i 2 i 

• I0-2~i+[i, and each cascade precompensator the equations xi = - ui=xi" 

Hence the state equations of each precompensated canonically decoupled 

subsystem are 

d~. o 
1 

dt - 

Y i  = 

1 0 
A ~ 

ail ai2 I 

0 0 -10 -2 

til , I02eii 0 x i 

It is easy to verify that the transfer function of the preceding sub- 

system is Yi(S)/~i(s)=ei2/(s2-~i2s-~il ) as desired. 

Example 2 

The second example is a two coupled-core reactor system with 

control rod dynamics: 

Xl - D Xl ano 
T T 

D D 
~3 = ~ x1" ~ x3 

D no 
_ __ x2+ ~ x3+ ~- x 5, x2=kXl-mx 2, ~5:-Sx5+~Ul 

O/3 o n o 
r x4+ -~- X6' ~4 = kx3-mx4' ~6=-Sx6+%lu2 

(21) 

Yl = Xl' Y2 = X3 

where @:I0 sec -I , U=1 and the remaining parameters have the same va- 

lues as in example I. Introducing the parameter values one finds that 

the matrices Ao,B O and C O of the state space description are 

I -103 

IO-5 _10-2 

I 

o 

o 

o 

Ao-- 

I 0 106 0 

0 0 0 0 

0 -1 -103 0 106 

0 10 -5 -10 -2 0 0 

0 0 0 -10 0 

0 0 0 0 -10 

0 0 0 1 0] 
o 0 0 0 0 I 

• col: °°°°0 1 0 0 :] 

(22) 
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The system has no inherent coupling since 

i ° = f 2 ~ j o  = 106 0 1 ' ID I '~°  

The similarity matrix Q and its inverse are found to be 

Q = 

Q-I= 

- 0 1 0  - 1  0 0 0 

10 - 6  - 1 0  - 3  0 0 0 

- 1 . 0 1 x 1 0  - 6  - 0 . 9 9 x 1 0  - 3  10 - 6  0 1 

0 0 0 10 -1  0 

0 0 10 - 6  - 1 0  - 3  0 

10 - 6  0 - 1 . 0 1 x 1 0  - 6  - 0 . 9 9 x 1 0  - 3  0 

104 106 0 0 0 

t 0  0 0 0 0 

0 0 0 104 106 

0 0 0 10 0 

2 x 1 0  - 2  1 . 0 1  1 - 1 0  - 2  -1  

- 1 0  - 2  -1  0 2 x 1 0  - 2  1 . 0 1  

0 ~ 

0 

0 

0 

0 

1 

-1  

o ! 

0 

0 

0 

0 

1 

and the input-Luenberger form of (22) is found to be 

0 

0 

_ 2 x i 0  -1  
1 

A=QAo = 0 

0 

1 0 - 1  

,to 
BT_(O,~o) T-- L 0 

The  m a t r i c e s  (23)  

g e r  m o d e l  

! 
1 0 I 0 0 0 

I 
0 1 I 0 0 0 

I 
I 

- 1 0 . 1 2  - 1 1 , 0 1  i 10 -1 1 0 . 0 1  1 
I 

I 
0 0 I 0 1 0 

0 0 i 0 0 I 
I 
I 

1 0 . 0 1  1 I - 2 x 1 0  - I  - 1 0 . 1 2  - 1 1 . 0 1  
1 

o ° " ° ° 1 o  o o , ° ' °  ° : t o , , ,  
(23) 

suggest the following canonically decoupled Luenber- 
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A= 

"0 1 0 I 
0 0 1 l| 
~'11 (&12 0"13 I 

10 1 0 
I 
10 0 1 
I 1~21 ~22 (122 

I~_10 I I 0 0 6= 1 102ell 0 ! 
0 0 1 ~21 1 02~21 

B=B, e12=102011 , e22=102021 

oj 
0 

In the present case the decoupling conditions give M=10"4diag ~11 '~11' 

,~21]and the decoupling matrix gain pair{K,N}is found to be 011,~21,~21 

K = r 
0 0 I~2~ ~22 ~ 

!. 
. . . .  i 1 ......... 

LI0 I, i0.01, 1 l-2x10- -i0.12,-Ii.01 

S = 10 -4 I ~110 C210 l 

Finally, the closed-loop transfer matrix function is 

[ ~ 1 2 ( s + 1 0  -2) ~22(s+10-2)-~ 
HC (s) =C(sI-A-BK) -1BN= diagl 3_&I 3 s2-a12~-~1* 1 s -&23 s -~22s-~211 s ' 3 ......... 2 ~ 

which can be treated for pole, d.c. gain, and zero control as in 

F.xamp le 1. 

5. CONCLUSIONS 

The technique presented in this paper is applicable to coupled 

nuclear reactor systems which, owing to the large number of states of 

each core and the large number of cores possible, belong to the class 

of large multivariable systems. SPatially-distributed-core reactors 

can be treated using this technique by subdividing the core into a num- 

ber of coupled subcores. Actually, the results of this paper constitute 

the first part of a work aiming to apply the state feedback approach to 

complete power reactor systems [20]. This will first require an exten- 

sion of the method to systems with time delays in the state and/or the 

control variables. An extension of the method for treating the inputs 

and outputs in groups is also under investigation. When the system 

involves some states which are not accessible to direct meas~ts one 
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must use output feedback or generate the unknown state from the measu- 

red states upon which they are dependent. This problem is essentially 

open. A general FORTRAN program which will provide the solution for 

systems with large matrices is being developed. The method is general 

and can be used not only in reactor systems but in all cases where si- 

multaneous input-output and state variable decoupling, pole control, 

d.c. gain control, and zero control is desired. 

It is noted that one may reverse the order of steps 3 and 4 in 

the algorithm of sec. 3.3, i.e. introduce the precompensator prior to 

decoupling, by defining the matrices of the precompensated input- 

Luenberger canonical system under control as 

= --~--- , B'= ---~-- , --~ 0j Lo, 
where the elements of C 11, C 21, C 22, except of the requirement to be 

selected such that the system has not inherent coupling, are otherwise 

arbitrary. Of course in this case there is again the possibility of 

loosing or introducing undesired zeros, and so the algorithm must be 

preferred in the order step I, step 2, step 3, step 4. 

REFERENCES 

I. WEAVER, L. and VANASSE, R. "State Variable Feedback Control of 
Multiregion Reactors", Nucl. Sci.Eng., 29, 264-271 (1967). 

2. WEAVER,L., "Reactor Dynamics and Contro-~: State-Space Techniques", 
Chapters 8 and 9 (American Elsevier, New York, 1968). 

3. HERRING, J., SCHULTZ, D., WEAVER, L. and VANASSE R., "Design of 
Linear and Nonlinear Control Systems via State Variable Feedback 
with Application in Nuclear Reactors Control", Engineering Experi- 
ment Station Report, University of Arizona, Tucson (Feb. 1967). 

4. MELSA J. and SCHULTZ D., "Linear Control Systems" Chapters 3 and 9 
(McGraw-Hill, New York, 1969). 

5. SLIVINSKY, C. and WEAVER, L., "Reactor Control Using a New Multi- 
variable Design Technique", Nucl.Sci.Eng., ~37, 163-166 (1969). 

6. RAJU G., and STELZER M., Nonlnteracting Control System Design for 
a Coupled Core Nuclear Reactor", IEEE Trans.Nucl.Sci.Eng., 541- 548 
(1970). 

7. SLIVINSKY, C., SCHULTZ,D. and WEAVER, L., "State Variable Feedback 
and Series Compensation of Multivariable Systems", Nucl.Sci. Eng., 
38, 125-129 (1970). 

8. F--ALB, P. and WOLOVICH, W., "Decoupling in the Design and Synthesis 
of Multivariable Control Systems", IEEE Trans.Auto. Control, AC-12, 
651-659 (1967). 

9. GILBERT, E. "The Decoupling of Multivariable Systems by State Feed- 
back", SIAM J. Control, 7, 50-63 (1969). 

10. TZAFESTAS, S. and PARASKEVOPOULOS, P., "On the Decoupling of Multi- 
variable Control Systems with Time Delays", Int. J. Control, 17, 
405-415 (1973). 

11. PARASKEVOPOULOS, P. and TZAFESTAS, S., "New Results in Feedback 
Modal-Controller Design", Int. J.Control, 2~I, 911-928 (1975). 



267 

12. BROCKETT, R. "Poles, Zeros and Feedback: State Space Interpre- 
tation", IEEE Trans.Auto. Control, AC-10, 129-135 (1965). 

13. TZAFESTAS, S. and PARASKEVOPOULOS P., "On the Exact Model-Matching 
Controller Design", Proc. 1974 IEEE Conf. Decision and Control, 
Phoenix, Arizona (1974), Also to appear in IEEE Trans.Auto Control 
(1975). 

14. WOLOVICH,W. and FALB, P., "On the Structure of Multivariable Sys- 
tems", SIAM J. Control, ~, 437-451 (1969). 

15. PARASKEVOPOULOS, P., "On the Model Matching of Multivariable 
Systems", Doctoral Thesis, Faculty of Engineering, University of 
Patras (1975). 

16. LUENBERGER, D., "Canonical Forms for Linear Multivariable Systems", 
IEEE Trans. Auto. Control, AC-12, 290-293 (1967). 

17. WANG, S. and DESOER, C., "The Exact Model Matching of Linear Multi- 
variable Systems", IEEE Trans.Auto Control, AC-17, 491-497 (1972). 

18. WOLOVICH, W., "The Use of State Feedback for Exact Model-Matching", 
SIAM J. Control, 10, 512-523 (1972). 

19. LANDAU, I., "A Surv----ey of Model Reference Adaptive Techniques-Theory 
and Applications", Automatica, 10, 353-379 (1974). 

20. DUNCOMBE, E. and RATHBONE, D., "Optimization of the Response of a 
Nuclear Reactor Plant to Changes in Demand", IEEE Trans. Auto 
Control, AC-14, 277-283 (1969). 

21. TZAFESTAS, S., "Indirect model matching technique for multicontrol- 
ler systems, Electronics Letters, 11, 353-354 (1975). 


