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Introduction

In this paper we shall consider the following programming problem:

Find a vector xg D satisfying

£(x) = min £(x). (Problem P)
x&D
It is assumed throughout this paper that the set D C R" is convex,
compact and f: A—»R™ is a concave function on an open convex set
A, De Ac R,

For solving problem P a branch and bound algorithm is proposed, which
solves a sequence of problems in each of which the objective function
is linear. The main difference between this approach and previous
approaches ([1],[4]) is the use of simplex-partitions instead of rectan-
gular ones and a different refining rule such that the convergence proof
does not rely on the concept of convex envelopes and the algorithm

handles non-separable functions.

In the next section we shall give some useful preparatory results. The
subsequent section contains a description of the algorithm and the
last one an associated convergence theorem.

A generalization of this algorithm will appear in [3] Proofs of state-
ments given in [3] will be omitted here.

Simplex-partitions and affine subfunctions

Starting with a n-dimensional enclosing simplex Sl, Dc Slc A, we

shall get a sequence of subproblems by partitioning Sl in from step to step

refined subsimplices Skl and by constructing affine underestimating

ki ki k

functions L S™ - IR. This will be done in such a way that each L +

ki .
will be the best convex subfunction of f over S l, that is for all
. - . ki
convex functions gkl: Skl.-_b R satisfying gkl(x)sf(x) Vxe s

have gkl (x)stl(x) =fx) ¥ xe Skl

we shall

. The chosen refining rule than will
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yvield a convergence theorem.

Definition 1:

Let S be a n-dimensional simplex in the euclidian space ﬁln. A set
{Sl,...,srjs of finitely many n~dimensional simplices gt (i=l,...,r)
is said to be a simplex-partition of § if

v,

i=1

siﬂsj=s(ij), i.jéf_l,---,r}, i#j,

where S(ij) denotes a (n-1)-dimensional simplex-face of both s* and s7.

Lemma 1:

Let S € R” be a n~dimensional simplex (n-simplex), characterized by
its n+l affinely independent vertices RyresosX oy € R”. We write
S =z Xl""’xn+lj Moreover let x be a point in S but no vertex:

n+l n+l

ZK X, ,0< 2 0(i=1,...,n+1), Z D(

b
il

X §# X, {(i=1l,...,n+1). Replac1ng one vertex Xy of S with N > 0 by x we
obtain a n-subsimplex S— {x reee Xy X, x1+1""’xn+l} of S.

The set of all by means of x in this way constructible subsimplices form
a simplex-partition of S.

Proof:
It is well known from linear algebra, that given a set of affinely inde~

pendent vectors S = {xl,...,x +1} and a vector x = n+1 K Xy K. >0
n+l

(i=1,...,n+l1), :E:b(‘ =1; x # x; (i=1,...,n+1), then if any vector

Xy & S for whlch(x 7~ 0 is removed from S and x is added to S, the new
collectlon st of (n+1) vectors is also a set of affinely independent
vectors., It follows that all s+ constructed according to Lemma 1 are
n~dimensional sub51mp11ces of S and obviously we haveL}S C s.

To prove sc:(}s take any element x &€ 8, X # x, and con51der the ray
emanating from x through ¥ up to the boundary point X' € s where it
leaves S (X’ = X is possible}:

Ino e K* - . - *
= 2 XyFyr Ry ZO Omtpeeiy) s = o =
3= h1

:ll
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s #* : : :
men+l since x° is element of a simplex~face of dimension less than n.

We have
o *
X =8x + (1-B3)x , 0% B8 <1
or ;
X =8x + 3 ga.x., 8. = {1-8)K.
j=1i 33 J 3
1
i
Jaxg i =
By > 0=y e.nrip), 8+ %‘ 8y =1
1
proving xelUs*.
s f\ SJ = 13)(1#3) where S( id is a (n~1l)~dimensional simplex-face

of both S and SJ, results immediately from the construction of s* and
3
5.

Lemma 2:

Let S = {Xl"‘°’xm+1
function. Then there is exactly one affine function L: R D> R satis-
fying L(xi}

of £ over S.

}C RY ve a n-simplex and f: S #+ IR be a concave

]

f(xi) {i=},...,n+1). Moreover L{x) is the convex envelope

Proof:

Every affine function L may be represented by L(x) AK xl+/ ,4& R
Ao € R. The determinant of the system of linear equations

Alxy o+ A = £0x) (i=1,...,n+1)

is different from zero, since the n+l vertices Xy (i=1,...,n+l) are
affinely independent. L(x) < f(x) for all x € S and moreover that L(x)
actually is the convex envelope of f over S (the best convex subfunction
in the sense mentionned above) follows easily by concavity of £. A ri-
gorous proof can be found in [2].

The minimum values of f and L over S are attained in a vertex of 3.

It follows

min £({x} = min L{x)
HES XES

Minimizing L over S instead of f yields the minimum value of f. Unfor-

tunately this is not true for minimizing points:

g0 = min t} iz - min 100§
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and in general there are minimizing points of L not minimizing f over S.

In our approach for solving Problem P we shall solve a sequence of sub-
problems in each of which we minimize I over 8/} D instead of f.

An associated convergence theorem stated in the last section will show
that by suitable refining of simplex-partitions it is possible to gene~
rate a sequence of points {xk} having accumulation points, each of which
vields the desired solution value. But the above discussion explains
why we will get weaker results for the solutions points.

The next two Lemmata state how to choose a suitable refining rule.
We omit the proofs, here because they are given in [3] .

Lemma 3:

Let S1 < R” be a n-simplex and construct a sequence of n-simplices in

the following way: Sk_' Sk-"l (k=1,2,...): Choose the midpoint x k of one

of the longest edges of Sk and let Sk+1 be one of the two subsimplices
constructed according to Lemma 1 using x k instead of x. Then there is

a¥eRr” satisfying

o
1im 5 .= [k - {%).
k -0 k=1

Lemma 4:

1 n . ky o° . :
Let 8 C IR be a n-simplex and S }k=l be a seguence of n-simplices
constructed from Sl according to Lemma 3., Furthermore let f: A—PpIR

be a concave function on an open set A, SlC A CIRn, and {Lk - the

k=1
sequence of affine functions each Lk defined over S~ according to Lemma 2.
Then we have
Lk-l

() = () =£(x) for all xe s5, k=1,2,...

b) the sequence {Lk]is equicontinuous in the following sense:

For every £ >0 there exists ad’ =<f\(x",£') not dependent on k such
that

a)

lLk(x) - Lk(x*) ‘ =&

whenever x*, x & sk and ix«x*;sd\.
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Description of the Algorithm

Step O:
1

0.1.: Choose a n-simplex Slc R" such that D € S < A.
(A is supposed to be "large" enough of course such that S1 exists.)
(If in problem (P) D = D1/7 D,, D;
D, = {x = (%) reeeixy) é.ﬂknfxi > 0, i=l,...,n}, then one method
to construct 8 is solving the optimization problem

coenvex, compact and

n
z = max > X,
©  xep i=1 *
. 1§ 1 1 . 1
and taking 8 = Lxl""’xn+l}’ X1 = &, the origin, z; = z.e;

(i=1,...,n}, where e, denotes the i-th unit-coordinate vector.)

i

0.2.: Determine the affine function Lo(x} over Sl according to Lemma 2.
0,3.: Compute x° from

Lo(xo) := min Lo(x) .
xED

0.4,: Compute f(xo), If Lo(xo) = f(xo), then stop the algorithm. If
Lo(xo)<< f(xo), then go to step 1.

Step 1:
. s { 11 12
1.1.: Construct the simplex-partition 187 7,8 } 1 according to Lemma 3.
]

11 12

1.2.: Determine the affine functions L™ : Slk—h R, L 81%9'2m

according to Lemma 2.
1i
1.3.: Compute x from

M) = ming Lt x)
x&DNSs

for those i & {1,2] with D N s'* # 2.
1.4.: Compute x1 from

Ll o= min nth .
.i
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1.5.: Compute f(xl). If Ll(xl) = f(xl), then stop the algorithm., If
Ll(x1)<< f(xli, then go to step 2.

Step k (k=2,3,...):

Assume xk-l Sk-l'k.

k-1,k

k.1.: Construct the simplex-partition {Skl, SkZ]Sk—l,k of 8 accor-

ding to Lemma 3.

k k

k.2.: Determine the affine functions L°T: s - R {i=1,2) according

to Lemma 2.

k.3.: set skr2*ti _ gk-1,1
LKo2 | kel,d

(i=1,...,k-1),
(i=1,...,k~-1).

k.4.: Compute xkl fron

Lkl(xkl) = min
x&DNS

g Y, pns*t g g e, ke

(We have to takz into account all subsimplices of S constructed
up to now and look for the minimum over the collection of all
affine subfunctional at hand. xkl is already known for i > 2).

k.5.: Compute xk from

¥ X)) i= min LXK,
i

k.6.: Compute f{xk). If Lk(xk) = f{xk), then stop the algorithm. If
Lk(xk)<: f(xk), then go to step k+1.

Main properties of the algorithm

The main properties of the algorithm are stated in the following theorem.

Theorem
a) Let X D be a solution of problem P. Then
k, k + + - j j
) £ ¥ FY < 3 £ min £(x1) £ min £(x7) k=1,2,...;

J=1, 00,  k+1 . j=1,...,k
b) If the algorithm stops after step j, then xJ is a solution of

problem P;
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c) If the algorithm is not terminated after finitely many steps, then
it generates a sequence {xkj of feasible points one accumulation
point of which is a solution. Moreover the limit of the numbers

iLk(yk)j is £(X) where {yk§ is any convergent subsequence of ixk}.

The theorem is a consequence of Lemmata 1 to 4, a more general version
is proved in [?] . The gimple illustrative example discussed in the
course of the presentation at the conference is also given in [3].

First feqg tests had been rather successful finding good upper and lower
bounds for the solution after a few steps.
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