
A NEW BRANCH AND BOUND APPROACH FOR CONCAVE MINIMIZATION PROBLEMS 

Reiner Horst 

Fachbereich Mathematik der Technischen Hochschule D 61 Darmstadt, 

SchloBgartenstr. 1 

Introduction 

In this paper we shall consider the following programming problem: 

Find a vector ~ D satisfying 

f (x) = rain f (x) . (Problem P) 
x~D 

It is assumed throughout this paper that the set D C IR n is convex, 

compact and f: A--~IR n is a concave function on an open convex set 
n 

A, D ~ A ~  

For solving problem P a branch and bound algorithm is proposed, which 

solves a sequence of problems in each of which the objective function 

is linear. The main difference between this approach and previous 

approaches ([iI,[4~) is the use of simplex-partitions instead of rectan- 

gular ones and a different refining rule such that the convergence proof 

does not rely on the concept of convex envelopes and the algorithm 

handles non-separable functions. 

In the next section we shall give some useful preparatory results. The 

subsequent section contains a description of the algorithm and the 

last one an associated convergence theorem. 

A generalization of this algorithm will appear in [3]. Proofs of state- 

ments given in [33 will be omitted here. 

Simplex-partition s and affine subfunctions 

Starting with a n-dimensional enclosing simplex S I, D C SIc A, we 

shall get a sequence of subproblems by partitioning S 1 in from step to step 

refined subsimpiices S ki and by constructing affine underestimating 

functions L ki sk~_~ : ~. This will be done in such a way that each L ki 

will be the best convex subfunction of f over S ki , that is for all 

convex functions gki sk~_~ we shall : ]R satisfying gki(x)~f(x) Vx ~ S ki 

have gki(x)~Lki(x) ~ f(x) V x ~ S ki . The chosen refining rule than will 
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yield a convergence theorem. 

Definition i: 

Let S be a n-dimensional simplex in the euclidian space ]R n. A set 

IS .... ,SrlS finitely many n-dimensional simplices (i=l ..... r) S i of 

is said to be a simplex-partition of S if 

r 
S = ~ S l , 

i=l 

S i ~ S j = s(iJ) 

where S (ij) denotes a (n-l)-dimensional simplex-face of both S i and S j. 

Lamina 1 : 

Let S C ~n be a n-dimensional simplex (n-simplex), characterized by 

its n+l affinely independent vertices Xl,.°.,Xn+ 1 ~n. We write 

S = ~ Xl, .... Xn+l~. Moreover let x be a point in S but no vertex: 

n+l n+l 
x = ~ ~ixi , ~i ~ O(i=l ..... n+l), ~-- ~ = i; 

i=l i=l 1 

x ~ x i (i=l .... ,n+l). Replacing one vertex x i of S with ~i >0 by x we 

obtain a n-subsimplex S i = ~Xl,...,Xi_l,X,Xi+l, ..,x ~: of S. • n+l~ 
The set of all by means of x in this way construetible subsimplices form 

a simplex-partition of S. 

Proof : 

It is well known from linear algebra• that given a set of affinely inde- 

pendent vectors S = ~x I ..... Xn+ll and a vector x = ~I ~ixi, ~ i -->0 
n+l i=l 

(i=l .... ,n+l), ~ ~i = I; x ~ x i (i=l,...,n+l), then if any vector 
i=l 

xiE S for which~i > 0 is removed from S and x is added to S, the new 

collection S i of (n+l) vectors is also a set of affinely independent 

vectors. It follows that all S i constructed according to Lemma 1 are 

n-dimensional subsimplices of S and obviously we have USiC S. 

To prove S~ US i take any element ~ ~ S, ~ ~ x, and consider the ray 

emanating from x through ~ up to the boundary point x ~ ~ S where it 

leaves S (x ~ = x is possible): 

~jxj i ~ ~j~ _.~O (j=i I ,i m) ~. ~j = i; 
X = ' I°~" • 

j=i I 3=~I 
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m<n+! since x ~ is element of a simplex-face of dimension less than n. 

We have 

= Sx + (l-B)x ~, O--~ ~ < i 

or i 

= Sx + ~ Bjxj, Sj = (I-B)~j , 

j=i I 
i 

~j ~O(j=i I ..... im) t ~ + ~ gj = 1 

proving x~S i. 

si~ S j = S (ij) (i~j), where S (ij) is a (n-l)-dimensional simplex-face 

of both S i and S j , results immediately from the construction of S i and 

S j . 

Lemma 2: 

~x I ..... Xm+l~ C ~ n be a n-simplex and f: s-mm be a concave Let S 

function. Then there is exactly one affine function L: ~n-4~ satis- 

fying L(X i) = f(x i) (i=l ..... n+l). Moreover L(x) is the convex envelope 

of f over S. 

Proof: 

Every affine function L may be represented by L(x) = ~Tx +~o 

E ~ . The determinant of the system of linear equations 

ATxi + io = f(xi) (i=l ..... n+l) 

,~ ~R n , 

is different from zero~ since the n+l vertices x i (i=l,...,n+l) are 

affineiy independent. L(X) ~f(x) for all x ~ S and moreover that L(x) 

actually is the convex envelope of f over S (the best convex subfunction 

in the sense mentionned above) follows easily by concavity of f. A ri- 

gorous proof can be found in [2]. 

The minimum values of f and L over S are attained in a vertex of S. 

It follows 

rain f(x) = min L(x) 
x~S x~S 

Minimizing L over S instead of f yields the minimum value of f. Unfor- 

tunately this is not true for minimizing points: 

{xlf(x) = rain f(x)~ f-~IL(~) = rain L(x)] 
x&S x~S 
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and in general there are minimizing points of L not minimizing f over S. 

In our approach for solving Problem P we shall solve a sequence of sub- 

problems in each of which we minimize L over S ~ D instead of f. 

An associated convergence theorem stated in the last section will show 

that by suitable refining of simplex-partitions it is possible to gene- 

rate a sequence of points ~x k ~ having accumulation points, each of which 

yields the desired solution value. But the above discussion explains 

why we will get weaker results for the solutions points. 

The next two Lemmata state how to choose a suitable refining rule. 

We omit the proofs, here because they are given in [3]. 

Lemma 3 : 

Let SIc ~ n be a n-simplex and construct a sequence of n-simplices in 

the following way: sk-~s k+l (k=l,2,...) : Choose the midpoint x k of one 

of the longest edges of S k and let S k+l be one of the two subsimplices 

constructed according to Lemma 1 using x k instead of x. Then there is 
n 

a x ~ ~ satisfying 

lim S k := ~ S k = [~J. 
k ~ k=l 

Lemma 4 : 

Let SIc ]R n be a n-simplex and k=l be a sequence of n-simplices 

constructed from S 1 according to Lemma 3. Furthermore let f: A--~IR 

be a concave function on an open set A, SIc A ~]R n, and ~LkJ~ the 
k=l 

sequence of affine functions each L k defined over S k according to Lemma 2. 

Then we have 

a) Lk-l(x) ~ Lk(x) __~f(x) for all x~ S k, k=l,2,... ) 

b) the sequence {LkJ is equicontinuous in the following sense: 

For every ~>O there exists a ~=C~(x~,E) not dependent on k such 

that 

I Lk(x) - L k(x ~) I --~ ~ 

whenever x ~, x ~ S k and ~x-x~} <c~. 
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Description of the A!~grithm 

O.i.: Choose a n-simplex S 1C ~n such that D C SIc A. 

(A is supposed to be "large" enough of course such that S 1 exists.) 

(If in problem (P) D = D 1 ~ D2, D 1 convex, compact and 

D 2 := {x = (Xl: .... x n) ~ ~nlx i ~ O, i=l .... ,n~, then one method 

to construct S i is solving the optimization problem 

n 
z O := max ~ x i 

xgD i=l 

and taking S 1 ~ i 1 1 1 = ~, the origin, z~ = roe i 
= t X l , - - - , X n +  1 , Xn+ 1 

(i=l~..~,n), where e i denotes the i-th unit-coordinate vector.) 

0.2.: Determine the affine function L°(x) over S 1 according to Lemma 2. 

0.3.: Compute x ° from 

L °(x °) := rain L O(x) 
xgD 

0.4.: Compute f(x°)o If L°(x °) = f(x°) r then stop the algorithm. If 

L°(x°) < f(x°), then go to step I. 

Step I: 

i.i.: Construct the simplex-partition {SII,sI2~sI according to Lemma 3 

1.2 : Determine the affine functions L II SII--~ L 12 SI~ . : ~, : 

according to Lemma 2. 

li 
1.3.: Compute x from 

L li(x li) = rain.. L li(x) 
reDeS ±l 

for those i ~ ~1,2~ with D ~ S li ~ ~. 

1.4. : Compute x I from 

L l(x I) := rain L li(x li). 
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1.5.: Compute f(x I) , If Ll(x I) = f(x I) , then stop the algorithm. If 

Ll(xl)< f(xl), then go to step 2. 

Step k (k=2,3,...): 

Assume x k-I S k-l'k 

k.l.: Construct the simplex-partition {S kl, sk2]sk-l,k of S k-l'k accor- 

ding to Lemms 3. 

k.2.: Determine the affine functions Lki: ski-~ ~ (i=i,2) according 

to Lemma 2. 

k.3.: Set S k'2+i = S k'l'i 

Lk, 2+i = Lk-l, i 

k.4.: Compute x ki from 

(i=l,... ,k-l) , 

(i=l,...,k-1) . 

L ki(x ki) = rain • L ki(x) D~S ki ~ ~ (i=l, ,k+l) 
xgD~S <l ' ... 

k.5.: 

(We have to tak~ into account all subsimplices of S constructed 

up to now and look for the minimum over the collection of all 

affine subfunct[onal at hand. x ki is already known for i > 2). 

Compute x k from 

k.6.: 

Lk(x k) := min Lki(xki). 

i 

Compute f(xk). If Lk(x k) = f(xk), then stop the algorithm. If 

Lk(xk)< f(xk), then go to step k+l. 

Main properties of the algorithm 

The main properties of the algorithm are stated in the following theorem. 

Theorem 

a) Let x ~ D be a solution of problem P. Then 

Lk(xk) ~ Lk+l(x k+l) 5 f(~)~ rain f(x j) --~ min f(x j) k=l,2 .... ; 
j=l,...,k+l j=l,...,k 

b) If the algorithm stops after step j, then x j is a solution of 

problem P; 
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c) If the algorithm is not terminated after finitely many steps, then 

it generates a sequence [xk~ of feasible points one accumulation 

point of which is a solution. Moreover the limit of the numbers 

~Lk(yk)} is f(~) where ~yk ~ is any convergent subsequence of ~xk~. 

The theorem is a consequence of Lemmata I to 4, a more general version 

is proved in D~ - The simple illustrative example discussed in the 

course of the presentation at the conference is also given in ~. 

First feq tests had been rather successful finding good upper and lower 

bounds for the solution after a few steps. 
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