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Abstract 

Many polynomial complete problems can be reduced efficiently to 

three matroids intersection problems. Subgradient methods are shown to 

yield very good algorithms for computing tight lower bounds to the so- 

lution of these problems. The bounds may be used either to construct 

heuristically guided (branch-and-bound) methods for solving the problems, 

or to obtain an upper bound to the difference between exact and appro~ 

imate solutions by heuristic methods. The existing experience tend to 

indicate that such bounds would be quite precise. 

I. FOREWORD 

Consider the following three apparently unrelated problems. 

3-dimensional ass isnment . Given n men for n jobs and n different 

time slots and a weighting cij k for assigning the i-th man to the j-th 

job in the k-th time slot, find an assignment of maximum total weight. 

Traveling salesman problem. A salesman has to go from city 1 to n-i 

other different cities. Given the distance matrix of the n cities find 

a path of minimum total length going through each city at most once. 

A Seqqencin$ problem. Let there be n jobs to be processed on a single 

machine and let job i be requiring T i units of time, havimg a deadline 

D i after which a penalty Pi has to be paid. Find the sequencing of the 

jobs which minimizes the overall penalty to be paid. 

As it will appear in the following these are three instances of 

a general class of problems, namely those reducible to 3-matroid 

intersection problems. The purpose of this work is to present a general 

method to obtain tight bounds to the optimal solution to these problems 

in order to be able to estimate fairly accurately the errOr by which 

any heuristieaily obtained solution would be affected~ In section 3 a 

few notions from matroid theory will be reviewed. Section 4will be 
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devoted to matroid problem reduction. Section 5 will develop the main 

algorithm for calculating the bounds. Section 6 will show how the three 

above mentioned problems can be approached as matroid problem s . Some 

conclusions and areas for further research will be outlined in section 7. 

This work was completed while the author was on leave as Re- 

search Associate at the Electronics Research Laboratory of the Univer- 

sity of California at Berkeley with a NAT0 Senior Fellowship. 

2. COMPLEXITY OF ALGORITHMS ~ND PROBLEMS REDUCTION 

A problem is said to be in P if an algorithm for its solution 

exists whose computing time is a polynomial function in the size of the 

problem. Karp [13 has shown that many problems which are (probably) not 

in P can be reduced one to the other so that one of them being in P 

would imply that all of them are. We say that a problem "reduces" to 

another if there exists an algorithm in P which would yield the solu- 

tion to the second once the first is solved. The three problems 

mentioned above are (probably) not in P. Even the best algorithms known 

are of exponential complexity and for large problems only heuristic 

methods can be used successfully. 

3. MATROID AXIOMATICS ~] 

Let E = {e!,e2,oo°~e n} be a finite set of elements and~ a non- 

empty family of subsets of E such that: 

i) if I ¢ J ~ ~ then I g~ ; 

2) if I,J E ~ and III= JI+l, then there exists an element e ~ I-J 

such that J+e ~ 

Then M : (E,~) is a matroid and the members of~are called its inde- 

pendent sets. A maximal independent set is called a base. A minimal 

dependent set is called a circuit. All bases of a matroid have the same 

eardinality. As an example let E be the set of edges of a linear graph 

and~the set of forests of the graph: this is the graphic matroid of 

the graph. Else let E be the set of columns of a matrix and~the family 

of sets of columns which are linearly independent (over any field): 

this is a matric matroid of the matrix. As a third example let E be 

any finite set and let ~ be a partition of E into r disjoint subsets 

SI,S2,...,S r. Let d = (dl,d2,...,dr) be a r-dimensional vector and 

~ = {I: I & E & II ~ Sil ~ d i , i = 1,2 .... ,r} . 

Then M = (E~) is a partition matroid. 
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Let there be a weighting function w : E ÷ R +. The problem of find 

ing an independent set I of M having maximum total weight (or equivalently 

a base of minimum total weight) is solved by the "greedy" algorithm: 

"include in i the element of maximum weight among those not yet included, 

disregarding an element only if it would destroy independence once 

included into [" [3]. 

Let m = IEI and c(m) be the complexity order of the method for 

testing independence (TI) in M. Then the greedy algorithm has a complex! 

ty at worst of order mc(m) and if TIE P the greedy algorithm also 

belongs to P. 

Let M 1 and M 2 be two given matroids. Then M = (E 1 U E2,~) where 

~= {I : I = I I U 1 2 & I 1 E ~I' I2~ ~2 } 

is a matroid called the sum of M 1 and H 2. 

4. MATROID PROBLEMS REDUCTION 

Let there be k matroids MI, M2,... , M k over the same set E. A 

subset I of E which is independent in all of them is called an 

intersection. Consider also a partition of E into p disjoint subsets 

PI' P2'''''Pp and let h be the maximum cardinality of them. A very 

general matroid problem is the following. Let ~i be the family of 

independent sets of the i-th matroid. Find the subset I of E of maximnm 

weight such that 

k 
i • ~l D i (3 

i=l 

and such that II ~ Pj I = {I Pj I else O} for j = 1,2 .... ,p. (4 

Any set obeying (4) is called a h-parity set, where 

h = max . . I P j t  t 

J 
it can be shown that due to the results of Lawler [4 3 this problem 

can be reduced to a 3-matroid intersection problem on a set E' contain 

ing 2km elements where two of the matroids are partition matroids. The 

reader is referred to [4] for the corresponding reductions. 

5. A SUBGRADIENT ALGORITHM 

The method for obtaining bounds will be formulated for the 

special instance of the 3-matroid intersection problem which is yielded 

by the reductions mentioned in the previous section. 
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Let M i = (E,~i) ~ i = 1,2,3 be three matroids defined over the 

same set of elements E and having respectively ranks n,n and n+r where 

2n = IEI. Let w : E ÷ R + be a given weighting function. The first two 

matroids, M 1 and M2, are particular partition matroids corresponding 

to the following partitions of E. 

E : {Aim A2, ..., A r} = {BI, B2, ..., B r} 

!Ail : ! Bil = 2 , i = 1,2 .... , r. 

So that 

~i : {I : I C E & I ~ All ~ i, i=!,2,...,r } 

~2 : {I : IC_ E & I ~ Bil _< it i=!,2, .... r } 

Let ~ : (~i~2,..°, ~r ) be a real r-dimensional vector. Then a 

new weighting function w ~ may be defined for each e ~ E as 

r 

w'(e) = w(e) + [ 
i=l 

~i If{e} f~ Ail+l{e} f~ Bil] 

Then for any X C E, 

w'(X) = w(X) + ~ • ~(X) 

where 

= (iAl Xl+Thnx], . . . ,  tAr X1÷IB xl) 

Let now [ be such that 

w'(i) = max {w'(X) : X ~ 3  and IXl <_ r} 

It is always impossible to find I by the greedy algorithm. 

Obviously Ill = r. Let now I ! and 12 be two intersections of maximum 

eardinality of the three given matroids. Then 

I i£% Aj <_ 1 i = 1,2 

Ii£~ Bj _< I ~ = 1,2 .... ,r. 

On the other hand, since fill : II21 = r, 

~(I !) = ~(I 2) = 
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where ~ is a vector whose entries are all equal to 2. Let now I ° be a 

maximum weight intersection. Then by definition 

w'(I °) < w'(i) 

so that 

w(l °) + ~ • ~(I °) < w'(I) 

i.e. 

w(I °) < w'(i) - ~ • c= f(~) 

and f(~) is a valid upper bound to the value of the optimum solution 

for any 7. The tightest of such bounds will be obtained by 

f(~ ) = min f(~) 

Subgradient methods have been extensively studied and used in 

recent literature ~,6,7,8~. In our case the gradient of f(~ ) is 

Vf(~) = ~(~) - E 

and can easily be obtained applying the greedy algorithm to M 3 under 

the weighting w'. A simple iterative scheme for computing ~ is the 

following. 

Step 1 ~ = O~ i = O. 

Step 2 i+l ÷ i, w(e) + [ =j IAj~{e}I+IBjt%{e}I + w(e) for all e E. 
j--1 

Ste~ 3 Find a maximum weight independent set I of M S by the greedy 

algorithm. Then f(~) = w(I) - ~ . e and g = u([)-e. 

Step 4 If g : 0 stop: I ° = [. If i = maximum number of iterations stop: 

f(~) is the best obtainable upper bound. 

Step 5 ~ + tg + 7, t being a suitable scalar. Go to step 2. 

A maximum number of iterations has to be chosen since the method 

could fail to converge to a case for which g = O. The reader is 

referred to [5,6] for further informations about this behaviour. For 

choosing t one can adopt a rough criterion as f.i. t = 1 as in [5], 

or more refined criteria as suggested in [5] and used in [7]. Also a 

modified subgradient direction can be used to speed up the search 

C9]. 
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6. EXAMPLES 

The three dimensional assignment and the traveling salesman 

problems are already in the form of 3-matroid intersection problems. 

For the first one has to consider three partition matroids one for 

each index of the cost coefficients. For the second problem two of the 

matroids are partition matroids generated by out and in-degrees at every 

node of the graph~ while the third matroid is the graphic matroid. 

As far as the sequencing problem is concerned consider the 

graph of figure 1 together with the following theorem. 

Theorem (Edmonds & Fulkerson [i0]). Let G = (N,A) be a graph and let 

E C N be any subset of N. Consider the family ~of all the subsets I 

of E such that there exists a matching of G covering all the nodes of I. 

Then M = (E~ ~) is a matroid called the matching matroid of G. 

Apply this theorem to the graph of figure I, E being the set of 

nodes on the left corresponding to the various jobs identified by as 

many nodes as the required units of time, the penalty of each job 

being divided in any arbitrary way among its nodes. If each job 

corresponds at maximum to h nodes~ one has a h-parity matroid problem 

on a matching matroid~ since a subset of E of maximum weight which 

can be covered by a matching corresponds to an optimum scheduling. 

7. CONCLUSIONS 

An immediate development of this work would be the implementa- 

tion of a computer code in order to test the algorithm for various 

problem instances. The present experience although quite promising 

has been almost entirely confined to the traveling salesman problem: 

there are no reasons however against the hope of obtaining as good 

results on other problems. The elementary iteration of section (5) could 

be improved following [7,9] and ~. Further research is needed to 

explore the full class of problems to which this method applys as 

well as to see which modifications if any would be needed to approach 

problems apparently not belonging to this class such as the Steiner 

network problem and the quadratic assignment. 
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