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ABSTRACT 

This paper is a contribution to the unified approach of Halkin, Neustadt, 

Gamkrelidze and others to the theory of necessary conditions for general optimization 

problems. 

The basic problem is formulated in terms of real linear topological spaces, 

mappings between them and a partial ordering determined by a proper convex cone. It 

includes, therefore, problems with both scalar- and vector-valued optimality criteria. 

Optimality conditions are developed in terms of G~teaux and Frechet differentials 

of given mappings and linear continuous functionals on the spaces concerned, making 

use of the Dubovitskiy and Milyutin's formalism. 

INTRODUCTION 

We develop necessary and sufficient optimality conditions for a Mathematical 

Programming Problem, employing the Dubovitskiy and Milyutin's formalism [1,21. This 

is built round a form of the separation principle for finite families of convex sets 

with empty intersection, each set corresponding to an approximation to a constraint 

in the problem. 

The Mathematical Programming Problem is of considerable generality and covers a 

wide range of applications. We take the underlying set to be a real linear topo- 

logical space and allow for vector-valued objective function as well as for infinitely 

many equality and inequality constraints. 

Our findings differ in minor respects from known results in the literature, 

principally over weakening of differentiability requirements on the constraint and 

objective function in obtaining the necessary conditions. We feel though that the 

main contribution is in presenting a simple, complete proof of the results. 
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i. FORMULATION OF THE BASIC PROBLEM 

Take X, YI' Y2" Y3 real linear topological spaces, mappings F : X + Y[, G : X ÷ Y2" 

H : X ÷ Y3' set Q ~ x, proper convex cones c ~ YI' S ~ Y2 with non-empty interiors, 

and a fixed element e c Y3" The set ~ of feasible points is defined as follows: 

n = {x~X~xeQ,G(x)~S,H(x)=e}. 

We introduce the Basic Problem: 

Basic Problem 

Find x £ Q such that 

{ZE~;F(z)-F(x)EC\{G}} =~. 

Every such element is called optimal. (Here, and subsequently, @ denotes the zero 

element in the space concerned.) 

This will be recognised as a mathematical programming problem over a real linear 

topological space with multivalued objective function in the presence of constraints, 

of a form similar to that studied in [3]. 

The set Q comprises the implicit constraints, while the set {z~X;H(z)=e,G(z)£S} 

defines the explicit (equality and inequality) constraints. We make no assumptions 

concerning finite dimensionality of the ranges of the constraint functions. 

2. BASIC THEORY 

Let X be a real linear topological space. (Throughout this paper we shall 

suppose all topologies to be Hausdorff.) 

The real linear space of all linear continuous functionals on X is denoted by X*. 

2.1 We begin with definitions of "conical approximation" and "polar cone", as these 

are the two basic concepts in formulating and deriving the necessary conditions for 

optimality. 

A list of useful properties is given below. Verification of these properties is 

routine and so no proofs are given. 

Let Q be a subset of X, x c X and N a base of neighbourhoods of zero. The 

following sets 
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M(x~Q) = (z6X; ~ ~>0 ¥ UcN B@£ (0,E) B~ez+U x+~w6Q} 

are called conical approximations of Q with respect to x. 

The following ternlinolog~ is usually attached: 

K,C - cones of approximations 

N - cone of internal directions 

M - cone of tangents 

Precise definitions of these cones and notation vary in the literature; 

notation is as used in [43. 

Proposition 1 

Let P and Q be subsets of x, x £ x. Then 

(a) N(x,Q) ~ K(xrQ) ~ C(x,Q) ~ M(x,Q)~ 

(b) K(x,Q) and c(x,Q) are cones; 

N(x,Q) is an open cone; 

M(x,Q) is a closed cone; 

(c) N(x,P) n N(x,Q) = N(x,PNQ); 

K(x,P) n K(x,Q) = K(x,PNQ); 

N(x,P) N M(x,Q) ! M(x,PNQ); 

K(x,P) n C(x,Q) c C(x,PNQ); 

(a) N(x,x) = x; M(x,~) = ~; 

(e) N(x,Q) = N(x, int Q) ; 

M(x~Q) = M(x,Q); 

(f) if P ~ Q then 

N(x,P) c N(x,Q), K(x,P) ! K(x,Q), 

C(x,P) c C(x,Q), M(x,P) ! M(x,Q); 

(g) if Q is cone then 

K(@,Q) = Q, N(@,Q) = int Q; 

(h) if Q is convex then 

K(x,Q) = C(x,Q), N(x,Q) = K(x, int Q) 

our 
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(i) 

N(x,Q), K(x,Q), C(x,Q) and M(x,Q) are convex 

if Q is convex, int Q # ~ then 

N(x,Q) = M(x,Q), N(x,Q) = int M(x,Q). 

Let Q be a subset of X. The set 

Q+ = {f(X*; f(x) > 0 for all x£Q} 

is called the polar cone of Q. 

Proposition 2 

Let P and Q be subsets of X. Then 

(a) Q+ is a convex cone in x*; 
+ + 

(b) if P c Q then Q c p ; 

(c) x + = {0}, {0} + = x*; 

(d) Q+ = (~) +-, 
+ 

(e) if Q is convex, int Q # ~, then Q 

(f) if Q is a subspace in X then 
+ 

Q = {f£x*; f(x)=0 for all x6Q}. 

= (int Q)+; 

Proposition 3 

Take Q a convex subset of X, f ~ X*. Consider the assertions: 

(a) f(x) < f(y) for all y 6 Q; 

(b) f 6 K(x,Q)+; 

(c) f ~ N(x,Q)+; 

Then if x e QI (a) 4m~(b), and if x e Q, int Q # ~, (a)~ (b) 4m)(c). 

Proposition 4 

Take Q a cone in X, x ~ Q and f £ X*. If f(x) < f(y) for all y ~ Q, then 
+ 

f(x) = 0 and f c Q . 

2.2 We make essential use of the following consequence of the Hahn-Banach Theorem: 

Separation Theorem 

Let Q0' QI' "''" Qn (n~l) be non-empty convex sets in X, Qi' "''" Qn open and 
- n 

e ~ Qi' i = 0, i, ..., n. Then i~0Q i = ~ if and only if there exist linear 

continuous func%ionals f0' f1' "''' fn on X, not all zero, such that 

(a) fie Q+, i = 0, i, ..., n; 

n 

(b) [ f. = @. 
i=0 1 



442 

If i~0Q i = Q ~ ~ then Q = Qi" 
i=0 

This result was originally stated in [13. The proof given in [2] for X normed 

space, carries over to this more general setting unaltered. 

In the rest of t_h_is section let X and Y be real linear topological spaces and 

C c y a convex cone with non-empty interior. 

We say that mapping T : X + Y is C-convex, if 

T(lx+~y) - lT(x) - ~T(y) • C 

for all x, y E X and ~, ~ E (0,i), ~ + ~ = Io 

Proposition 5 

Suppose that T : X ÷ Y is C-convex and T(@) = @. 

(a) 

(b) 

If T-l(int C) # 4 and g £ [T-I(c)] +, then there exists f £ C + such that 

f(T(x)) < g(x) for all x e X. 

-I + 
If T (int C) = 4, then there exists non-zero functional f • C such 

that f(T(x)) < 0 for all x ~ X. 

Proof 

Let us denote 

QO = {(T(x)-~,-g(x)); x~X, 0~cC}, 

Q1 = { (y,z)~ y 6 int C, z>0}. 

Then, evidently, Q0 is a convex set in Y × R ~ (0,0) • Q0' and QI is an open convex 

cone in Y x R. It is easily verified that Q0 N Q1 = 4, for if it was not so, then 

there would exist x 6 X and ~ • C such that T(x) - ~ e int C and g(x) < 0. But 

T(x) £ C because ~ • Cw and so g(x) ~ 0, which is a contradiction. 

From the Separation Theorem we concludes that there exists a non-zero functional 
+ + - 1  

(h,~) ~ Y* × R ~ where (h,~) ~ Q1 and -(h,~) e QO" Since T (int C) ~ 4 it fol~ows 

that ~ > 0 and h(T(x)-~) - ~g(x) < 0 for all x ~ X and ~ e C. We set f = h/~. 
+ 

Putting x = e and ~ = @, respectively, we in turn get that f • C and f(T(x)) _< g(x) 

for all x e X. To conclude the proof we notice, that if T -I (int C) = 4, 

int C N {T(x)-W; x•X, ~£C} = 4. Applying the Separation Theorem again we obtain a 

non-zero functional f 6 Y* such that f(T(x)-w) < 0 for all x £ X and 0~ c C. Therefore 

f • C + and f(T(x)) < 0 for all x • X. 
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If T : X + Y is linear and continuous, then T* denotes the dual mapping T* : Y* ÷ X* 

defined by 

T*(f) = f 0 T for all f E Y*. 

Corollary 

Suppose that T : X ÷ Y is linear and continuous. 

-i 
(a) if T 

-I 
(b) If T 

(int C) ~ ~, then [T-I(C)] + = T*(C+). 
+ 

(int C) = ~, then there exists a non-zero functional f { C 

such that f o T = 8. 

We take note also of the following standard result. 

Proposition 6 

Let X, Y be Banach spaces and T : X ÷ Y linear and continuous projection. 

IT-l({@})] + = T*(Y*). 

Then 

2.3 To state the results of this sub-section, we need to recall ([5]) the definitions 

of Fr~chet and G~teaux differentiability. 

The mapping T : X + Y is said to be G~teaux differentiable (briefly G-different- 

iable) at x e X, if the limit 

T (x+th) -T (x) 
lim 
t÷0+ t 

written DT(x,h), exists for all h ~ X. Then lYg(x) denotes the mapping DT(x,-) : X + Y. 

We say that T is strongly G-differentiable at x ~ X, if for all h £ X 

T(x+tk)-T(x) 
DT(x,h) = lim 

t_+0 + t 

~+h 

The mapping T : X ÷ Y, where X and Y are normed spaces, is said to be Frechet 

differentiable (briefly F-differentiable) at x £ X wi~ F-derivative DT(X) : X ÷ Y, 

if DT(x) is linear and continuous, and for all h £ X 

J,f Cx÷h,l-T x>-O (x Ch) ff = 0 
h-~ IIhll 

If moreover, for all h, k 6 X 
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lim I IT(x+h)-T(x+k)-DT(x) (h-k) II = 0 
m,k)÷(e,0) ' I ' lh:kl I 
h#k 

then T is said to be strongly F-differentiable at x. 

The next three propositions follow directly from the above definitions. 

Proposition 7 

Suppose that T is G-differentiable at x c X. Then 

(a) DT(x) -I (K(T(x) : int C)) ~ K(x,T -l(int C)) ; 

(b) DT(x) -I (int C) c K(x,T-I(T(x)+ int C)) . 

Proposition 8 

Let T be linear mapping and x e X. Then 

{hEX; DT(x,h)=@} = K(x,T -l({T(x)})). 

Proposition 

suppose that T is strongly G-differentiable at x e X. Then 

(a) 

(b) 

-i -i 
DT(x) (N(T(x), int C)) c N(x,T (int C)); 

DT(x)-l(int C) i N(x,T-I(T(x)+ int C)). 

Proposition i0 

Let X, Y be Banach spaces and suppose that T is strongly F-differentiable at 

x £ X, DT(x) : X ÷ Y is a projection. Then 

-i 
{h~X; DT(x) (h)=@} = M(x,T ({T(x)})). 

Proof 

Let us denote K = {h6X; DT(x) (h)=@}. Since every strongly F-differentiable 

mapping is strongly G-differentiable, it follows immediately that M(x,T-I({T(x)})) i K. 

Conversely, letk c K and S > 0 be given. Suppose that Y ~ {O}, for if Y = {O}, 

then K = X = M(x,X) o K is a closed subspace in X, so X/K is also a Banach space and 

there exists a linear continuous bijection A : X/K + Y, A ~ O, such that DT(x) = A o f, 

where f : X + X/K is the canonical projection f(x) = x + K. By the open-mapping 

theorem A is continuous, hence A is an isomorphism. 

Mapping T is strongly F-differentiable, therefore there exists ~ > 0 such that 
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(i) I lh l i l  < ~, l lh21 < ~ ]iT(x+hl)-~<~+h2)-DT(x)<hi-h2)l] < c] I h - h 2 1 1 ,  

1 
where c 

411A -i 

Further there exists @ e (0,~) such that 

(2) 

(3) 

I l h -k t l  < ~ l l h l l  < ~ and 

jIT(x~k)-T(x)ll < ~ c / 2 .  

We now define sequences {k n} in X and {t n} in X/K in t/]e following manner: 

k 0 = k, t O = K and 

(4) tn+ I = tn 1/5 A-l[T(x+~kn)-T(x)], 

(5) kn+ I ( tn+ 1 such that Ilkn+1-knI[ < 211tn+l-tnll, n ~ 0. 

Using (3) we note that l l t l [  l <e/8, and IIh-kll < ~/4. 

that the sequence {k } has the following properties: 
n 

We show by induction 

(6) ] tkn+l -knl  ] < = - n l l h - k l l ,  

{7) l t~n+ ~ - ~iJ < ~/2 

This would imply that {k } and {t n} are Cauchy sequences in X and X/K, respectively, 
n 

and therefore convergent. If h = lim k , s = lim t , then h E s and using (4) we 
n n 

conclude that 

S = s - I/~ A-lIT(x+ h)-T(x)J, i.e. 

T(X+<~h) = T(X) and ] l h - k l l  < E, ~ ~ (o,e) 

in other words k E M(x,T-I({T(x)})). 

We saw that (6) and (7) are valid for n = 0. Supposing their validity for 

m _< n-l, we show that they hold for n. Since k E t , we have A(t ) = DT(x) (k), and 
n n n n 

tn+ 1 = -A-l[ ?(x+~kn)-T(x) DT(x) (k)]. 
n 

Then 

J t tn÷ l - tn l l  : r i ~ - l l l  

< ItA-111 

T (x+~k n) -T (x+~kn_ 1 ) -DT (X) (kn-kn_ 1) t t  

- -  .c~[ Ikn-kn_l i  I = 1/411kn-kn_il I. 
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Hence 

and 

!Ikn+l-kn [ 

IIkn+l-kl 

which completes the proof. 

< 211tn+l-tnl I < i/211kn-kn_ll I < 2-nllkl-kll, 

n 

! Z l lh+ikiil ! 211h-kll < ~12 
i=0 

3. THE MAIN RESULTS 

In this section we consider the Basic Problem. First, under the assumption X and 

Y3 are Banach spaces, we give necessary conditions for optimality, in the presence of 

equality and inequality constraints: 

Theorem i 

Let us SUDpOSe that either 

or 

and 

(a) 

(b) 

(a') 

(b') 

(c) 

there exists a non-empty open convex cone K c N(x,Q), 

mappings F and G are strongly G-differentiable at x, mapping H is 

strongly F-differentiable at x; 

there exists a non-empty open convex cone K c C(x,Q), 

mappings F anf G are G-differentiable at x, mapping H is linear and 

continuous, 

DF(x) and DG(x) are C-convex and S-convex, respectively, and 

continuous, DH(x) has a closed range. 

If X is optimal~ then there exist functionals ~ £ X*, ~ 6 Y~, ~ £ Y~ and V 6 

such that 

(z) 

(ii) 

(Iii) 

Ed+)~oDF(x)+p0DG(x)+~)oDH(x)3(h) < 0 for all h 6 X; 

I # e or ~# e or ~ # e; 

~ K +, I e C +, ~ e S + and ~(G(x)) = 0. 

In the absence of equality constraints, we may dispense with the assumption that X 

be a Banach space: 

Theorem 2 

Let us suppose that either 

(a) 

(b) 

there exists a non-empty convex cone K c M(x,Q), 

mappings F and G are strongly G-differentiable at x; 

or 
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and 

(a') 

(b') 

(c) 

there exists a non-empty convex cone K ~ c(x,Q), 

mappings F and G are G-differentiable at x; 

DF(x) and DG(x) are C-convex and S-convex, respectively, and 

continuous. 

If x is optimal, then there exist functionals ~ e X*, I e Y~ and ~ ~ Y~ such that 

(z) 

(II) 

(III) 

[~+IoDF(x)+~oDG(x)](h) < 0 for all h £ X; 

+ + + 
e K , I { C , ~ £ S and ~(G(x)) = 0. 

The following results, Theorems 3 and 4, consider the Basic Problem when the 

objective function is single-valued. Under certain convexity assumptions, the 

necessary conditions in the above theorems become sufficient for optimality, if the 

multiplier associated with the objective function is non-zero (in particular, if the 

appropriate Slater's condition holds). As above, we may develop our results in a 

more general framework where equality constraints are absent. 

Theorem 3 

Let us suppose that 

(a) 

(b) 

(c) 

(d) 

Then 

(i) 

(2) 

x is a feasible point; 

Q is a convex set with non-empty interior; 

mappings F and G are C-convex and S-convex, respectively, and 

G-differentiable at x, where DF(x) and DG(x) are continuous, 

mapping H is linear and continuous; 

there exist functionals ~ ~ X*, ~ c Y~, ~ ~ Y~ and a real number 

such that 

(I) 

(II) 

(III) 

(i-v) 

[d+IDF(x)+~°DG(x)+H°H](h) < 0 for all h c X; 

# 0 or ~ # @ or ~) # (9, 

¢~(x) < c~(y) for all y E Q, 
¥ + 

~ C , ~/ ~ S and ~/(G(x)) = O. 

If I # 0, x is optimal. 

If H is a projection and there exists z ~ int Q such that 

G(z) 6 int S, H(z) = e, then I ~ 0. 

Theorem 4 

Let us suppose that 

(a) x is a feasible point; 

(b) Q is convex; 
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(c) 

{d) 

Then 

(I) 

(2) 

mappings F and G are C-convex and S-convex respectively, and 

G-differentiable, where DF(x) and DG(x) are continuous; 

* and a real number ~ such that there exist functionals ~ { X*, ~ ~ Y2 

(I) [~+IDF(x)+~°DG(x)](h) < 0 for all h { X; 

(If) I # 0 or ~ ~ e, 

{III) ~(x) < ~(y) for all y • Q, 

(IV) i { C +, ~ • S + and ~(G(x)) = 0. 

If I # 0~ x is optimal. 

If there exZsts z £ Q such that G(z) £ int S, then I # 0o 

4. PROOF OF THE MAIN RESULTS 

Here we prove the theorems of Section 3. We shall see that these results follow 

simply from the Separatlon Theorem using the properties of conical approximations and 

polar cones developed in Section 2o 

Proof of Theorem 1 

Let us suppose that x is optimal and assumptions (a), (b) and (c) hold. 

We define 

P = {z{x; F(z)-F(x){C\{0}), 
= r 

K 1 lhcX; DF(xsh) E int C}, 

K 2 = {h£X; DG(x~h)~N(G(x), int S)}, and 

K 3 = {h~X; DH(x,h)=@}. 

Note that K 1 and K 2 are open convex sets, @ • KI' @ E K2 and K 3 is a subspace in X. 

We first show that the conclusion of the theorem follows trivially if 

either K I = ~ or K 2 = ~ or DH(x) is not a projection. 

Suppose that K 1 = ~ 

non-zero functional ~ { 

Then using Propositions 2 and 5 we conclude that there is a 
+ + 

(int C) = C such that 

o OF(x;h) < 0 for all h E X. 

Now suppose that K 2 = ~o Using Proposition 5 again it follows that there is a non- 
+ 

zero functional ~ 6 N(G(x), int S) such that 

)~ o DG(x;h) < 0 for all h ~ X. 

+ 
Propositions 2, 3 and 4 imply that ~ ~ S and ~(G(x)) = 0. 
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If DH(x) is not a projection onto Y3' then the range of DH(x) is a proper 

closed subspace of Y3' so by Hahn-Banach theorem there exists a non-zero functional 

£ Y~ such that ~ o DH(x) = 8. 

Now suppose that both K 1 and K 2 are non-empty and DH(x) is a projection. It 

follows immediately from Propositions 8 and i0 that 

-I 
K I c_ N(x,F (F(x)+ int C)) !N(x,P), 

K 2 c N(x,G-1(int S)) c__N(x,G-I(s)), and 

K 3 = M(x,H -i({e})) . 

We point out that 

Q N P N G-I(S) N H-l({e}) = ~ (i) 

by virtue of x being optimal, and consequently using Proposition i, we conclude that 

N(x,Q) N N(x,P) D N(x,G-I(S)) n M(x,H-1({e})) = ~ (2) 

and so 

K n K 1 ~ K 2 N K 3 = ~ (3) 

, K + + f2 • K~, f3 e 3' By the Separation Theorem there exist functionals f 6 K + fl • KI' 

not all zero, such that 

f + fl + f2 + f3 = e. 

+ 
From Propositions 5 and 6 it follows that there are functionals I £ (int C) , 

+ 
e N(G(x), int S) and ~ e Y~, not all zero, such that for all h • X 

1 o DF(x,h) < fl(h)' 

o DG(x,h) < f2(h), and 

o DH(x)= f3" 

We set ~ = f. Consequently for all h • X 

E~+I°DF(x)+p°DG(x)+V°DH(x) ] (h) < 0. 

AS before we observe that i £ (int C) + implies I • C + and ~ e N(G(x),int S) 
+ 

that ~ • S and ~(G(x)) = 0. 

+ 
implies 

Now let us suppose that (a'), (b') and (c) hold. Using Propositions 7 and 9 we 
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get the following inclusions: 

-i 
KI c K(x,F (F(x)+ int C)) c__ K(x,P) 

-i -i 
K 2 c_ K(x,G (int S)) cK(x,G (S)), and 

K 3 = K(x,H -l({e})) . 

Finally we observe that, reasoning almost exactly as before, but with 

C(x,Q) N K(x,P) N K(x,G-I(s)) N K(x,H-I({e})) = (4) 

instead of (2) and with 

K 2 = {h{X, DG(x,h) eK(G(x), int S)) 

possibly replacing the earlier definition of K 2, we can draw the same conclusions. 

We confine ourselves to proving Theorems i and 3 only, in as much as virtually 

the same arguments are used to prove Theorems 2 and 4. 

In proving Theorem 2, however, we do not make use of Propositions 6 and i0, and 

so we need not require X to be a Banach space. 

Proof of Theorem 3 

Firstly suppose that ~ # 0 and let z 6 X, z # x, be another feasible point, i.e. 

z [ Q, G(z) e S and H(z) = eo 

We write h = z - x. In view of the convexity of F and G 

DF(x,h) £ F(z) - F(x) + C, 

DG(x,h) e G(z) - G(x) + S, 

from which it follows that 

kDF(x,h) > ~[F(z)-F(x)], 

o DG(x,h) > 0. 

Moreover we have 

Therefore 

o H(h) = ~(H(z)-H(x)) = 0, and 

~(h) = ~(z) - ~(x) > 0. 
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l[F(z)-F(x)] < a(h) + lDF(x,h) + ~i o DG(x,h) + D o H(h) < 0. 

If C = [0, ~), then ~ > 0 and F(z) - F(x) <__ 0, i.e. F(z) - F(x) { C\{@}. If 

C = (-~,03, then ~ < 0 and F(z) - F(x) > 0, so again F(z) - F(x) ~ C\{@}. Hence 

{z£Q, F(z)-F(x)eC\{0}} =~, which proves that x is optimal. 

Now let H be a projection and suppose that there exists some z e int Q such that 

G(~) e int S and H(z) = e. Writing h = z - x and K = K(x,Q), we use 

K 2 = {h6x; DG(x,h)eK(G(x), int S)}, and 

K 3 = {hex; H(h)=8} 

as before. 

By hypothesis h ~ K(x,Q), since x, z £ Q and Q is convex, moreover 

G(x) + ~DG(x,h) c (l-~)G(x) + ~G(z) + S cint S for all ~ { (0,I], so h { K 2, and 

H(h) = H(z) - H(x) = @, i.e. h ~ K 3. Therefore K N K 2 N K 3 ~ ~. 

Now suppose that ~ = 0. We write 

Then 

f = C~ 

f2 =- ~- ~ o H 

f3 =~ o H. 

f + f2 + f3 = (9. 

Proposition 3 implies that f ~ K +. Since H is a projection, f3 ~ @ if 9 ~ @, and 
+ 

f3 E K 3. Further we note that ~ ~ S + and ~(G(x)) = 0 imply that ~ £ K(G(x), int S)+; 
+ 

in view of the inequality ~ o DG(x,k) ~ f2(k) for all k c X we see that f2 e K 2. 

Moreover f2 ~ @ if ~ ~ @, for in that case 0 < ~ o DG(x,h) ~ f2(h). Because 

f + f2 + f3 = @' and either f2 ~ @ or f3 ~ @' we conclude from the Separation Theorem 

that 

K n K 2 n K 3 = 

which is a contradiction. 

5. CONCLUDING REMARKS 

As emphasised in the introduction, our main concern in this paper has been to 

give a simple, complete derivation of the optimality conditions. We conclude, however, 

by drawing attention to some minor differences with available results. Research into 

necessary conditions for optimality has been limited largely to the case when the 
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range of the equality constraint function is finite dimensional [1,2,3,6,7]. 0nly 

recently has attention been given to the more general situation studied here, where 

this finite dimensionality requirement is disposed with [8,9,10]. Theorem I is in a 

sense complementary to [3, theorem 6.1]. The Theorem gives necessary conditions for 

optimality under different differentiability assumptions on F and G (G~teaux 

differentiability to a continuous C-convex, resp. S-convex function) as compared 

with [3] (strong G~teaux differentiability to a C-convex, resp. S-convex function). 

This is achieved at the cost of expressing the necessary conditions with respect to a 

smaller "convex approximation" to the underlying set Q. 

It does not appear possible, retaining the present level of generality, to remove 

the hypothesis in Theorems I and 2, that the G-differentials are continuous; that it 

can be dispensed with in [3] leans heavily on the finite dimensionality of the range 

of H. 

Finally we mention that we slightly generalise results in [83 to the extent that 

the development here is in real linear topological spaces and also in that their 

strongest result [8, theorem 2.3 ] is stated for H continuously Fr~chet differentiable, 

while only strong Fr~chet differentiability is here required. 
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