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This paper is concerned with the numerical s~mthesis of compensators for 

single loop feedback control systems containing a single non-linear element of the 

saturation type. The approach adopted is that of the method of ineqnalitiest1 )r, 

where the problem is formulated by a set of inequalities which represent the closed 

loop performance required from the system as well as constraints of a physical 

engineering or financial kind. The inequalities define a set of points called the 

admissible space in the space of possible controller parameters and any point in this 

set represents an acceptable design. The approach differs from that of optimisation 

in that system performance is specified by a set of inequalities rather than a cost 

function, so that every aspect of the desired performance can be independently 

specified. 

In previous work (1) the method was applied to the design of linear systems 

and here the method is extended to non-linear systems by the addition of a new 

inequality which ensures that every point in the admissible space represents a closed 

loop system which does not exhibit autonomous limit cycle oscillation. This inequlity 

is defined by using an enhanced sinusoidal describing function algorithm recently 

proposed by Mees (2) which takes account of the effects of higher harmonic signal 

components as well as the fundamental sinusoid in the search for regions of possible 

li~t cycle operation. To simplify the numerical calculation of indicial responses, 

the non-linear element is replaced by an equivalent linear gain using the technique 

of the exponential describing function. (3) An example of use is given and the method 

evaluated. 

2. The desi~method 

The method of inequalities represents a completely general design philosophy 

which can be used to encompass constraints in both the time and frequency domain. 

In the extension to non linear systems it is simply required to find suitable 

representations for the non linear elements, a choice which will be determined by the 

way in which the closed loop specifications are to be formulated. For convenience 

the method of inequalities is now briefly reviewed and the algorithms used in this 

work outlined. 

2.I The method of inequalities 

A design problem can be formulated in terms of a set of inequalities. 

(P) x<%, i=1,2 ...... m--(l 
where the C i are real numbers and p denotes the real vector 

[Pl ......... Pn] and #i are real functions of p. 
The inequalities (I~ can represent performance specifications and system constraints 

which can be of a physical, engineering or financial kind and the components of p 
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represent system parameters. Each inequality 

(p) ~C i defines a set of S i of points in the n dimensional space 

R n ; the coordinates of this space are PI' P2 ...... Pn' We can write 

Si = {P : ~i (p) Ci --(2 
where the boundary of S i is defined by ~i (p) = Ci- 

If there is a point p in R n that satisfies simultaneously all the inequalities 

~i (p) ~C i i = I~2 ..... m then p is inside every set S i. Let S denote 

the intersection of all sets Si; in the usual notation 

m 

S= /~ S. 
i=~ i 

Thus p satisfies all the inequalities if and only if p is in S. We say that S is 

an admissable set and any p in S is an admissable point. This concept is 

illustrated graphically in Figure i. 

Computer programming techniques have been developed for the determination 

of controllers for single variable and multivariable linear systems using this 

design philosophy where the ~ (p) relate to desired constraints on the loop 

indicial responses and loop interaction effects and also to practical constraints 

on such factors as controller parameter valuesand the magnitude of forcing 

functions. The direct extension of these techniques to non linear systems required 

the use of an algorithm to represent the non linear element. Ideally such an 

algorithm should be computationally simple yet sufficiently accurate to yield 

results which approximate closely to actual system responses. 

2.2 The exponential input describin~ function 

If for a step input sing al to the non linear feedback system of figure 2 

the output increases monotonically to a final steady state value, then the input to 

the non linear element will be of a monotonically decreasing form as shown. This 

leads to the consideration of a model input signal to the non linearity which is an 

exponential time function (3). The exponential input describing function represen- 

tation of the non linearity is determined by minimizing the integral-squared error 

in a linear approximation to the actual non linear output. The magnitude of this 

equivalent linear gain is thus determined as 
oo 

N E = o ~ x(t) y {x(t)~ dt ; For x (t) = Ee-t/T 

o°7 x2(t) dt 

This relationship generally results in a simple analytical expression for most common 

static non linearities and is thus easy to compute. In practice, of course, the 

input to the non linearity will be of the more general form 

-t/T 
E e • sine{~t + ~ ~ +bias 
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where the harmonic content is determined by the systems dominant complex poles. 

However, if the percentage overshoot is constrained to 10% or less this harmonic 

component has little effect on the computed value of N E. The effect of any bias 

level can be considered by a suitable adjustment to the value of E used in the 

derivation of N E (4_~. 

In this work the application of the exponential input describing function 

is limited to the study of single valued saturation type non linearities and all 

system linear elements are assumed to have essentially low pass frequency 

characteristics. 

2.3 Limit Czele Prediction 

Sinusoidal input describing function techniques have been used widely 

in the study of limit cycle prediction in non linear single loop feedback systems 

where the application of complex frequency domain analysis has represented an 

intuitive extension of linear systems theory. Although the limitations of this 

approach are well documented~ it has been shown recently (2) that the accuracy of 

limit cycle prediction can be improved by the addition of an error band to the 
A 
O (joJ)locus in the complex frequency comain. This error band is defined by a 

set of error circles centred on the ~ (jg~) locus which represent the contribution 

of higher harmonic signal components and this artifice allows the possibility of a 

more rigorous study of limit cycle behavionr than any treatment based only on a 

fundamental sinusoidal analysis. 

For the autonomous non linear feedback system of figure 3 where the single 

valued non linear element is constrained to a sector defined by lines with slopes 

and~where22~- ~ the radius of an error circle on G(Jo~) corresponding to 

the ~ harmonic is determined as 

where 

and P (,.,') 

rgJ_n 

odd 2 

is defined only for values of ~on the set 

The enve lope  of  a l l  such  c i r c l e s  e v e r  a s u b s e t  of  ~ t o f  ~ i s  t he  

u n c e r t a i n t y  band.  The r e a s o n  f o r  c h o o s i n g  a s u b s e t  i s  t h a t  a s  1.~ d e c r e a s e s  below a 

c e r t a i n  v a l u e ,  t h e  e r r o r  c i r c l e s  become i n c r e a s i n g l y  l a r g e  and c e a s e  to  g ive  u s e f u l  

i n f o r m a t i o n .  In  t he  e a s e  of  a comple te  i n t e r s e c t i o n  of  t he  u n c e r t a i n t y  band w i th  

the describing function locus as in figure 4 it can be shown that limit cycle 

operations can be rigorously predicted with a frequency in the range given by the 
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span ~to ~ Z and an amplitude lying within the range betweenX 1 and ~2" In 

addition the closed loop system can have no periodic oscillation of least frequency 

(~ ~ ~z if there is no intersection of any part of the uncertainty band with 

the describing function locus. It should be noted that although this algorithm 

adds a degree of mathematical rigour to the normal intuitive sinusoidal describing 

function approach, the results obtained will only be particularly useful if the 

harmonic content of the signal is restrained within reasonable bounds and the 

requirement of essentially low pass linear system elements still remains. 

3. Computational Procedures 

The non linear system is assumed to have the structure shown in figure 5 

where K(s) represents a precompensator with linear elements. A general structure 

for the elements of K(s) must first be chosen. This can be as complex as desired 

but it is found useful to start with very simple forms such as a proportional plus 

integral element or an elementary phase lead structure. The magnitude of the 

input step signal is now chosen and the equivalent gain derived for the non linear 

element using the exponential input describing function approximation. The 

linearised model is now examined for closed loop stability and a set of coefficients 

automatically computed for the elements of K to ensure this condition. For the 

chosen input step signal magnitude~the loop time response is now specified as a set 

of constraints which fix limits to such factors as rise time, percentage maximum 

overshoot and steady state error. Physical constraints can also be placed on the 

coefficients of the elements of E and on the magnitude of the input forcing 

function from the compensator. 

Starting from the initial values of the coefficients of the elements of K 

which ensured closed loop stability for the linearised system~the design program now 

iterates to find suitable values for these elements which will meet the imposed 

constraints. At every stage in the iteration the stability of the linearised system 

is first checked and the derived values of the coefficients then used tO seek for 

solutions of the harmonic balance equation in the complex frequency domain where 

the non linear element is now represented by its corresponding sinusoidal input 

describing function. Limit cycle operation is deemed to exist ifjcver a chosen 

frequency set P~ error circles associated with either the third or fifth harmonic 

of the fundamental intersect the describing function locus. By incorporating 

this second computational procedure as a subroutine of the iteration sequence it 

is thus possible to ensure that each point in the admissable space represents a 

closed loop system which is theoretically free of limit cycle behavicur. 

The computer program gives the result of each iteration so that the user 

is aware not only of the progress of the design but also of those particular 

specifications which are most difficult to meet within the limitations imposed by 

physical constraints and the nature of the compensator forms chosen for the design. 

The addition of a computer graphical facility allows system response to be studied 
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in both the time and frequency domain at any stage in the design procedure if 

required. 

4. , An examp!e o f  u se  

A precompensator is to be designed for the system shown in ~ure 6 to 

ensure closed loop stability and a time response to a unit step signal which is 

defined by the following set of inequalities 

Rise time < 6 seconds 

settling time < 10 seconds 

percentage overshoot < 10% 

maximum compensat: or output<lO 

A simple compensator structure was chosen of the form 

K(s)  = ~I  ( 1 + Kes ) 

1 + K3s 

where each K was restricted to a value 0.1 

An initial investigation for limit cycle operation in the uncompensated 

system produced the computer graphical display shown in figure 7 which predicts a 

limit cycle with a magnitude in the range 1.3 -~ 1.6 and frequency in the range 

1.9-~2.05 Radians/sec. The limit cycle subsequently obtained from an analogue 

simulation of the uncompensated system is shown in trace d of flour9 8 and 

has a measured magnitude of 1.43 and frequency 1.6 Radians/sec. 

After five iterations of the design program a compensator of the form 

K(s) = 0.O8 ( 1 + . O 3 S s  ) 

{1  +O.04SSs  ) 

was o b t a i n e d  

and t h e  computed c l o s e d  l oop  t ime  r e s p o n s e  was as  shown i n  t r a c e  b 1 of  fi~ur,e, 8: 

The c o r r e s p o n d i n g  ana logue  computer  s i m u l a t i o n  r e s u l t  i s  shown i n  t r a c e  b of  

figure 8. Traces a and c give the output response of the same simulated 

system with input step signal magnitudes of 0.5 and 2.0 respectively. The 

behaviour of the compensated system in the frequency domain is shown in the computer 

graphical display of figure 9 which indicates as expected, that there is now no 

intersection between the error circles on~(j~) and the describing function locus. 

The required design specifications have been achieved. Computation required approx- 

imately 30 seconds on the PDP 10 computer at U.M.I.S.T. 

5. Evaluation 

The successful extension of the method of inequalities to non linear 

feedback system design depends on the validity of the approximations used for 
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representing t h e  non linear element. Although simple in form, t h e  exponential 

input describing function approximation has proved both remarkably accurate and 

robust in its prediction of Judicial loop responses. Part of the reason for this 

must lie in the fact that while at the beginning of the iteration sequence the 

form of signal input to the non linear element may diverge appreciably from that 

assumed, as the computation proceeds the compensator structure enforces the 

required shape on the output time function which, in turn, increases the accuracy of 

the approximation and allows rapid convergence of the design. The convergence 

process can be further improved at little cost in computation time by calculating 

the magnitude of the input signals to the non linear element at each iteration and 

adjusting the values of the derived linear gains appropriately. 

In theory~any derived compensator will meet the required performance in 

the time domain for the one input signal magnitude chosen at the beginning of the 

design. It is not difficult to recalculate the coefficients of the compensator 

elements over a range of magnitudes of input signal and derive a compromise set of 

coefficient values. In practice, over a very wide range of worked examples it has 

been found that provided the original input signal magnitude is chosen sensibly~ 

the result produced by the exponential input describing function approximation 

is sufficiently robust to render this exercise generally unnecessary. This is 

illustrated in the example given. 

Initially the non linear function was restricted to a simple saturation 

element as it was found that in the open loop condition the exponential input 

describing function approximation gave particularly good results with this type 

of non linearity. Within the context of the design program, however, equally 

good results have now been achieved with single valued non linear elements of 

different types and the range of application has thus been extended. The 

assumption of, essentially, low linear system elements still~ of course, remains a 

vital prerequisite in any study involving the sinusoidal describing function 

philosophy. It has been recently shown (4) that the method can be extended to 

multi input, multi output, low pass linea~ systems containing a set of single 

valued~ bounded non linear elements. 

Within the method of inequalities the use of different algorithms than 

those discussed above is of cou.-se possible and these will be introduced as 

experience dictates to deal ~¢ith particularly difficult system configurations which 

are not amenable to the simple approximations used here. It should be stressed 

that at every stage in the iteration process the user is faced with design decisions 

and the progress of the design and even its ultimate success will depend on a sensible 

evaluation of both initial constraints and possible controller structures. The 

user must also have some initial insight into those factors which influence 

the system under consideration and be aware at all times of the limitations inher~nt 

in the algorithms used in the computational procedure. 
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