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Abstract. We wish to present in this paper the realization of a class of transfer
operators of infinite dimensional state space discrete-time systems. The realization
will be carried out on a functional state space constructed from a given transfer
operator. Our method here is based on the canonical model theory of contraction
Hilbert Space operators of Nagy and Foias.

It will be shown that the state space in this case has beside the output camponent,
a second component which characterizes the energy dissipated in the system. TFurther-
more, the realization will be automatically canonical when one uses cyclic subspaces
of the restricted shift operator on a Nagy-Foias Space. Relationships between the
realization here and the scattering synthesls of passive networks will also be dis-

cussed.

I. Introduction. We study in this paper the realization of linear discrete-time
systems whose transfer functions are contractive analytic functions fraom the unit
disc to the operators from cne Hilbert Space to another Hilbert Space. Our method
here is based on the operator model theery of Nagy and Foias.

A model of an operator is, plainly speaking, ancther operator (or operators) which
is simpler in some suitable sense, and at the same time, has richer structure. In
their theory, Nagy and Foias have shown that every Hilbert Space contraction is
unitarily equivalent to a shift operator compressed to a functional space, called a
Nagy-Foias Space.

In this paper we shall show that given a contractive analytic transfer function, the
Nagy-Foias space constructed from this function is a state-energy type space, and

the realization on this space, using cyclic subspaces of the compressed shift operator
will naturally be canonical.

In Section 2 we present the basic mathematical preliminaries and background motiva-
tion. Structures of a Nagy-Foias space will be discussed in detail in Section 3.

Section 4 is devoted to the realization preblem. Relationships between the Nagy-
Foias theory and scattering realization of networks will also be discussed here.
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IT. Mathematical Preliminaries. In this paper we shall be, unless otherwise stated,
dealing with linear bounded operators on separable Hilbert. spaces. Norm and inner

product are denoted by || || and by [ , 1 respectively.

We briefly present in this section some basic notations and definitions which will
be needed throughout the paper. The Nagy-Foias Space will then be constructed while
its structures and applications to system realizations will be dealt with in Section
3.

Given a Hilbert Space H, the space of power series: f(z) = 20 f 7", where the £ 's are
oo n_

in #, 7§ £l [2 < w, and |z| < 1, is denoted by E’(H). The norm and imner pro-
n=0 © o

duct in H2(H) ave defined by ||£]|? = Eol |£ 117, and (£, = Eotfn,gn]H, where
- n= n=

glz) = } gnzn. Clearly, H2(H) can be identified with the space of square summable
n=0

H —sequences {f ,f f2,...; fi e H}.

We can associate with each f£(z) in HZ(H ) its "bounda:ry function" f£(e*t)= ) fne:"nt
n=0

2

and conséquently, H2 (H#) can be identified with the space L (H ) of Fourier series
with non-negative powers of e t. This space, and therefore H (H) also, are in turm,
a subspace of the space L ) of Fourler Series w1th all powers of elt. We have
the orthogonal decomposition L2 = L H @® L (H), where L (H) 3% the set of

Fourier Series with negative powers of elt.

Given two Hilbert Spaces Hl and H2’ a function 6(z) from the unit disc to the
operators from Hl to H2 is denoted by {6(z), Hl’HZ}' Such a function is bounded
analytic when

6(z) = J enzn, 6: H

. i My s f2l <1
n=

and
[6¢zdn || <M [h ||, by in #].

9 is said to be contractive when M = 1, and purely contractive, if in addition,
||6(0)hl]| < ]|hl]| for any hy in .

Given a bounded analytic function {6(z), Hl’ H2} we can associate with it the
following spaces and operators:

a) The space H2(Hl) S LZ(Hl) and H2(H2) S LZ(HQ).

b) As in the above, we can associate with 6(z) its "boundary function" e(elt)
defined almost everywhere. Hence, we have the following operators
o2 2
6,0 HT(H)) ~HY(H,)
(ezf)(z) = 0(z)f(z)
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. 12 2
6.0 L (Hl) - L (Hz)

(6,6)() = stethyee

%. 12 2
e;. L (H2) + L (Hl)

(00 (0) = ale (), e Dyn = ] oF T
n=0

If 8(z) is contractive, then we can, in addition, define the operator

120y 12
A LO(HD » L7(H)D

(Atf)(t) = ACEYE(L)
. . . it it .y s
where A(t) 1is the unique positive square root [I - 8(e )*9(e” )J%, and it is
bounded between 0 and 1.

To each contractive analytic function {6(z), H 1» H 2} there corresponds a Nagy-Foias
Space which can be constructed as follows [11:

First let H be the Hilbert space of pairs of functions (v(z),A(thu(D)), for v
in H2(H2) and u in L2(H1)

H = H(,) @A) (2-1)

where indicates the closure. The inner product and norm in H are defined

in the usual way

[(v,,0u.), (v, ,0au0] = [v,,v,] + [Au, ,Au,] (2-2)
S R A T R W24, 1% Lz(Hl)
and
2 2 . 2 p
Hwvaw]]” = Hvl %y o+ [isaf]7, (2-3)
H H (Hl) L(H)
The space H is clearly a subspace of the space
K = Lz(Hz} ® A(t)Lz(Hl) (2-1)
= (5,00, £_e L2} @ B (2-8)
Next, in H, consider the set
it 2
M= {(8Czdw(z), Althw(e™ ™)), w e H (H)} (2-6)

It is clear that

2 2
[ Coytad| |2 = | Jowl 2+ [wll? = [Jowl|? = |[w]]
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Hence the map w > (8w, Aw) 1is an iscmetry, and therefore M is closed in H.
Definiticn

The orthogonal camplement M' of M in H:

ut = 5, @ ML) @ ((ow,hw), w e H(H ) (2-7)

is called the Nagy-Foias space of {8(z), Hys HZ}‘

It is not at all clear from this definition what are the meanings and structures of
M". " In the next section we shall investigate these from a system-network viewpoint.

In what follows we will be concerned with linear, fixed, discrete~time system which
has the state space description:

x_ = Ax_+ Bu (2-8)
n n n
v = Cx_+ Du (2-9)
n n n

where n=20,1, 2, ..., A, B, C, and D are appropriate operators; {Xn}, {un} and
{v n} are the states, inputs and outputs respectively. The {xn} and {vn} are
chosen to be square-sumable H,-sequences, and {u } is taken to be square-summable
Hl—sequences.

Given a square-summable sequence {fO, £15 + ..}, its discrete Fourier transform is
the map

£}~ § £2"=£(z) say (2-10)

n n
n=0

Hence taking the transforms of equations (2-8) and (2-9) with %y = 0, we find

v(z) = [D+ 2CLT - za17'8lu(z) (2-11a)

= 6(z) u(z) say (2-11b)

The function 6(z) is called the transfer operator of the system. Again, we assume

that 6(z) is contractive. Given a discrete~time signal {...f Z’f l’fo’fl’fZ””}

if 0 is taken to be the present instant of time, then the sequence {f 0, 1’“'}
is the present-future segment of the signal, while the sequence {...f ,f }

is the past segment of the signal. It then follows that, the space H2(H )

(or L (H )) is just the space of (transform of) present—future inputs, and L (H )
is the space of (transform of) past inputs, while 1? (H ) is the space of allowable
mputszover all (discrete) time. Similarly for the output spaces 12 (H Y, L (H )
and L (H J.

The boundary funct:.on e(e ) is called the system frequency operator. For our
purpose, o¢e® ) is represented by the matrix operator
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it iell elZ-I
8 = |y J (2-12)
L 21 22

with respect to the decompositions LZ(Hi) = L_Q_(Hi) @ L—xz-(Hi)’ i=1, 2. Clearly

R o I S s I U o b ittt
81 7 Pze(e )Pl, 612 = Pze(e )Pl, 6yp = P26(e )Pl and 8,, = Pze(e )Pl, Pr,
i=1, 2 are projection operators from L2(Hi) onto L_‘Z_(H i)' We note that 8,9 can

actually be identified with 6(z).

The system is said to be causal when 0™ty is lower triangular [2 ], that is when

912 = 0, and this certainly is the case when & is analytic.

The space H (equation 2-1) whose elements are pairs of functions (v(z), A(t)u(t))

can be considered as the space of 'present-future output - "input" pairs' of a
system whose transfer operator is 6(z). The function Au is not really an input
although it is in the input space LZ(HI), while u itself is an input. However,

since

2 2
[ Aul | - |]eul| (2-13)
1.2 1.2

2
by g H,)
1 1 2
which can be regarded as the amount of energy which the system abscrbed from the out-
side world. Thus, in some sense, Au characterizes the passage of energy through
the system.

We conclude the section by noting that, in a pair (v, Au), v and u are quite
arbitrary, in the sense that the output v may or may not result from the imput u.
When (v = 6w, Au = Aw) which is an element in M(equation 2-6), then the present-
future output 6w in this case is the response of the system to the present-future

input w.

ITT. Structures of A Nagy-Foias Space. The Nagy-Foias Space M of a contractive
analytic function {8(z), Hy, H2} was introduced by Nagy and Foias [ 1] in the study
of models of Hilbert space contractions (i.e. operators with norms less than or equal

to 1). They showed that such an operator is unitarily equivalent to the compressed
shift operator on M.

Here, in this section we shall investigate the structures of ML, and in particular,

its roles in the realization of 0(z).

Let (v,Au) be an element in H, its component P J_(v,Au), where P N is the orthogonal

projection onto MJ', is clearly M M
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P i(v,Au) = (v,0u) - (Bw,Aw) (3-1)
M

where w is in Hz(Hl) and is such that PML(V,Au)_LM, that is

[Cv-bw, Bu-dw), (6f,4)], = 0, @ in Hz(Hl)
or

Loty + A%y - w, ¥l 0

2 -
L (Hl)
Hence, as a function in 12 (Hl)

oty + A% - w)J..HZ(Hl)

For this to be ture, we must have

P*l"[ev‘-‘v safuowl=o0
Therefore
w = Fylowy + r%u] (3-2)

From which it is evident that (v,Au) in H is in M' if and only if
P{[e“v + 8201 =0 (3-3)

This condition can also be expressed differently as follows. To each pair (v,Au)
in H there corresponds the pair (621u_,Au_) in M' and (622u+,Au+) in M, where
2

u_ is in LE(H:L), u, in L+(Hl) and u_+u = u. From these pairs, we form the

pair

(0,Au) = (62111__ + 622u+,Au) (3-4)
which is an output-input pair in which the present-future cutput ¥ presulted from
the input (over all time) u. We can therefore write

(v,hu) = (621u_,Au_) + (622u+,Au+) * (v=7, 0)

hence
Lemma 1

(v,Aw) in H is in M' if and only if

P;(e*v + 2% =0 (3-3)

or alternately

(v,4u) = (8yju ,hu) + PML(‘V—{\I, 0 (3-5)
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We note that {v—{\i) can be regarded as the ervor between the two outputs v and V.

In what follows we shall concentrate on two special subspaces of Mt

Mi' = closure {(SZlu_,Au_), u_ in LE(HI)} (3-8)
and
M, = closure ® L0,y in 1 (H,)) 3-7)

Plainly speaking, in M.JJ'_, the set of present-future outputs comes entirely from

past inputs, while in M

s the inputs are not specified.

To proceed further we define
Definition 1
The shift operator S on H is defined by

S(v,bu) = (zv, S-TAW), (v,bu) in H (3-8)

and its adjoint S®* is given by

S*(v,Au) = (Y—(—z-—)—;—\-,-(—o—)- s e_itAu) s (vyAu) in H (3-9)

We note that S is an isometry on H, and M is invariant [1 ] under S, as a con-

sequence, M' is invariant under S¥%.

Since M" is not invariant under S, the restriction of § onto M* is called the
compressed shift and is defined by

Definition 2

The operator T: Mt - M given by

T(v,b0) =P (zv, e hu), (v,Au) in M (3-10)
M
is called the compressed shift operator on the Nagy-Folas space M.

The adjoint operator T% is just S% restricted to Mt

(z)-v(0) e-it

T#(v,Mu) = (% . M), (v,aw) in MU, (3-11)

Now we assume that & 1is causal, that is 8y = 0, in this case M]i_ and Mi?‘ have
very nice structures, and as we shall see, they play a cruicial role in the realiza-

tion of € as well as in the Nagy-Foias model theory.

Structures of Mi

As we have defined above

M:lL = closure {(GZlu_,Au_), u_ in LE(Hl)}

setting
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it ~int

u_=e_:"tot.l+e—2 4, + ...t e ocn+...,otiin Hl, (3-12a)
and
8(e™®) = 6 + 0, e'T+ 5, P4 e e, e Hy v, (3-12b)
Then 621\1_ can be calculated as follows
ot it
8ypu_ = Py{6Ce” Du_}
= (elal + 0,0, + 840, + ) 1
it
+ (Gzal B0y + 00, + vee) €
... (3-13)
Hence the matrix of 921 with respect to the orthonormal basis {1,elt, eth, eed}
is
61 02 63 - e
92 63 8”_ .
Lo,,1 = (3-14)
21 93 Ou 95 oo

This infinite matrix is called the Hankel matrix of the Hankel operator generated by
8, denoted by % Hence 621 = er

Let (8(z)w(z), A(t)w(elt)) be an element of M, and since M is not invariant under
S®, S%(pw,Aw) will just be in H. What are the elements of M which are mapped
entively into M' under S%? We have

stCow,aw) = (27 (0(@w(@) - 8@M(©®), D), w in ) a1
Using (3-3) of Lemma 1, we find

P SH@,) = SH(aw, ) -(Ge_it(w(z)—w(o)), se T fu(2)-(0))) (3-16)
Thus for S*(6w,Aw) to be in M, we must have

w(z) = w(0) = o say

that is w(z) must be a constant function in L2(Hl), in other words w is in Hl'

Conversely, for o in Hl’

(6(2)—6(0)

S#(Ba,Aq) = = , e_ltAa) (3-17)

Using (3-12a) and (3-13) we find



546

Qﬁél%@igzd = (81 + 822 + 6322 + o..000
=6, it (3-18)
Therefore
3%(9a, Aw) = {01 e”ita, Ae_ita) (3-19)

which shows that S%(6a,A0) is in M{ and therefore it is in M%.
Lemma 2

in which case

S% gends (Bw,Mw) into Mi if and only if w(z) = 0 in Hl’

S*( e(}l: ACt) = (“e'('z‘)';'e“('o' ) b i\e—lt) o

~it -it
= (81 @ TTas e Ta)d
This lemma suggests that in Mi we can have a sequence of subspaces which are con-
structed as follows.
First set

¢0(z) = 0z} (3-20)
Then for n > 0, define

@n(z)—¢n(0}

Z

¢

4 {3-21)

+l(z) =

It is clear that ¢_(0) = g , the nth coefficient in the power series of 6(z), and
n bns 3 po

for a in Hys ¢n(z)a = GZle_lnta. Next, we define

K =9 (2, ™1, n=0,1,2,... (3-22a)
Then for o in Hl’ Kqo = [6a,Aal is an element of M, while for n > 1

e ~int -
Kha = L¢n, Ae Jo (3-22b)
-int -int . N
218 o, Ae o) (3-22¢)

= (8
which are in Mi.
It follows at once from the above that

(GZlu_,Au_) = Klal + K2u2 + .. F Knan Foaes (3-23)

and therefore

Mi = span{Kla,sz, vans Knm, ceal} (3-2w)



Furthermore, for n > 1

¢n(z)—¢n(0)

_ Ae—l(n‘l'l)'t) N

T*Kncx .

= Kn-!-l o

Hence, for n > 1

Kn 8= T*“n)(la

Thus we have shown that
Theorem 1

Ko is a cyclic subspace [11 of T#

Structures of MJZ'

M. was defined above:

The subspace b
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L the restriction of T* to Mi

M; = closure {P l(y,O), y in H2(H2)}
M

straightforward calculations give

P J_(y,O)

® &
. (I - 8(=)8,,5 - 88,,)y

22

We note that for any B in HZ’
* o= printeltyngy = :
6228 = Pl{efe YRe} = 8(0)%3

Therefore

ky say, for y in Hz(Hz)

P (8,00 = kg = {I-6(2)8(0)%, -26(D)*)g = k8 say, for B in H,
M.L

Next, let us calculate P J_(Belt,()), we have

M
M
where

% it
8,,6€

[H

PI{e(eit)*Beit}

3 &
0(0)#ge't + 6.8

it it % & it
P l(sel ,0) = kBe'" = (1-60,,, - 48,,)8e

+ writ L ¥ *, =it
Pl{e(O) e + OlB + 628 e + ..

{3-25)

(3-25)

(3-27)

(3-28)

(3-29)

(3-30)



548

Therefore
P (BeT,0) = kBel®
Mt
= (1-86(0)%, - AB(O)"‘]Beit - (eeis,mis)
~ it % %
z koﬁe - (GSIB,AOIB)
we have
it it it
PMl(eel ,0) = kBe'" = PMl(kOBel ) =kB  say (3-31)
But, kOBeit = eit ko 8, hence
_ it -
le = PM'L(e kOS) =T ko 8 (3-32)
Similarly, setting
k8 = kget = P (ge?iF,0) (3-33)
M
we find
_ it ity -
kZB =P l(e kBe ) = T(klﬁ) =T (kOB)

M
Thus, in general for n > 0, and 8 in HQ

- int int -
KB =KkBe = PM_L(Be ,0) = T7(k,8) (3-34)
Consequently
Mé = SpanikyBs KB JyBs +oes KBy «ou} (3-35)
We have therefore shown that
Theorem 2
EEB' is a cyclic subspace [1 ] of T| , the restriction of T to M;
M.L
2

Our derivations of Kncx and knﬁ above were motivated by the work of D. N. Clark

[ 3] on one dimensional perturbations of the restricted shift on a Nagy-Foias space
associated with a scalar imner function 6. In his work Clark was using only K1
(which he dencted by KO) and  kg. It is a pleasure to thank Doug. Clark for intro-
ducing this work to me. Clark's work was subsequently generalized by Fuhrmann [ 4],
Ball and Lubin [ 51.

To proceed further, we now consider the necessary and sufficient condition for an
element (v,Au) in M- to be orthogonal to K a.
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The case n = 0 is trivial since Koou is in M. For n > 1, we have:

[tv,0u), Kol = [(v,00), (P;e(eit)einta, pemint g

L@y, 06 %), (80,0001

. . )
= [te™y + Azu, al 2 s Oin Hl

L (Hl)
. .. % 2 . . . it
Now since (v,Au) 1is in MJ‘, 0 v + A"u has an expansion in negative powers of e
% 2 _ =it _23t —int .
6v+Au-y1e +y,e +...+yne teees vy in Hl
Consequently,
[{v,A0), Knoﬁ = [yn,a]Hl » Ypo in Hy, n>1 (3-36)

Hence (v,Au) in M is orthogonal to Ko if and only if Y, = 0.

Similarly, for (v,Au) in M" and for n > 0

[(v,0u), k 8] = [(v,0u), P ("8, 01

m

v, z"8]

it

£vn,B] (3-37)

. o s n . . .
where v, 18 the coefficient of z~ in the power series expansion of Vi Hence

(v,Au) in M is orthogonal to kB8 if and only if v, = 0. It follows from the
above that

Lemma 3
For (v,Auw) in M" ,

(V,Au)_LM“]': if and only if v =0

(v,bu) LM if and only if @v + 2%y =0

The orthogenal complement (in M) of Mi will be denoted by Ml’ while that of Mé
will be denoted by Mz.

For any (v,bu) in M-, straightforward calculations give

. v A
4 ~-int 0 1
T*n(v, Au) = (.E’ e Au) - (-Z—n‘+ Zn_l

)+ e+ V., n>l, (3-38)
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and
n-1
TN (v 00 = (v,dw) = [ kgve, >l (3-39)
2=0
Hence
n=1
(T-T'¥Y (v,bw) = | Kve,n>l (3-40)
2=0
Similarly

(3-41)

ALl v
(T (00 = PR

It then follows that
Lemma 4
For (v,Au) in M
~-int

(1) T v,M) = X, e M), n>1
§e} —

or equivalently

(I-T°T%Y) (v,Aw) =0, n>1

if and only if (v,Au)_LkZ B forall £ = 0,.1, 2, ..., n-1.

(ii) Tn+l(v,Au) = (zn+lv, ei(ml)tAu), n>0

or equivalently
-y (oA =0, n> 0
if and only if (v,Au}_LKQ o for all & = 0, 1, ..., n+ 1.
This lemma is a generalization of Clark's results for the scalar case [ 3 1.

The following results can be easily verified:
Lemma 5
+1
™ Koo o= - knG(O)a , n>0
and
+1 - "
TET B = - K 0(0% 8, 020
In the next Section, we shall use the above results for system operators realiza-

tions.
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IV, Realizations of Transfer Operators. In this Section we shall discuss the

realization of a given contractive analytic transfer operator {6(z), Hl’ HZ}'
Thus, our problem is to find operatars A, B, C and D such that

8(z) = D + z C[I-zA1™'B, lz} <1, (4-1)

We shall use results of previous Sections. First, let us see what are the meanings
of a Nagy-Foias space associated with a given transfer operator {8(z), Hl’ Hz} .

As we have seen above, the Hilbert Space H (equation 2-1) is the space of present-
future outputs (together with elements of the form Au, which characterize the net
energy absorbed by the system) while its subspace M (equation 2-8) is the set of
all present - future outputs, resulted entirely from present - future inputs. Thus,
the orthogonal complement M- of M (in H), can be regarded [6] as a state-energy’
Iype space.

The subspace Mi (equation 3-8) consists of all present - future outputs 62111_
resulted entirely from past inputs u_, further more we have

2 2 2 2 2
110yt 12 = 1o, 12+ [ |12 = (a2 = [logu ||
which can be regarded as energy stored in the system - due to inputs in the past.

To proceed with the realization problem, we first cbserve, from Lemma U, with n =1,
that

(I-T*T) (v,au) = 0 <= (v,Au)_LKla, (4-2)
and
(I-TT*) (v,Au) = 0 <=> (V‘,Au)_LkOB, {4-3)

Also using Lemma 5 with n = 0 we get,

(I-T*T) Kloc = K_LH—S(O)* g0 Ja , (u-4}
and
(I-TT%) kas = ka[l'-e(ﬂ) a(m®] , (4-4)

Now, since {8(z), Hl, HZ} is purely contractive, that is ||8(0)[] < 1, it
can be shown that [1] the ranges of [I-8(0)* 6(0)] and of [I-6(0) 6(0)*] are dense
in Hl and in H 2 regpectively. Hence

[T-T*T7] K_I.Hl = KlHl (4-6)
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_ & ;r = 3 H (41T A Y
[I TT"] ka 2 KO 2 (4-73

From which it follows that

[I—T"“I‘]IKlﬁl z Klﬂl (4-8)
[I_Tp’:]p]zaﬂ“z‘ = T{E)H; (4-9)

for p=1, 2, ...

The operators [I-T%T] and [I-TT*] are both positive and boundled between 0O a?d
1, consequently we can define its positive square roots [I-T#T]? an;i [I-TT=T2,
Furthermore, it follows from (4-8) and (4-9) that the range of [I-T*T1? is dense
in Kl_FG: while that of [I-TT*1? is dense in %

The following model theorem of Nagy-Foias gives a solution to the realization
problem.

Nagy-Foias Model Theorem [1]

Let {6{z}, H
be the restricted shift operator on the Nagy-Foias space M' generated by 6(z),
then

12 Hz} be a purely contractive analytic function, and let T be

B(z) = U GT(z> \ (4-10)

where GT(Z) is called the characteristic operator function of T and is defined
by

GT(z) = T 4 z(I—:rT#f}l”2 [1-zr%]71 (I-T=’=T)1/2 (4-11)

and maps Kl??l into koﬂz.

U and V are unitary maps
Us koﬁz Wz and V: H:|_->K1'Hl

It follows at once from this theorem that the operators A, B, C, and D which
realize 6(z) are

A=TH
B = (I-T*T)% v

C =W I-'IT*)l/z T
02
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D= U 8O = - UT v
KAy

Morecver, since Klﬂ and koﬁz are cyclic for T# and T (Theorems 1
M

' e ™ e

and 3 of Section 3), we conclude that the Nagy-Foias realization is both controllable

and observable.

We note that the Nagy-Foias model thecry was developed via the unitary dilations
of contraction operators [1], this is why they used the two operators (I-T*T)
and (I—‘I'I‘*)l/z, since the operator

g2 |7 (I-TT#)*®

. (4-12)
(I-T4T)%  T*

ig unitary and is a uwnitary dilation of -T.

One can of course obtain other realization schemes, using T, T*, (I-T*T)P and
(I-TT®P.  For instance, if we form

8(z) = = T + 2(I-TT*) [T-2T%T" % (I-T*T)

Then we have

Ty 8(z) = <I>(z)-r1

where T and T, are bounded invertible operators: Tyt Hl - K1”1 and Tyt

H2 -+ kaﬂz . In this case § and ¢ are said to be quasi - similar [1].

Finally, we note that if we set z = % , then 8(z = %g:—) can be taken to be

the scattering operator of a linear passive multiport network [7], and the Nagy-
Foias characteristic operator function eT( z} (equation 4-11) can be gotten by
cascade loading the lossless network whose scattering operator is }  (equation
4-12) in unit inductors.

Thus, for miltiport passive networks, the Nagy-Foias model theorem results in
the cascade load synthesis procedure. For a complete discussion of this, we
rvefer to [8].
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