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Abstiract. We wish to present in this paper the realization of a class of transfer 

operators of infinite dimensional state space discrete-time systems. The realization 

will be carried out on a functional state space constructed from a given transfer 

operator. Our method here is based on the canonical model theory of contraction 

Hilbert Space operators of Nagy and Foias. 

It will be shown that the state space in this case has beside the output ccmponent , 

a second component which characterizes the energy dissipated in the system. Further- 

more, the realization will be automatically canonical when one uses cyclic subspaces 

of the restricted shift operator on a Nagy-Foias Space. Relationships between the 

realization here and the scattering synthesis of passive networks will also be dis- 

cussed. 

I. Introduction. We study in ~his paper the realization of linear discrete-time 

systems whose transfer functions are contractive analytic functions frcm the unit 

disc to the operators from one Hilbert Space to another Hi]bert Space. Our method 

here is based on the opemator model theony of Nagy and Foias. 

A model of an operator is, plainly speaking, another operator (or operators) which 

is simpler in some suitable sense, and at the same time, has richer structure. In 

their theory, Nagy and Foias have shown that every Hilbert Space ccntraction is 

uniterily equivalent to a shift operator compressed to a functional space, called a 

Nagy-Foias Space. 

In this paper we shall show that given a contractive analytic transfer function, the 

Nagy-Foias space constructed from this function is a state-ener@y type space, and 

the realization on this space~ using cyclic subspaces of the compressed shift operator 

will naturally be canonical. 

In Section 2 we present the basic mathematical preliminaries and background motiva- 

tion. Structures of a Nagy-Foias space will be discussed in detail in Section 3. 

Section 4 is devoted to the realization problem. Relationships between the Nagy- 

Folas theory and scattering realization of networks will also be discussed here. 

eThls work was supported by Naticnal Science Foundation under Grant # ENG 75-i1876. 
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II. Mathematical Preliminaries. In this paper we shall be, unless otherwise stated, 

dealing with linear bounded operators on separable Hi]bertspaces. Norm and inner 

product are denoted by II II and by [ , ] respectively. 

We briefly present in this section some basic notations and definitions which will 

be needed throughout the paper. The Nagy-Foias Space will then be constructed while 

its structures and applications to system realizations will be dealt with in Section 

3. 
co 

Given a Hi]bert Space HI the _space of powe~ series: f(z) = [ %zn~ where the f's ere 
n0 n oo 

in H~ I II%11 2 < =~ and Izl < 15 is denoted by H2(H). The norm and inner pro- 
n=0 

duct in H2(H) are defined by I l f l  12 = X l lfnl I~, and [f,g] = !o[fn,%]H, where 
n=0 n c o  

g(z)  = [ gn zn. C l e a r l y ,  H2(H) ean be i d e n t i f i e d  wi th  the  space of  square  sunmable 
n=O 

H--sequences {f0~fl'f2 ''''; fi ~ H}. 
• oo . 

We can associate with each f(z) in H2(H) its "boundary function" f(elt)=n[=0 '~f~elnt' 

and consequently, H2(H) can be identified with the space --L2(H) of Fourier series 

with non-negative powers of e it. This space, and therefore H2(H) also, are in turn, 

a subspaee of the space L2(H) of Fourier Series with all powers of eit. We have 

the orthogonal decomposition L2(H) = L2(H) Q L2(H), where L2(H) i~ the set of 
i~ Fourier Series with negative powers of e 

Given two Hilbert Spaces H I and H2, a function 8(z) from the ,unit disc to the 

operators from H I to H 2 is denoted by {@(z), HI,H2}. Such a function is bounded 

analytic when 

o0 

8(z) = !0On zn, 8n: H I + H2, [z I < i 
n 

and 

I leC~)hlll  ~ MIIhl lJ,  am in Hl" 

e 

lleC0)hzJf < I lh l r l  for ~ y  h 1 in H r 

Given a bounded analytic function {g(z), 

following spaces and operators: 

a) The space H2(HI ) c L2(HI ) and 

is said to be contractive when M = I, and p upely contractive, if in addition, 

HI, H 2 } we can associate with it the 

H2(H2 ) c L2(H2 ). 

b) As in the above, we can associate with 0(z) its "boundary function" 0(e it) 

defined almost everywhere. Hence, we have the following operators 

8z: H2(HI ) ÷ H2(H2 ) 

(8zf)(z) : e(z)f(z) 
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At: 
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L2(Ht ) + L2(H2 ) 

(S t f ) ( t )  = 8 ( e i t ) f ( t )  

L2(H 2) + L2(H1 ) 

(@tf)( t )  = 8 ( e i t ) * f ( t ) ,  8 (e i t ) *  = ni08~ e -int 

is contractive~ then we can, in addition, define the o~ator 

L2(HI ) + L2(HI ) 

(Atf)(t) = A(t)f(t) 

where A(t) is the unique positive square root 

bounded between 0 and I. 

[I - 8(eit)*e(eit)] ½, and it is 

To each eont-~active analytic function {8(z), HI, H 2} there corresponds a Nagy-Foias 

Space which can be ecnstructed as follows [i]: 

First let H be the Hilbemt space of pairs of functions (v(z),A(t)u(t)), for v 

in H2(H2 ) and u in L2(HI ) 

H = H2(H2 )(~)A(t)L2(HZ ) 

where indicates the elosuz~. 

in the usua~way 

The inner product and norm in 

(2-Z) 

H are defined 

and 

[(vI'AUl)' (v2'Au2)] = [Vl'V2] 2 + [AuI'AU2] 2 
H H (H 2) L (H l) 

il(v'A~);12 = llvli22(.~)H + lIAuIl2 
H L2(HI ) 

(2-2) 

(2-3) 

The space H is clearly a subspace of the space 

= L2(.2 ) (D ~~) 
= {(f_~0), f_ e L2(H2 )}_ C) H 

(2-4) 

(2-5) 

Next, in H, consider the set 

M = {(8(z)w(z), A(t)w(eit)), w E H2(HI )} (2-6) 

It is clear that 

l l ( ~ , A w ) l i  2 : I l e w l l  2 ÷ Elwl l  2 - I l e w l l  2 = I l w l l  2 
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Hence the map w + (Sw, Aw) is an is~Tetry, and therefore 

Definiticn 

The orthoganal ccmplement ~ of M in H: 

M is closed in H. 

M i = H2(H2 ) ~ A(t)L2(H I) Q {(8w,Aw), w e H2(HI )} (2-7) 

is called the Nagy-Foias space of {8(z), HI, H2}. 

It is not at all clear from this definition what are the meanings and structures of 

~. In the next section we shall investigate these from a system-network viewpoint. 

In what follows we will be concerned with linear, fixed, disemete-time system which 

has the state space description: 

I 
x =Ax + Bu (2-8) 

cx+ (2-g) 

where n = 0, I, 2, ..., A, B, C, and D are appropriate operators; {Xn} ~ {u n} and 

{v n} are the states, inputs and outputs respectively. The {x n} and {v n} are 

chosen to be square-sunmable H2-sequences, and {u n} is taken to be square-summable 

Hl-sequences. 

Given a square-sunmabie sequence 

the map 
oo 

{%} + [ %Z n : f(z)say 
n=0 

{f0' fl' ""}' its discrete Fourier transform is 

(2-~o) 

Hence taking the tmansfor~s of equations (2-8) and (2-9) with x 0 = 0, we find 

v(z) : [D + zC[I - zA]-IB]u(z) (2-11a) 

= 8(z) u(z) say (2-11b) 

The function 8(z) is called the %mansfem operator of the system. Again, we assume 

that e(z) is eontmactive. Given a discrete-time signal {...f_2,f_l,f0,q,f2 .... }, 

if 0 is taken to be the present instant of time, then the sequence {f0,fl,...} 

is the present-future segment of the signal~ while the sequence {...f_3,f_2~f_l} 

is the P~t segment of the signal. It then follows that, the space H2(H I) 

(or L+2(H1 )] is  just  the space of (transform of) present-future inputs, and L2(H1 ) 
is  the space of (transform of) past inputs, while L2(H1 ) is  the space of allowable 
inputs over a l l  (discrete) time. Similarly for the output spaces H2(H2 ) , L2(H2 ) 
and L2(H2 ) . 

The boundary function e(e it) is called the system frequency opemator. For our 

purpose, 0(e it) is represented by the mat#ix operator 
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• [8118121 

8(elt) = t821 022J 
with respect to the decompositions 

811 = P~@(eit)Pl, 812: P2@(eit)p~, 

i = i, 2 are projection operators from L2(H.) onto 
1 

actually be identified with @(z). 

(2-12) 

L2(Hi ) : L2(Hi )_ ~ L2(Hi ), i = I, 2. Clearly 

• + it + p+ 
821 = P20(elt)P 1 and 022 : P20(e )PI '  r' 

L2(Hi). We note that 822 can 

The system is said to be causal when 0(e it) is lower triangular [ 2 ], that is when 

812 = 0, and this certainly is the case when 8 is analytic. 

The space H (equation 2-1) whose elements are pairs of functions (v(z), A(t)u(t)] 

can be considered as the space of 'present-futureoutput - "input" pairs' of a 

system whose transfer operator is 8(z). The function Au is not really an input 

although it is in the input space L2(HI) , while u itself is an input. However, 

since 

(2-Z3) II uII2L2(HI) =It II2m2<H1) -Ileull 2(H2) 
which can be regarded as the amount of energy which the system absorbed from the out- 

side world. Thus, in some sense, Au characterizes the passage of energy through 

the system. 

We conclude the section by noting that, in a pair (v, Au), v and u are quite 

arbitrary, in the sense that the output v may or may not result from the input u. 

When (v = 0w, Au = Aw) which is an element in M(equation 2-6), then the present- 

future output 8w in this ease is the response of the system to the present-future 

input w. 

IIl. Structures of A Nagy-Foias. Spice. The Nagy-Foias Space M & of a contractive 

analytic function {8(z), HI, H 2 } was introduced by Nagy and Foias [ i ] in the study 

of models of Plilber~ space contractions (i.e. operators with norms less than or equal 

to i). They showed that such an operator is unitarily equivalent to the compressed 

shift operator on M ±. 

Here, in this section we shall investigate the structures of M g , and in particular, 

its roles in the realization of @(z). 

Let (v,Au) be an element in H, its component 

projection onto M & , is clearly 

P (v,Au), where P is the orthogona! 
M ± M ± 
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PM±(v,Au)  : (v,Au) - (0w,Aw) 

where w is in H2(H I) and is such that PMJV,AU) J_M, that is 

or 

[(v-ew, Au-Aw), (eg,Ag)] H = 0, ~ in H2(HZ ) 

(3-1) 

[8~ + A2u-w, ~] 2 = 0 

L (H l) 

Hence~ as a function in L2(HI ) 

(@~v + A2u - w)J- H2(HI ) 

For this to be ture, we n~st have 

Pl[0*v + A2u - w] = 0 

Therefore 

w : Pl[ei~'v + A2u] (3-2) 

From which it is evident that (v,Au) in H is in M ~ if and only if 

Pl [e *v  + A2u] = 0 (3-3) 

This ecndition can also be expressed differently as follows. To each pair (v,Au) 

in H there corresponds the pair (821u ,Au ) in ~ and (822u+,Au+) in M, where 

u_ is in L2_(HI ), u+ in L2(HI ) and u + u+ = u. From these pairs, we form the 

pair 

(9,Au) = (021 u_ + 822u+,Au) (3-4) 

whic/n is an output-input pair in which the present-future output v resulted from 

the input (over all time) u. We can therefore write 

(v,Au) = (021u_,Au_) + (022u+,Au+) + (v-v, 0) 

hence 

Len~a 1 

(v,Au) in H is in M ± if end only if 

Pl(e*v + A2u) = 0 (3-3)  

o r  a l t e r n a t e l y  

(v,Au) = (021u ,Au ) + PM±(V-V, 0) (3-5)  
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We note that (v-v) can be regarded as the error between the two outputs v and v. 

In what follows we shall concentmate on two special subspaces of M': 

~ : closure {(e21u_,Au_) ~ u_ in L2(HI )} (3-6) 

and 

}'.~ = closure {PM.{.(y,0), y in H2(H2)} (3-7) 

Plainly spemking, in ~, the set of present-future outputs comes entirely from 

past inputs, while in M2, the inputs are not specified. 

To proceed fur~iqer we define 

Definition i 

The shift operator S on H is defined by 

S(v,Au) = (zv, eitAu), (v~Au) in H (3-8) 

and its adjoint S '~ is given by 

S~(v,Au) = (v(z)-v(0) e-itAu] , (v,Au) in H (3-9) 
Z 

We note that S is an isometry on H, and M is invariant [i ] under S, as a eon- 

sequence, ~ is invariant under S~'L 

Since ~ is not invariant under S, the restriction of S onto M ± is called the 

compressed shift and is defined by 

Definition 2 

The operator T: ~ + ~ given by 

T(v,Au) : P (ZV~ eitAu), (v,Au) in ~ (3-10) 

is called the compressed shift operator on the Nagy-Foias space M ± . 

The adjoLnt operator T ~'~ is just S '~, restricted to ~: 

T'~'(v'Au) = L'[v(z)-v(0)~ , e-itAu] , (v,Au) in M i , (3-11) 

± have Now we assume that 8 is causal, ~hat is 812 = 0, in this ease and M 2 

very nice str~etumes~ and as we shall see, they play a cruicial role in the realiza- 

tion of e as well as in the Nagy-Foias model theory. 

Structures of 

As we have defined above 

r~ = closure { ( e 2 f % , a u )  , u 

setting 

in L2(HI ) } 
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and 

-it -2it -int 
U = e % + e ~2 + . . .  + e ~ n +  . . . ,  e i  i n  H1,  

= eint + ' @i: @(e it) 80 + 81 e it + 82 e 2it + ..8 n ... H I + H 2 

(3-12a) 

(3-12b)  

Then 821 u_ can be calculated as follows 

821 u_ = P~{e(eit)u_} 

= (81e 1 + 82e 2 + 83e 3 + . . . )  1 

+ (e2~ 1 + e3e 2 + 84~ 2 + . . . )  e i t  

+ .°. 

Hence the matrix of 

is 
n 

81 

e 2 

[e21] : e3 

821 

e 2 

0 a 

o 4 

with respect to the orthonorma! basis {l,e it e 

e 3 • . . 

@ 4 • . . 

8 5 . . . 

(3-13) 

2±t 
oo*} 

(3-14) 

This infinite matrix is called the Hankel matrix of the Hankel operator generated by 

8, denoted by J~8" Hence e21 ~ ~. 

Let (8(z)w(z), A(t)w(eit)) be an element of M~ and since M is not invariant under 

S ~, S*(@w,Aw) will just be in H. What are the elements of M which are mapped 

entiz~ly into M ± under S*? We have 

S*(Sw,Aw) = (z-l(8(z)w(z) - e(0)w(0)], s-itAw(eit)), w in H2(H I) (3-15) 

Using (3-3) of Lenma i, we find 

PMSe(8w,Aw) = S~(8w,Aw) - (0s -it {w( z)-w(0)), As -it (w( z)-w( 0 )]) (3-16) 

Thus for S~(0w,Aw) to be in M ±, we must have 

w(z) : w(0) : ~ say 

that is w(z) must be a ccnstant function in L2(HI ) , in other words W is in H 1 . 
Conversely, for ~ in HI, 

Se(8~, A~) = (9(z)-8(0) e-itA~] (3-17) 
Z ~ 

Using (3-12a) and (3-13) we find 
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8(z)-8(O)~z = (81 + 02z + 83z2 + "~')~ 

-it 
= 821 e ~ (3-18) 

Therefore 

S*(8~,A~) = {821 e-ira, &e-its) (3-1g) 

which shows that S*(8~,A~) is in ~ and therefore it is in M ±. 

Lemma 2 

S* sends (Sw,Aw) into ~ if and only if w(z) = ~ in HI, in which case 

c9(z)-8(0) , 6e -it) 

_iff= ° 
: (821 e ~, Ae-lt~) 

This lermm suggests that in ~ we can have a sequence of subspaees which are con- 

structed as follows. 

First set 

~0(z) = 8(z) (3-20) 

Then for n > 0, define 

Cn(Z)-¢n(0) 
~n+l (z) = z (3-21) 

It is clear that @n(0) = 8n ~ the nth coefficient in the power series of 8(z), and 
z -int . 

for ~ in HI~ %n ( )~ = 021e ~. Next, we define 

K n = [%n(Z), Ae-int], n = 0, i, 2, ... (3-22a) 

Then for ~ in fl'l' K0~ = [8~,A~] is an element of M, while for n >_ I 

~n ~ = [~n~ Ae-~t]~ (3-22b) 

(g21e-int " = ~, Ae-lnc~) (3-22c) 

which are in ~. 

It follows at once from the above that 

(e21u_,Au _) = KI~ I + K2~ 2 + ... + Kn~ n + °.. (3-23) 

and therefore 

= ~{~K2~ ~ ..., Kn~ ~ ...} (3-24) 
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Purthermore, f o r  n > i 

T*Kn~ = ~n(Z)-~n(0)~ ' Ae -i(n+l)t) 

:Kn+ I 

Hence, for n > 1 

Thus we have s h ~ n t h a t  

Theorem 1 

S ' t ~ e t u r e s  o f  1@22 

± 
The subspace M 2 was de f i ned  above: 

± = {PM±(Y,O), Y M 2 e lo su re  i n  H2(ff2)} 

straightforward calculations give 

PM±(Y,0) = ( I  - 8(z)022 , - ge22)Y 

= k y  say, f o r  y in  H2(ff2 ) 

We note tha t  f o r  any B i n  if2, 

* ~{e(eit)~B} 822~ = P = 8(0)*B 

Therefore 

PM±(6,0) = k6 = (I-e(z)8(0)*, -Ae(0)*)6 = k06 say, f o r  8 in  if2 

NexT, l e t  us ea lau la te  PM±(6el t ,0) ,  we have 

pMi(6eit,o ) " = * • = k6e It (I-e8~2 , - ASo2)Se It 

= p ~ { 6 ( e i t ) * 6 e i t  } 

+ ~ it * * e-it 
= Pi{8(0)~,8e + 818 + 826 + ...} 

• , 

: e(0)*6e i t  + el6 

where 

* it 
8226 e 

(3-25) 

(3-26) 

(3-27) 

(3-28) 

(3-29) 

(3"30) 
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= kSe it 

[I-88(0)*, AS(0)~)Be it * * = - _ (eelB,AOIB) 

• _ ~ , 

= k0~e It (8818,A816) 

we have 

P (6eit,0) = kSe it = P L(k06eit) = kl~ 

k06eit it But, : e k 0 B, hence 

kiB = e~(eitk0~) = T k 0 

Similarly, setting 

k26 = kSe 2it = PM (~e2it,o) 

we find 

k2~ = PM±(eitk6e it) = T(~8) = T2(k06) 

THUS, in general for n h O, and 6 in H 2 

knB = k6e int = p (8eint,0) = ~(k06) 

Consequently 

= ~--~{~o~, h ~, ~ . . . . .  ~ . . . .  } 

We have therefore shown that 

Theor~'n 2 

say (3-31)  

(3 -32)  

(3-33)  

(3 -34)  

(3 -35)  

k08 is a cyclic subspace [i ] of T , the restrieticn of T to M 2. 

Our derivations of Kn~ and kn~ above were motivated by the work of D. N. Clark 

[ 3 ] on one d~sional perturbations of the restricted shift on a Nagy-Foias space 

associated with a scalar inner function 8. In his work Clark was using only 

(which he denoted by K 0) and k 0 . It is a pleasure to thank Doug. Clark for intro- 

ducing this work to me. Clark's work was subsequently generalized by Fuhrmann [ 4 ], 

Ball and Lubin [ 5 ]. 

To proceed further~ we now consider the necessary and sufficient condition for an 

element (v,Au) in M i to be orthogonal to Kn~. 
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The case n = 0 is trivial since K0e is in M. For 

[(v,Au), Kn~] = [(v,Au), (P~8(eit)eint~, Ae-int~)] 

= [(znv,Aeintu), (8~,A~)] 

= [eint(8~v + A2u' ~] 2 , ~ in H I 
L (H I) 

n h I, we have: 

Now since (v,Au) is in ~, 8*v + A2u has an expansion in negative powers of e it 

-it + -2it -int + ... Yi in HI 8*v + A2u = yl e y2 e + ... + yn e , 

Consequently, 

[(v,Au), Kn~] = [yn,S]Hl , yn,~ in HI, n hi (3-36) 

Hence (v,Au) in ~ is orthogonal to Kn~ if and only if Yn = 0. 

Similarly, for (v,Au) in M ± and for n > 0 

[(v,Au), kn6] = [(v,Au), P~(zn6, 0)] 

= IV, zns] 

where v 
n 

(v,Au) in 

above that 

Lemma 3 

For (v,Au) in M ~ 

= [Vn,B] ( 3 - 3 ? )  

i s  t h e  c o e f f i c i e n t  o f  z n i n  t h e  power s e r i e s  expans ion  o f  v . Hence 
n 

is orthogonal to kn6 if and only if v n = 0. It follows from the 

(v,Au)~-~ if and only if v = 0 

(v,Au)-L~ 2 if and only if 8*v + A2u = 0 

The or~hogonal complement (in P~) of ~ will be denoted by 

will be denoted by M 2. 

For any (v,Au) in M ~, straightforward calculations give 

~41, while that of F~2 

T*n(v, nu) : (v_ e-intAu) Vo Vl 
- (7 + z + " ' "  + n ! l ,  

( 3 - 3 8 )  
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and 

TnT*n(v,Au) = (v,au) - 
n-I 

kzVz 
Z=0 

n>l (3-39) 

Hence 

(I-TnT, w) (v,Au) = 
n-1 
X k~v~, nil (3-40) 

Similarly 

(l-T*n+L~ +I) (v,Au) = 
n 

S K~+ 1%+z' n >_ 0, 
£=0 

(3-41) 

It then follows tha~ 

Lemma 4 

For (v,au) in Hi: 

V (i) T¢~(v,Au) = (~, e-lntAu), n>l 

or equivalently 

(I-TnT ~n) (v,Au) = 0 , n > i 

if and only if (v~Au)J-kz 8 for all Z = 0,.1, 2, .o., n-!. 

(ii) ~+I(v,Au) = (zn+%, ei(n+l)tAu], n > 0 

or equivalently 

(l-T~+lTn+l) (v,Au) = 0, n> 0 

if and only if (v,Au)~_K£ ~ for all ~ = 0, I, ..., n + i. 

This le~na is a generalization of Clark's results for the scalar ease [ 3 ]. 

The following results can be easily verified: 

Lemma 5 

Tn+lKlO~ : - ~Z-e(0)c~ , n > 0 

and 

T*n+ik08 = - Kn+!0(0)* B, n >_ 0 

In the next Section, we shall use the above results for system operators realiza- 

tions. 
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IV. Realizations of Transfer 0perators. In this Section we shall discuss the 

realization of a ~ven contractive analytic transfer operator {e(z), HI~ H2}. 

Thus, our problem is to find operators A, B, C and D such that 

e(z) : n + z C[I-zA]'iB, ]z] < I, (4-1) 

We shall use results of previous Sections. First, let us see what are the meanings 

of a Nagy-Foias space associated with a given transfer operator {8(z)~ HI, H 2} 

As we have seen above, the Hilber¢ Space H (equation 2-i) is the space of present- 

future outputs (together with elements of the form Au, which characterize the net 

energy absorbed by the system) while its subspace M (equation 2-6) is the set of 

all present - future outputs, resulted enti~ly from present - future inputs. Thus, 

the orthogonal complement ~ of M (in H), can be regarded [6] as a state-energy 

type space. 

The subspace ~ (equation 3-6) consists of all present -future outputs 

resulted entirely from past inputs u_, further more we have 

I I ( e21u_ ,Au_ ) l l  2 = l ie2zu_ l l  2 + I I~u_ l l  2 = I lu_ l l  2 . I lemzu_ll  2 

~21 u_ 

which can be regarded as energy stored in the system - due to inputs in the past. 

To proceed with the realization problem, we first observe, from Len~a 

that 

(I-TOT) (v,Au) = 0 <=> (v,Au)-]-KIa, 

and 

(I-T2¢0 (v,Au) = 0 <=> (v;Au) .1. h0B, 

Also using Lenma 5 with n : 0 we get, 

4, with n = I, 

(4-2) 

(4-3) 

Now, since {e(z) ,  H I ,  {4 2} i s  purely contract iye,  that  is  l ie (0)  I < 1, i t  

can be shown that  [1]  the ranges of [ i - e (0 ) *  8(0)] and of  [ I -9 (0)  e(0) ¢~] are dense 

in H I and in H 2 respectively. Hence 

[ZmT~] Kl~l : ~l~l (4-6) 

(I-T~T) ~i~ = ~[z-e(o),'," e(o)]~ , (4-4) 

and 

(I-TT~) k0~ = k0[l-8(0) e(0) ~] , (4-4) 



From w h i ~  i t  fo l lows that  

[I-T~f]P~I : 

for p : i, 2, ..o 

The operators [I-T~f] and 
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(4-7) 

(4-8) 

(4-9) 

[l-Tr*] are both positive and bounded between 0 and 

i, consequently we can define its positive square roots [I-T~%T] ½ and [I-TT~%] ½. 

Furthermore, it follows from (4-8) and (4-9) that the range of [I-T~f] ½ is dense 

in ~ while that of [I-TT~] ~'~ is dense in k0H 2. 

The following model theorem of Nagy-Foias gives a solution to the realization 

problem, 

Nagy-Foias Model Theorem [i] 

Let {0(z), HI, H 2} be a purely contractive analytic function, and let T be 

be the restricted shift operator on the Nagy-Foias space M ± generated by e(z), 

then 

~(z) : U ~T(Z) V (4-10) 

where 0T(Z) is called the characteristic operator function of T and is defined 

by 

ST(Z) = -T + z(I-Tr*) ½ [i-zT*] -I (i-T~%T) ½ (4-11) 

into 

U and V are unitary maps 

U ~ k0-~2 ~H 2 and V: HI÷~ 1 

It follows at once frcm this theorem, that the opemators A, B, C, and D which 

realize 8(z) are 

A= T* 

B = (I-T~T) ~ V 
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D : u e(o)v : - UT[K~ ~ v 

and 3 of Section 3), we conclude that the Nagy-Foias realization is both controllable 

and observable. 

We note that the Nagy-Foias model theory was developed via the unitary dilations 

of conln~aoticn operators [i], this is why they used the two operators (I-T~T) 

and (I-T/*) ½, since the operator 

[ = [-T (I-TY*) ½" 

L (I-T~f) ½ T ~ 

is unitary and is a unitary dilation of -T. 

(4-~2) 

One can of eoumse obtain other realization schemes, using T, T*, (l-T~f) p and 

(I-TT*) p. For instance, if we form 

¢(z) = - T + z(I-TT*) [I-~Te] -! (I-T~) 

Then we have 

r 2 8(z) = ¢(z)T 1 

where T I and T 2 are bounded invertible operators: Tl: HI ÷ ~I and r2: 

H 2 ÷ k8-~2 . In this case 8 and ¢ are said to be quasi - similar [i]. 

Finally, we note that if we set z = p-i then @(z = ~i) can be taken to be 
p+l ' p+l 

the scattering operator of a linear passive multipor~ network [7], and the Nagy- 

Foias characteristic operator function eT(z) (equation 4-11) can be gotten by 

cascade loading the lossless network whose scattering operator is [ (equation 

4-12) in unit inductors. 

Thus, for muitiport passive networks, the Nagy-Foias model theorem results in 

the cascade load synthesis procedure. For a co~lete discussion of this, we 

refer to [8]. 
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