N. Levan
Department of System Science
4532 Beolter Hall
University of Califormia
Los Angeles, Califomia 90024 USA

Abstract. We wish to present in this paper the realization of a class of transfer operators of infinite dimensional state space discrete-time systems. The realization will be carried out on a functional state space constructed from a given transfer operator. Our method here is based on the canonical model theory of contraction Hilbert Space operators of Nagy and Foias.

It will be shown that the state space in this case has beside the output component, a second component which characterizes the energy dissipated in the system. Furthermone, the realization will be automatically canonical when one uses cyclic subspaces of the restricted shift operator on a Nagy-Foias Space. Relationships between the realization here and the scattering synthesis of passive networks will also be discussed.
I. Introduction. We study in this paper the realization of linear discrete-time systers whose transfer functions are contractive analytic functions from the unit disc to the operators from one Hilbert Space to another Hilbert Space. Our method here is based on the operator model theory of Nagy and Foias.

A model of an operator is, plainly speaking, another operator (or operators) which is simpler in some suitable sense, and at the same time, has richer structure. In their theory, Nagy and Foias have shown that every Hilbert Space contraction is unitarily equivalent to a shift operator compressed to a functional space, called a Nagy-Foias Space.

In this paper we shall show that given a contractive analytic transfer function, the Nagy-Foias space constmucted from this function is a state-energy type space, and the realization on this space, using cyclic subspaces of the compressed shift operator will naturally be canonical.

In Section 2 we present the basic mathenatical preliminaries and background motivation. Structures of a Nagy-Foias space will be discussed in detail in Section 3. Section 4 is devoted to the realization problen. Relationships between the NagyFoias theory and scattering realization of networks will also be discussed here.

[^0]II. Mathematical Preliminaries. In this paper we shall be, unless otherwise stated, dealing with linear bounded operators on separable Hilbert. spaces. Norm and inner product are denoted by || || and by [,] respectively.

We briefly present in this section some basic notations and definitions which will be needed throughout the paper. The Nagy-Foias Space will then be constructed while its structures and applications to system realizations will be dealt with in Section 3.

Given a Hilbert Space H_{l} the space of power series: $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$, where the f_{n}^{\prime} 's are in $H, \sum_{n=0}^{\infty}| | f_{n} \|^{2}<\infty$, and $|z|<1$, is denoted by $H^{2}(H)$. The norm and inner product in $H^{2}(H)$ are defined by $\|f\|^{2}=\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{H}^{2}$, and $[f, g]=\sum_{n=0}^{\infty}\left[f_{n}, g_{n}\right]_{H}$, where $g(z)=\sum_{n=0}^{\infty} g_{n} z^{n}$. Clearly, $H^{2}(H)$ can be identified with the space of square summable H-sequences $\left\{f_{0}, f_{1}, f_{2}, \ldots ; f_{i} \varepsilon H\right\}$.
We can associate with each $f(z)$ in $H^{2}(H)$ its "boundary function" $f\left(e^{i t}\right)=\sum_{n=0}^{\infty} f n^{i n t}$, and consequently, $H^{2}(H)$ can be identified with the space $I_{+}^{2}(H)$ of Fourier series with non-negative powers of $e^{i t}$. This space, and therefore $H^{+}(H)$ also, are in turn, a subspace of the space $L^{2}(H)$ of Fourier Series with all powers of $e^{i t}$. We have the orthogonal decomposition $L^{2}(H)=L_{-}^{2}(H) \oplus L_{+}^{2}(H)$, where $L_{-}^{2}(H)$ is the set of Fourier Series with negative powers of $e^{i t}$.

Given two Hilbert Spaces H_{1} and H_{2}, a function $\theta(z)$ from the unit disc to the operators from H_{1} to H_{2} is denoted by $\left\{\theta(z), H_{1}, H_{2}\right\}$. Such a function is bounded analytic when

$$
\theta(z)=\sum_{n=0}^{\infty} \theta_{n} z^{n}, \theta_{n}: \quad H_{1} \rightarrow H_{2},|z|<1
$$

and

$$
\left|\left|\theta(z) h_{1}\right|\right| \leq M| | h_{1} \|, h_{1} \text { in } H_{1} .
$$

θ is said to be contractive when $M=1$, and purely contractive, if in addition, $\left\|\theta(0) h_{1}| |<\right\| h_{1} \|$ for any h_{1} in H_{1}.
Given a bounded analytic function $\left\{\theta(z), H_{1}, H_{2}\right\}$ we can associate with it the following spaces and operators:
a) The space $H^{2}\left(H_{1}\right) \subset L^{2}\left(H_{1}\right)$ and $H^{2}\left(H_{2}\right) \subset L^{2}\left(H_{2}\right)$.
b) As in the above, we can associate with $\theta(z)$ its "boundary function" $\theta\left(e^{i t}\right)$ defined almost everywhere. Hence, we have the following operators

$$
\begin{aligned}
& \theta_{z}: \quad H^{2}\left(H_{1}\right) \rightarrow H^{2}\left(H_{2}\right) \\
& \quad\left(\theta_{z} f\right)(z)=\theta(z) f(z)
\end{aligned}
$$

$$
\begin{aligned}
\theta_{t}: & L^{2}\left(H_{1}\right) \rightarrow L^{2}\left(H_{2}\right) \\
& \left(\theta_{t} f\right)(t)=\theta\left(e^{i t}\right) f(t) \\
\theta_{t}^{*}: & L^{2}\left(H_{2}\right) \rightarrow L^{2}\left(H_{1}\right) \\
& \left(\theta_{t}^{*} f\right)(t)=\theta\left(e^{i t}\right) * f(t), \theta\left(e^{i t}\right) *=\sum_{n=0}^{\infty} \theta_{n}^{*} e^{-i n t}
\end{aligned}
$$

If $\theta(z)$ is contractive, then we can, in addition, define the operator

$$
\begin{aligned}
\Delta_{t}: & I^{2}\left(H_{1}\right) \rightarrow L^{2}\left(H_{1}\right) \\
& \left(\Delta_{t} f\right)(t)=\Delta(t) f(t)
\end{aligned}
$$

where $\Delta(t)$ is the unique positive square root $\left[I-\theta\left(e^{i t}\right) * \theta\left(e^{i t}\right)\right]^{\frac{1}{2}}$, and it is bounded between 0 and 1 .

To each contractive analytic function $\left\{\theta(z), H_{1}, H_{2}\right\}$ there corresponds a Nagy-Foias Space which can be constructed as follows [1]:

First let H be the Hilbert space of pairs of functions $(v(z), \Delta(t) u(t))$, for v in $H^{2}\left(H_{2}\right)$ and u in $L^{2}\left(H_{1}\right)$

$$
\begin{equation*}
H=H^{2}\left(H_{2}\right) \oplus \overline{\Delta(t) L^{2}\left(H_{1}\right)} \tag{2-1}
\end{equation*}
$$

where \longrightarrow indicates the closure. The inner product and nom in H are defined in the usual way

$$
\begin{equation*}
\left[\left(v_{1}, \Delta u_{1}\right),\left(v_{2}, \Delta u_{2}\right)\right]_{H}=\left[v_{1}, v_{2}\right]_{H^{2}\left(H_{2}\right)}+\left[\Delta u_{1}, \Delta u_{2}\right]_{L}^{2}\left(H_{1}\right) \tag{2-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(v, \Delta u)\|_{H}^{2}=\|v\|_{H^{2}\left(H_{1}\right)}^{2}+\|\Delta u\|_{L^{2}\left(H_{1}\right)}^{2} \tag{2-3}
\end{equation*}
$$

The space H is clearly a subspace of the space

$$
\begin{align*}
K & =L^{2}\left(H_{2}\right) \oplus \overline{\Delta(t) L^{2}\left(H_{1}\right)} \tag{2-4}\\
& =\left\{\left(f_{-}, 0\right), f_{-} \varepsilon L_{-}^{2}\left(H_{2}\right)\right\} \oplus H \tag{2-5}
\end{align*}
$$

Next, in H, consider the set

$$
\begin{equation*}
M=\left\{\left(\theta(z) w(z), \Delta(t) w\left(e^{i t}\right)\right), W \in H^{2}\left(H_{1}\right)\right\} \tag{2-6}
\end{equation*}
$$

It is clear that

$$
\|(\theta w, \Delta w)\|^{2}=\|\theta w\|^{2}+\|w\|^{2}-\|\theta w\|^{2}=\|w\|^{2}
$$

Hence the map $W \rightarrow(\theta w, \Delta w)$ is an isometry, and therefore M is closed in H. Definition
The orthogonal complement M^{\perp} of M in H :

$$
\begin{equation*}
M^{\perp}=H^{2}\left(H_{2}\right) \oplus \overline{\Delta(t) L^{2}\left(H_{1}\right)} \Theta\left\{(\theta w, \Delta w), w \in H^{2}\left(H_{1}\right)\right\} \tag{2-7}
\end{equation*}
$$

is called the Nagy-Foias space of $\left\{\theta(z), H_{1}, H_{2}\right\}$.
It is not at all clear from this definition what are the meanings and structures of $M^{\perp} . \therefore$ In the next section we shall investigate these from a systen-network viewpoint. In what follows we will be concerned with linear, fixed, discrete-tine system which has the state space description:

$$
\left\{\begin{array}{l}
x_{n}=A x_{n}+B u_{n} \tag{2-8}\\
v_{n}=C x_{n}+D u_{n}
\end{array}\right.
$$

where $n=0,1,2, \ldots, A, B, C$, and D are appropriate operators; $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are the states, inputs and outputs respectively. The $\left\{x_{n}\right\}$ and $\left\{v_{n}\right\}$ are chosen to be square-summable H_{2}-sequences, and $\left\{u_{n}\right\}$ is taken to be square-summable H_{1}-sequences.

Given a square-sumable sequence $\left\{f_{0}, f_{1}, \ldots\right\}$, its discrete Fourier transform is the map

$$
\begin{equation*}
\left\{f_{n}\right\} \rightarrow \sum_{n=0}^{\infty} f_{n} z^{n}=f(z) \text { say } \tag{2-10}
\end{equation*}
$$

Hence taking the transforms of equations (2-8) and (2-9) with $x_{0}=0$, we find

$$
\begin{align*}
v(z) & =\left[D+z C[I-z A]^{-1} B\right] u(z) \tag{2-11a}\\
& =\theta(z) u(z) \text { say } \tag{2-11b}
\end{align*}
$$

The function $\theta(z)$ is called the transfer openator of the system. Again, we assume that $\theta(z)$ is contractive. Given a discrete-time signal $\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}$, if 0 is taken to be the present instant of time, then the sequence $\left\{f_{0}, f_{1}, \ldots\right\}$ is the present-future segment of the signal, while the sequence $\left\{\ldots f_{-3}, f_{-2}, f_{-1}\right\}$ is the past segment of the signal. It then follows that, the space $\mathrm{H}^{2}\left(\mathrm{H}_{1}\right)$ (or $L_{+}^{2}\left(H_{1}\right)$) is just the space of (transform of) present-future inputs, and $L_{-}^{2}\left(H_{1}\right)$ is the space of (transform of) past inputs, while $L^{2}\left(H_{1}\right)$ is the space of allowable inputs over all (discrete) time. Similarly for the output spaces $H^{2}\left(\mathrm{H}_{2}\right), \mathrm{L}_{2}^{2}\left(\mathrm{H}_{2}\right)$ and $L^{2}\left(H_{2}\right)$.
The boundary function $\theta\left(e^{i t}\right)$ is called the system frequency operator. For our purpose, $\theta\left(e^{i t}\right)$ is represented by the matrix operator

$$
\theta\left(\mathrm{e}^{i t}\right)=\left[\begin{array}{ll}
\theta_{11} & \theta_{12} \tag{2-12}\\
\theta_{21} & \theta_{22}
\end{array}\right]
$$

with respect to the decompositions $L^{2}\left(H_{i}\right)=L_{-}^{2}\left(H_{i}\right) \oplus L_{+}^{2}\left(H_{i}\right)$, $i=1$, 2. Clearly $\theta_{11}=\mathrm{P}_{2}^{-} \theta\left(e^{i t}\right) \mathrm{P}_{I}^{-}, \theta_{12}=\mathrm{P}_{2}^{-} \theta\left(e^{i t}\right) \mathrm{P}_{1}^{+}, \quad \theta_{21}=\mathrm{P}_{2}^{+} \theta\left(e^{i t}\right) \mathrm{P}_{1}^{-}$and $\theta_{22}=\mathrm{P}_{2}^{+} \theta\left(e^{i t}\right) \mathrm{P}_{1}^{+}, \mathrm{P}_{\mathrm{I}}^{+}$, $i=1,2$ are projection operators from $L^{2}\left(H_{i}\right)$ onto $L_{ \pm}^{2}\left(H_{i}\right)$. We note that θ_{22} can actually be identified with $\theta(z)$.

The system is said to be causal when $\theta\left(e^{i t}\right)$ is lower triangular [2], that is when $\theta_{I 2}=0$, and this certainly is the case when θ is analytic.

The space H (equation 2-1) whose elements are pairs of functions ($v(z), \Delta(t) u(t)$) can be considered as the space of 'present-future output - "input" pairs' of a system whose transfer operator is $\theta(z)$. The function Δu is not really an input although it is in the input space $L^{2}\left(H_{1}\right)$, while u itself is an input. However, since

$$
\begin{equation*}
\left.\left\|\left.\Delta u\right|_{L^{2}\left(H_{1}\right)} ^{2}=\right\| u\right|_{L^{2}\left(H_{1}\right)} ^{2}-\|\theta u\|_{L^{2}\left(H_{2}\right)}^{2} \tag{2-13}
\end{equation*}
$$

which can be reganded as the amount of energy which the system absorbed from the outside world. Thus, in some sense, Δu characterizes the passage of energy through the system.

We conclude the section by noting that, in a pair ($v, \Delta u$), v and u are quite arbitrary, in the sense that the output v may or may not result from the input u. When ($v=\theta w, \Delta u=\Delta w)$ which is an element in M(equation 2-6), then the presentfuture output $\theta \mathrm{w}$ in this case is the response of the system to the present-future input w.
III. Structures of A Nagy-Foias Space. The Nagy-Foias Space M^{\perp} of a contractive analytic function $\left\{\theta(z), H_{1}, H_{2}\right\}$ was introduced by Nagy and Foias [1] in the study of models of Filbert space contractions (i.e. operatons with norms less than or equal to 1). They showed that such an operator is unitarily equivalent to the compressed shift operator on M^{\perp}.

Here, in this section we shall investigate the structures of M^{\perp}, and in particular, its roles in the realization of $\theta(z)$.

Let $(v, \Delta u)$ be an element in H, its component $P_{M^{\perp}}(v, \Delta u)$, where $P_{M^{\perp}}$ is the orthogonal projection onto M^{\perp}, is clearly

$$
\begin{equation*}
P_{M^{\perp}}(v, \Delta u)=(v, \Delta u)-(\theta w, \Delta w) \tag{3-1}
\end{equation*}
$$

where w is in $H^{2}\left(H_{1}\right)$ and is such that $P_{M^{\perp}}(v, \Delta u) \perp M$, that is

$$
[(v-\theta w, \Delta u-\Delta w),(\theta \tilde{w}, \Delta \tilde{w})]_{H}=0, \text { w in } H^{2}\left(H_{1}\right)
$$

or

$$
\left[\theta w_{v}+\Delta^{2} u-w, \tilde{w}\right]_{L^{2}\left(H_{1}\right)}=0
$$

Hence, as a function in $L^{2}\left(H_{1}\right)$

$$
\left(\theta * v+\Delta^{2} u-w\right) \perp H^{2}\left(H_{1}\right)
$$

For this to be ture, we must have

$$
P_{1}^{+}\left[\theta^{* v}+\Delta^{2} u-w\right]=0
$$

Therefore

$$
\begin{equation*}
w=P_{1}^{+}\left[\theta^{*} v+\Delta^{2} u\right] \tag{3-2}
\end{equation*}
$$

From which it is evident that $(v, \Delta u)$ in H is in M^{\perp} if and only if

$$
\begin{equation*}
P_{1}^{+}\left[\theta^{* v}+\Delta^{2} u\right]=0 \tag{3-3}
\end{equation*}
$$

This condition can also be expressed differently as follows. To each pair ($v, \Delta u$) in H there corresponds the pair ($\left.\theta_{21} u_{-}, \Delta u_{-}\right)$in M^{\perp} and $\left(\theta_{22} u_{+}, \Delta u_{+}\right)$in M, where u_{-}is in $L_{-}^{2}\left(H_{1}\right), u_{+}$in $L_{+}^{2}\left(H_{1}\right)$ and $u_{-}+u_{+}=u$. From these pairs, we form the pair

$$
\begin{equation*}
(\hat{\theta}, \Delta u)=\left(\theta_{21_{-}} u^{+}+\theta_{22} u_{+}, \Delta u\right) \tag{3-4}
\end{equation*}
$$

which is an output-input pair in which the present-future output \hat{v} resulted from the input (over all time) u. We can therefore write

$$
(v, \Delta u)=\left(\theta_{21} u_{-}, \Delta u_{-}\right)+\left(\theta_{22_{+}} u_{+}, \Delta u_{+}\right)+(v-\hat{v}, 0)
$$

hence
Lemma 1

$$
\begin{align*}
& (v, \Delta u) \text { in } H \text { is in } M^{\perp} \text { if and only if } \\
& P_{1}^{+}\left(\theta \theta_{v}+\Delta^{2} u\right)=0 \tag{3-3}
\end{align*}
$$

or altemately

$$
\begin{equation*}
(v, \Delta u)=\left(\theta_{2 l_{-}}, \Delta u_{-}\right)+P_{M^{\perp}}(v-\hat{v}, 0) \tag{3-5}
\end{equation*}
$$

We note that $(\mathrm{v}-\hat{\mathrm{v}})$ can be regarded as the error between the two outputs v and $\hat{\mathrm{v}}$. In what follows we shall concentrate on two special subspaces of M^{\perp} :

$$
\begin{equation*}
M_{I}^{1}=\text { closure }\left\{\left(\theta_{21} u_{-}, \Delta u_{-}\right), u_{-} \text {in } L_{-}^{2}\left(H_{I}\right)\right\} \tag{3-6}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}^{\perp}=\text { closure }\left\{P_{M^{1}}(y, 0), y \text { in } H^{2}\left(H_{2}\right)\right\} \tag{3-7}
\end{equation*}
$$

Plainly speaking, in M_{I}^{+}, the set of present-future outputs comes entirely from past inputs, while in M_{2}^{+}, the inputs are not specified.

To proceed further we define
Definition I
The shift operator S on H is defined by

$$
\begin{equation*}
S(v, \Delta u)=\left(z v, e^{i t} \Delta u\right),(v, \Delta u) \text { in } H \tag{3-8}
\end{equation*}
$$

and its adjoint S^{*} is given by

$$
\begin{equation*}
S^{*}(v, \Delta u)=\left(\frac{v(z)-v(0)}{z}, e^{-i t} \Delta u\right),(v, \Delta u) \text { in } H \tag{3-9}
\end{equation*}
$$

We note that S is an isometry on H, and M is invariant [1] under S, as a consequence, M^{\perp} is invariant under S^{*}.

Since M^{\perp} is not invariant under S, the restriction of S onto M^{\perp} is called the compressed shift and is defined by
Definition 2
The operator $T: \quad M^{\perp} \rightarrow M^{\perp}$ given by

$$
\begin{equation*}
T(v, \Delta u)=P_{M^{\prime}}\left(z v, e^{i t} \Delta u\right),(v, \Delta u) \text { in } M^{\perp} \tag{3-10}
\end{equation*}
$$

is called the compressed shift operator on the Nagy-Foias space M^{\perp}.
The adjoint operator T^{*} is just S * restricted to M^{\perp} :

$$
\begin{equation*}
T^{*}(v, \Delta u)=\left(\frac{v(z)-v(0)}{z}, e^{-i t} \Delta u\right),(v, \Delta u) \text { in } M^{L}, \tag{3-11}
\end{equation*}
$$

Now we assume that θ is causal, that is $\theta_{12}=0$, in this case M_{1}^{1} and M_{2}^{1} have very nice structures, and as we shall see, they play a cruicial role in the realization of θ as well as in the Nagy-Foias model theory.
Structures of M_{1}^{+}
As we have defined above

$$
M_{1}^{1}=\text { closure }\left\{\left(\theta_{21} u_{-}, \Delta u_{-}\right), u_{-} \text {in } L_{-}^{2}\left(H_{1}\right)\right\}
$$

setting
and

$$
\begin{equation*}
\theta\left(e^{i t}\right)=\theta_{0}+\theta_{1} e^{i t}+\theta_{2} e^{2 i t}+\ldots \theta_{n} e^{i n t}+\ldots, \theta_{i}: H_{1} \rightarrow H_{2} \tag{3-12b}
\end{equation*}
$$

Then $\theta_{21}{ }^{\mathrm{L}}$ - can be calculated as follows

$$
\begin{align*}
\theta_{21} u_{-} & =P_{2}^{+}\left\{\theta\left(e^{i t}\right) u_{-}\right\} \\
& =\left(\theta_{1} \alpha_{1}+\theta_{2} \alpha_{2}+\theta_{3} \alpha_{3}+\ldots\right) 1 \\
& +\left(\theta_{2} \alpha_{1}+\theta_{3} \alpha_{2}+\theta_{4} \alpha_{2}+\ldots\right) e^{i t} \\
& +\ldots \tag{3-13}
\end{align*}
$$

Hence the matrix of $\theta_{2 I}$ with respect to the orthonormal basis $\left\{1, e^{i t}, e^{2 i t}, \ldots\right\}$ is

$$
\left[\theta_{21}\right]=\left[\begin{array}{llll}
\theta_{1} & \theta_{2} & \theta_{3} & \cdots \tag{3-14}\\
\theta_{2} & \theta_{3} & \theta_{4} & \cdots \\
\theta_{3} & \theta_{4} & \theta_{5} & \cdots \\
\vdots & \vdots & \vdots
\end{array}\right]
$$

This infinite matrix is called the Hankel matrix of the Hankel operator generated by θ, denoted by \mathscr{H}_{θ}. Hence $\theta_{21} \equiv \mathscr{H}_{\theta}$.
Let $\left(\theta(z) w(z), \Delta(t) w\left(e^{i t}\right)\right)$ be an element of M, and since M is not invariant under $S^{*}, S^{*}(\theta \mathrm{w}, \Delta \mathrm{w})$ will just be in H. What are the elements of M which are mapped entirely into M^{\perp} under $S^{*} *$? We have

$$
\begin{equation*}
S *(\theta w, \Delta w)=\left(z^{-l}(\theta(z) w(z)-\theta(0) w(0)), e^{-i t} \Delta w\left(e^{i t}\right)\right), w \text { in } H^{2}\left(H_{1}\right) \tag{3-15}
\end{equation*}
$$

Using (3-3) of Lenma 1 , we find

$$
\begin{equation*}
P_{M^{1}} S^{*}(\theta w, \Delta w)=S^{*}(\theta w, \Delta w)-\left(\theta e^{-i t}(w(z)-w(0)), \Delta e^{-i t}(w(z)-w(0))\right) \tag{3-16}
\end{equation*}
$$

Thus for $S *(\theta \mathrm{w}, \Delta \mathrm{W})$ to be in M^{\perp}, we must have

$$
w(z)=w(0)=\alpha \text { say }
$$

that is $w(z)$ must be a constant function in $L^{2}\left(H_{1}\right)$, in other words w is in H_{1}. Conversely, for α in H_{1},

$$
\begin{equation*}
S *(\theta \alpha, \Delta \alpha)=\left(\frac{\theta(z)-\theta(0)}{z} \alpha, e^{-i t} \Delta \alpha\right) \tag{3-17}
\end{equation*}
$$

Using (3-12a) and (3-13) we find

$$
\begin{align*}
\frac{\theta(z)-\theta(0)}{z} \alpha & =\left(\theta_{1}+\theta_{2} z+\theta_{3} z^{2}+\ldots\right) \alpha \\
& =\theta_{21} e^{-i t} \alpha \tag{3-18}
\end{align*}
$$

Therefore

$$
\begin{equation*}
S^{*}(\theta \alpha, \Delta \alpha)=\left(\theta_{21} e^{-i t} \alpha, \Delta e^{-i t_{\alpha}} \alpha\right) \tag{3-19}
\end{equation*}
$$

which shows that $S^{*}(\theta \alpha, \Delta \alpha)$ is in M_{1}^{\perp} and therefore it is in M^{\perp}. Lemma 2

S* sends ($\theta_{W}, \Delta W$) into M_{1}^{\perp} if and only if $W(z)=\alpha$ in H_{1}, in which case

$$
\begin{aligned}
S^{*}\left(\theta_{\alpha}, \Delta \alpha\right) & =\left(\frac{\theta(z)-\theta(0)}{z}, \Delta e^{-i t}\right) \alpha \\
& =\left(\theta_{21} e^{-i t} \alpha, \Delta e^{-i t} \alpha\right)
\end{aligned}
$$

This lemma suggests that in M_{1}^{1} we can have a sequence of subspaces which are constructed as follows.
First set

$$
\begin{equation*}
\phi_{0}(z)=\theta(z) \tag{3-20}
\end{equation*}
$$

Then for $n \geq 0$, define

$$
\begin{equation*}
\phi_{n+1}(z)=\frac{\phi_{n}(z)-\phi_{n}(0)}{z} \tag{3-21}
\end{equation*}
$$

It is clear that $\phi_{n}(0)=\theta_{n}$, the nth coefficient in the power series of $\theta(z)$, and for α in $H_{1}, \phi_{n}(z)_{\alpha}=\theta_{21} e^{-i n t} \alpha$. Next, we define

$$
\begin{equation*}
K_{n}=\left[\phi_{n}(z), \Delta e^{-i n t}\right], \quad n=0,1,2, \ldots \tag{3-22a}
\end{equation*}
$$

Then for α in $H_{1}, K_{0} \alpha=[\theta \alpha, \Delta \alpha]$ is an element of M, while for $n \geq 1$

$$
\begin{align*}
K_{n} \alpha & =\left[\phi_{n}, \Delta e^{-i n t}\right]_{\alpha} \tag{3-22b}\\
& =\left(\theta_{21} e^{-i n t} \alpha_{\alpha} \Delta e^{-i n t}(\alpha)\right. \tag{3-22c}
\end{align*}
$$

which are in M_{1}^{1}.
It follows at once from the above that

$$
\begin{equation*}
\left(\theta_{21} u_{-}, \Delta u_{-}\right)=K_{1} \alpha_{1}+K_{2} \alpha_{2}+\ldots+K_{n} \alpha_{n}+\ldots \tag{3-23}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
M_{1}^{\perp}=\overline{\left.\operatorname{span}\left\{K_{1} \alpha_{3} K_{2} \alpha, \ldots, K_{n} \alpha, \ldots\right\}\right\},{ }_{n}, \ldots} \tag{3-24}
\end{equation*}
$$

Furthermore, for $n \geq 1$

$$
\begin{align*}
T * K_{n} \alpha & =\left(\frac{\phi_{n}(z)-\phi_{n}(0)}{z}, \Delta e^{-i(n+1) t}\right) \alpha \\
& =K_{n+1} \alpha \tag{3-25}
\end{align*}
$$

Hence, for $n \geq 1$

$$
\begin{equation*}
K_{n+1}^{\alpha}=T w^{n} K_{1}^{\alpha} \tag{3-26}
\end{equation*}
$$

Thus we have shown that
Theorem I
K $\overline{K_{1}^{\alpha}}$ is a cyclic subspace [1] of $\left.T^{*}\right|_{M_{1}^{1}}$, the restriction of T^{*} to M_{1}^{\perp}. $\underline{\text { Structures of } M_{2}^{1}}$

The subspace M_{2}^{\perp} was defined above:

$$
M_{2}^{1}=\text { closure }\left\{\mathrm{P}_{\mathrm{M}^{+}}(\mathrm{y}, 0), \mathrm{y} \text { in } \mathrm{H}^{2}\left(\mathrm{H}_{2}\right)\right\}
$$

straightforward calculations give

$$
\begin{align*}
\mathrm{P}_{\mathrm{M}^{\perp}}(\mathrm{y}, 0) & =\left(I-\theta(z) \theta_{22}^{*},-\Delta \theta_{22}^{*}\right) y \\
& =k y \text { say, for } y \text { in } H^{2}\left(H_{2}\right) \tag{3-27}
\end{align*}
$$

We note that for any β in H_{2},

$$
\begin{equation*}
\theta_{22}^{*} \beta=P_{1}^{+}\left\{\theta\left(e^{i t}\right) * \beta\right\}=\theta(0) * \beta \tag{3-28}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
P_{M^{\perp}}(\beta, 0)=k \beta=(I-\theta(z) \theta(0) *,-\Delta \theta(0) *) \beta=k_{0} \beta \text { say, for } \beta \text { in } H_{2} \tag{3-29}
\end{equation*}
$$

Next, let us calculate $P_{M^{L}}\left(\beta e^{i t}, 0\right)$, we have

$$
\begin{equation*}
P_{M^{\perp}}\left(\beta e^{i t}, 0\right)=k \beta e^{i t}=\left(I-\theta \theta_{22}^{*},-\Delta \theta_{\sim ?}^{*}\right) \beta e^{i t} \tag{3-30}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{22}^{*} \beta e^{i t} & =P_{1}^{+}\left\{\theta\left(e^{i t}\right) * \beta e^{i t}\right\} \\
& =P_{1}^{+}\left\{\theta(0) * \beta e^{i t}+\theta_{1}^{*} \beta+\theta_{2}^{*} \beta e^{-i t}+\ldots\right\} \\
& =\theta(0) * \beta e^{i t}+\theta_{1}^{*} \beta
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P_{M^{1}}\left(\beta e^{i t}, 0\right) & =k \beta e^{i t} \\
& =(I-\theta \theta(0) *,-\Delta \theta(0) *) \beta e^{i t}-\left(\theta \theta_{1}^{*} \beta, \Delta \theta_{1}^{*} \beta\right) \\
& =k_{0} \beta e^{i t}-\left(\theta \theta_{1}^{*} \beta, \Delta \theta_{1}^{*} \beta\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
P_{M^{1}}\left(\beta e^{i t}, 0\right)=k \beta e^{i t}=P_{M^{1}}\left(k_{0} \beta e^{i t}\right)=k_{l^{\prime}} \beta \quad \text { say } \tag{3-31}
\end{equation*}
$$

But, $k_{0} \beta e^{i t}=e^{i t} k_{0} \beta$, hence

$$
\begin{equation*}
k_{1} \beta=P_{M^{+}}\left(e^{\left.i t t_{k_{0}} \beta\right)}=T k_{0} \beta\right. \tag{3-32}
\end{equation*}
$$

Sinilarly, setting

$$
\begin{equation*}
k_{2} \beta=k \beta e^{2 i t}=P_{M^{\prime}}\left(\beta e^{2 i t}, 0\right) \tag{3-33}
\end{equation*}
$$

we find

$$
k_{2} \beta=P_{M^{1}}\left(e^{i t} k \beta e^{i t}\right)=T\left(k_{1} \beta\right)=T^{2}\left(k_{0} \beta\right)
$$

Thus, in general for $n \geq 0$, and β in H_{2}

$$
\begin{equation*}
k_{n} \beta=k \beta e^{i n t}=P_{M^{+}}\left(\beta e^{i n t}, 0\right)=T^{n}\left(k_{0} \beta\right) \tag{3-34}
\end{equation*}
$$

Consequently

We have therefore shown that
Theorem 2
$\widetilde{\mathrm{K}_{0} \bar{B}}$ is a cyclic subspace [I] of $\left.T\right|_{M_{2}^{\perp}}$, the restriction of T to M_{2}^{\perp}.
Our derivations of $k_{n} \alpha$ and $k_{n} \beta$ above were motivated by the work of D. N. Clark [3] on one dinensional perturbations of the restricted shift on a Nagy-Foias space associated with a scalar innen function θ. In his work Clark was using only K_{1} (which he denoted by K_{0}) and k_{0}. It is a pleasure to thank Doug. Clark for introducing this work to me. Clark's work was subsequently generalized by Fuhrmann [4], Ball and Lubin [5].

To proceed further, we now consider the necessary and sufficient condition for an element $(v, \Delta u)$ in M^{\prime} to be orthogonal to $K_{n} \alpha$.

The case $n=0$ is trivial since $K_{0} \alpha$ is in M. For $n \geq 1$, we have:

$$
\begin{aligned}
{\left[(v, \Delta u), K_{n}^{\alpha}\right] } & =\left[(v, \Delta u),\left(P_{2}^{+} \theta\left(e^{i t}\right) e^{i n t} \alpha, \Delta e^{-i n t}(\alpha)\right]\right. \\
& =\left[\left(Z^{n} v, \Delta e^{i n t_{u}} u\right),(\theta \alpha, \Delta \alpha)\right] \\
& =\left[e^{i n t}\left(\theta^{*} v+\Delta^{2} u, \alpha\right]{ }_{L}^{2}\left(H_{1}\right), \alpha \text { in } H_{1}\right.
\end{aligned}
$$

Now since ($v, \Delta u$) is in $M^{\perp}, \theta^{*} v+\Delta^{2} u$ has an expansion in negative powers of $e^{\text {it }}$

$$
\theta^{*} v+\Delta^{2} u=\gamma_{1} e^{-i t}+\gamma_{2} e^{-2 i t}+\ldots+\gamma_{n} e^{-i n t}+\ldots, \gamma_{i} \text { in } H_{1}
$$

Consequently,

$$
\begin{equation*}
\left[(v, \Delta u), K_{n} \alpha\right]=\left[\gamma_{n}, \alpha\right]_{H_{1}}, \gamma_{n}, \alpha \text { in } H_{1}, n \geq 1 \tag{3-36}
\end{equation*}
$$

Hence $(v, \Delta u)$ in M^{\perp} is orthogonal to $K_{n} \alpha$ if and only if $\gamma_{n}=0$.
Similarly, for $(v, \Delta u)$ in M^{\perp} and for $n \geq 0$

$$
\begin{align*}
{\left[(v, \Delta u), k_{n} \beta\right] } & =\left[(v, \Delta u),{ }_{M^{+}}\left(z^{n} \beta, 0\right)\right] \\
& =\left[v, z^{n} \beta\right] \\
& =\left[v_{n}, \beta\right] \tag{3-37}
\end{align*}
$$

where v_{n} is the coefficient of z^{n} in the power series expansion of v_{n}. Hence $(v, \Delta u)$ in M^{\perp} is orthogonal to $k_{n} \beta$ if and only if $v_{n}=0$. It follows from the above that
Lemma 3
For $(v, \Delta u)$ in M^{+},

$$
\begin{aligned}
& (v, \Delta u) \perp m_{1}^{\perp} \text { if and only if } v=0 \\
& (v, \Delta u) \perp m_{2}^{\perp} \text { if and only if } \theta^{*} v+\Delta^{2} u=0
\end{aligned}
$$

The orthogonal complement (in M^{\perp}) of M_{1}^{\perp} will be denoted by M_{1}, while that of M_{2}^{\perp} will be denoted by M_{2}.

For any ($v, \Delta u$) in M^{\perp}, straightforward calculations give

$$
\begin{equation*}
T^{n}(v, \Delta u)=\left(\frac{v}{z^{n}}, e^{-i n t} \Delta u\right)-\left(\frac{v_{0}}{z^{n}}+\frac{v_{1}}{z^{n-1}}\right)+\ldots+v_{n-1} \quad n \geq 1, \tag{3-38}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}^{n_{T}, v^{n}}(\mathrm{v}, \Delta \mathrm{u})=(\mathrm{v}, \Delta \mathrm{u})-\sum_{\ell=0}^{\mathrm{n}-1} k_{\ell} v_{\ell}, \quad \mathrm{n} \geq 1 \tag{3-39}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(I-T T^{n}{ }^{n}\right)(v, \Delta u)=\sum_{\ell=0}^{n-1} k_{l} v_{l}, n \geq 1 \tag{3-40}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left(I-T *^{n+1_{1} n+1}\right)(v, \Delta u)=\sum_{\ell=0}^{n} K_{\ell+1} \gamma_{\ell+1}, n \geq 0 \tag{3-41}
\end{equation*}
$$

It then follows that

Lemma 4

For $(v, \Delta u)$ in M^{\prime} :
(i) $T^{n}(v, \Delta u)=\left(\frac{v}{Z^{n}}, e^{-i n t} \Delta u\right), \quad n \geq 1$
or equivalently

$$
\left(I-T T^{n} u^{n}\right)(v, \Delta u)=0, \quad n \geq 1
$$

if and only if $(v, \Delta u) \perp k_{\ell} \beta$ for all $\ell=0,1,2, \ldots, n-1$.

$$
\text { (ii) } T^{n+1}(v, \Delta u)=\left(z^{n+l} v, e^{i(n+1) t} \Delta u\right), \quad n \geq 0
$$

or equivalently

$$
\left(I-T w^{n+1} I_{T} n+1\right)(v, \Delta u)=0, n \geq 0
$$

if and only if $(v, \Delta u) \perp K_{\ell} \alpha$ for all $\ell=0,1, \ldots, n+1$.
This lenma is a generalization of Clark's results for the scalar case [3].
The following results can be easily verified:
$\frac{\text { Lerma } 5}{T^{n+1}}{ }_{K_{1} \alpha}=-k_{n} \theta(0) \alpha, \quad n \geq 0$
and

$$
T^{n+1} K_{0} \beta=-K_{n+1} \theta(0) * B, \quad n \geq 0
$$

In the next Section, we shall use the above results for system operators realizations.
IV. Realizations of Transfer Operators. In this Section we shall discuss the realization of a given contractive analytic transfer operator $\left\{\theta(z), H_{1}, H_{2}\right\}$. Thus, our problem is to find operators A, B, C and D such that

$$
\begin{equation*}
\theta(z)=D+z C[I-z A]^{-1} B,|z|<1, \tag{4-1}
\end{equation*}
$$

We shall use results of previous Sections. First, let us see what are the meanings of a Nagy-Foias space associated with a given transfer operaton $\left\{\theta(z), H_{1}, H_{2}\right\}$.

As we have seen above, the Hilbert Space H (equation 2-1) is the space of presentfuture outputs (together with elements of the form Δu, which characterize the net energy absorbed by the system) while its subspace M (equation 2-6) is the set of all present - future outputs, resulted entirely from present - future inputs. Thus, the orthogonal complement M^{\perp} of M (in H), can be regarded [6] as a state-energy type space.

The subspace M_{1}^{\perp} (equation 3-6) consists of all present - future outputs $\theta_{21}{ }^{u}$ resulted entirely from past inputs $u_{\text {_ }}$, further more we have

$$
\left\|\left(\theta_{21} u_{-}, \Delta u_{-}\right)\right\|^{2}=\left\|\theta_{21} u_{-}\right\|^{2}+\left\|\Delta u_{-}\right\|^{2}=\left\|u_{-}\right\|^{2}-\left\|\theta_{11} u_{-}\right\|^{2}
$$

which can be regarded as energy stored in the system - due to inputs in the past.

To proceed with the realization problem, we first observe, from Lemma 4 , with $n=1$, that

$$
\begin{equation*}
\left.\left(I-T^{*}\right)_{T}\right)(v, \Delta u)=0 \Leftrightarrow(v, \Delta u) \perp K_{I} \alpha, \tag{4-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-T I^{*}\right)(v, \Delta u)=0 \Leftrightarrow(v, \Delta u) \perp k_{0} \beta, \tag{4-3}
\end{equation*}
$$

Also using Lemma 5 with $n=0$ we get,

$$
\begin{equation*}
\left(I-T^{*} T\right) K_{1} \alpha=K_{I}\left[I-\theta(0)^{*} \theta(0)\right] \alpha, \tag{4-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(I-T T^{*}\right) k_{0} \beta=k_{0}[I-\theta(0) \theta(0) *], \tag{4-4}
\end{equation*}
$$

Now, since $\left\{\theta(z), H_{1}, H_{2}\right\}$ is purely contractive, that is $\|\theta(0)\|<1$, it can be shown that [1] the ranges of $[I-\theta(0) * \theta(0)]$ and of $[I-\theta(0) \theta(0) *]$ are dense in H_{1} and in H_{2} respectively. Hence

$$
\begin{equation*}
[I-T * T] \overline{K_{1} H_{1}}=\overline{K_{1} H_{1}} \tag{4-6}
\end{equation*}
$$

$$
\begin{equation*}
\left[I-T T^{*}\right] \overline{k_{0} H_{2}}=\overline{k_{0} H_{2}} \tag{4-7}
\end{equation*}
$$

From which it follows that

$$
\begin{align*}
& {[I-T * T] P_{\overline{K_{1}} H_{1}}=\overline{\mathrm{K}_{1} H_{1}}} \\
& {[I-T T *] P \overline{\mathrm{~K}_{0} H_{2}}=\overline{\mathrm{K}_{0} H_{2}}} \tag{4-9}
\end{align*}
$$

for $p=1,2, \ldots$

The operators [I-T*T] and [I-TT*] are both positive and bounded between 0 and 1, consequently we can define its positive square roots $[I-T * T]^{\frac{1}{2}}$ and $[I-T T *]^{\frac{1}{2}}$. Furthemore, it follows from (4-8) and (4-9) that the range of $[I-T * T]^{\frac{1}{2}}$ is dense in $\overline{K_{1} H_{1}}$ while that of $\left[I-\mathrm{TP}^{*}\right]^{\frac{3}{2}}$ is dense in $\overline{\mathrm{K}_{0} \mathrm{H}_{2}}$.

The following model theorem of Nagy-Foias gives a solution to the realization problem.

Nagy-Foias Mociel Theorem [1]
Let $\left\{\theta(z), H_{1}, H_{2}\right\}$ be a purely contractive analytic function, and let T be be the restricted shift operator on the Nagy-Foias space M^{\perp} generated by $\theta(z)$, then

$$
\begin{equation*}
\theta(z)=U \quad \theta_{T}(z) V \tag{4-10}
\end{equation*}
$$

where $\theta_{\mathrm{T}}(z)$ is called the characteristic operaton function of T and is defined by

$$
\begin{equation*}
\theta_{T}(z)=-T+z\left(I-T T^{*}\right)^{\frac{1}{2}}\left[I-z T^{*}\right]^{-1}(I-T * T)^{\frac{3}{2}} \tag{4-11}
\end{equation*}
$$

and maps $\overline{K_{1} H_{1}}$ into $\overline{\mathrm{K}_{0} \mathrm{H}_{2}}$.
U and V are unitary maps
$U=\overline{\mathrm{K}_{0} \mathrm{H}_{2}} \mathrm{H}_{2}$ and $\mathrm{V}: \mathrm{H}_{1} \rightarrow \overline{\mathrm{~K}_{1} \mathrm{H}_{1}}$
It follows at once from this theonem that the openators A, B, C, and D which realize $\theta(z)$ are

$$
\begin{aligned}
& A=T * \\
& B=(I-T * T)^{\frac{3}{2}} V \\
& C=U\left(I-T^{*}\right)^{\frac{1}{2}} \bar{K}_{0} H_{2}
\end{aligned}
$$

$$
D=U \theta(0) V=-\left.U T\right|_{\overline{K_{1} H_{1}}} V
$$

Moreover, since $\overline{K_{1} H_{1}}$ and $\overline{\mathrm{K}_{0} H_{2}}$ are cyclic for $T_{M_{1}^{\perp}}$ and $\left.T\right|_{M_{2}^{\prime}}$ (Theorems 1 and 3 of Section 3), we conclude that the Nagy-Foias realization is both controllable and observable.

We note that the Nagy-Foias model theory was developed via the unitary dilations of contraction operators [1], this is why they used the two operators (I-TwT) and $\left(I-T T^{*}\right)^{\frac{3}{2}}$, since the operator

$$
L=\left[\begin{array}{lc}
-T & \left(I-T T^{*}\right)^{\frac{1}{2}} \tag{4-12}\\
(I-T * T)^{\frac{1}{2}} & \mathrm{~T}^{*}
\end{array}\right]
$$

is unitary and is a unitary dilation of -T .

One can of course obtain other realization schemes, using $T, T^{*},(I-T * T)^{P}$ and (I-TT*) ${ }^{P}$. For instance, if we form

$$
\Phi(z)=-T+z\left(I-T T^{*}\right)\left[I-z T^{*}\right]^{-1}(I-T * T)
$$

Then we have

$$
\tau_{2} \theta(z)=\Phi(z) \tau_{1}
$$

where τ_{1} and τ_{2} are bounded invertible operators: $\tau_{1}: H_{1} \rightarrow \overline{K_{1} H_{1}}$ and τ_{2} : $H_{2} \rightarrow \overline{\mathrm{k}}_{6} \mathrm{H}_{2}$. In this case θ and Φ are said to be quasi - similar [1].

Finally, we note that if we set $z=\frac{p-1}{p+1}$, then $\theta\left(z=\frac{p-1}{p+1}\right)$ can be taken to be the scattering operator of a linear passive multiport network [7], and the NagyFoias characteristic operator function $\theta_{T}(z)$ (equation 4-11) can be gotten by cascade loading the lossless netwonk whose scattering operator is \sum (equation 4-12) in unit inductors.

Thus, for multiport passive networks, the Nagy-Foias model theorem results in the cascade load synthesis procedure. For a complete discussion of this, we refer to [8].

REFERENCES

[1] B. Sz-Nagy and C. Foias, "Harmonic Analysis of Operators on Hilbert Space", North Holland-American Elsevier, Ansterdam, New Yonk, 1970.
[2] R. Saeks, "Causality in Hilbert Space", Siam Review, Vol. 12, pp. 357-383, 1970.
[3] D. N. Clark, "One Dimensional Perturbations of Restrictive Shifts", J d' Analyse Mathematique, Vol. 25, pp. 169-191, 1972.
[4] P. A. Fuhmann", On a Class of Finite Dimensional Contractive Perturbations of Restrictive Shifts of Finite Multiplicity", Israel J. of Maths., Vol. 16, pp. 162-175, 1973.
[5] J. A. Ball and A. Lubin, "On a Class of Contractive Perturbations of Restricted Shifts ${ }^{17}$, To be published.
[6] A. V. Balakrishnan, "State Space Theory of Linear Time-Varying Systens" pp. 95125 of "Systen Theory", L. A. Zadeh and E. Pollack Editors, McGraw-Hill, New York, 1969.
[7] R. W. Newcomb, "Linear Multiport Synthesis", MoGraw-Hill, New York, 1966.
[8] N. Levan, "The Nagy-Foias Operator Models, Networks and Systems", IEFE Circuits and Systems Transactions, to appear.

[^0]: \#This work was supported by National Science Foundation under Grant \# ENG 75-11876.

