ON THE OPTIMAL CONTROL OF VARIATIONAL INEQUALITIES

F. Patrone

Istituto Matematico, Università di Genova via L. B. Alberti 4. I6132 GENOVA (ITALY)

I. An existence theorem.

We are given a real and reflexive Banach space V, with dual V', an operator $A:V \longrightarrow V'$ and a function $j:V \longrightarrow (-\infty, +\infty]$.

We consider variational inequalities of the following type: find $y \in V$ such that:

(I.I)
$$\langle Ay, z-y \rangle + j(z) - j(y) \geq \langle g, z-y \rangle$$
 $\forall z \in V$, where $g \in V'$ and $\langle \cdot, \cdot \rangle$ is the pairing between V' and V .

We assume A a pseudo-monotone operator, i.e:

(1.2)
$$\begin{cases} a) & \text{A is bounded (on bounded subsets)} \\ b) & \text{y}_{n} \rightarrow \text{y and } \frac{\overline{\lim}}{n + \infty} \langle \text{Ay}_{n}, \text{y}_{n} - \text{y} \rangle \leq 0 \text{ imply} \\ & \frac{\lim}{n + \infty} \langle \text{Ay}_{n}, \text{y}_{n} - \text{z} \rangle \geq \langle \text{Ay}, \text{y} - \text{z} \rangle \quad \forall \text{ zeV.} \end{cases}$$

j is a convex, proper (i.e. $j\neq +\infty$) and lower semicontinuous function.

It is well known that inequalities of the type (I.I), for any given geV', have a solution (see J.L.Lions [4]), if the following coercivity hypothesis is satisfied:

(I.3)
$$\begin{cases} \exists z_0 \in V \text{ such that } j(z_0) < +\infty \text{ and} \\ \frac{\langle Az, z-z_0 \rangle + j(z)}{\|z\|} \longrightarrow +\infty \quad \text{when} \quad \|z\| \longrightarrow \infty. \end{cases}$$

We shall deal with the following control problem. The space of controls is U, a real and reflexive Banach space; the set of admissible controls is U_{ad} , a closed convex (non empty) subset of U; $B:U\longrightarrow V$ is a map such that $u_n \longrightarrow u$ implies $Bu_n \longrightarrow Bu$.

For any given $u \in U_{ad}$, the state y=y(u) is given by the solution

(not necessarily unique) of the following inequality (feV is fixed): (I.4) $\langle Ay, z-y \rangle + j(z) - j(y) \geq \langle f+Bu, z-y \rangle \quad \forall z \in V$.

The cost is assumed to be quadratic:

 $J(u,y(u)) = \|y(u)-z_{d}\|_{V}^{2} + \gamma \|u\|_{U}^{2}, \quad \gamma \ge 0 \text{ (a linear and continuous obser}$

vation operator might as well be considered).

The control problem is: minimize J on U_{ad} .

We have the following theorem:

Theorem I.I Under the hypotheses above, if we have:

(I.5) either V>0 or U_{ad} is bounded,

there exists an optimal pair (u,y(u)).

We give here a brief sketch of the proof. We take a minimizing sequence $\{u_n,y_n\}_{n\in\mathbb{N}}$, where y_n is selected among the solutions of (I.4) corresponding to u_n . It follows from hypothesis (I.5) and the coercivity hypothesis (I.3) that we can extract a subsequence $\{u_n,y_n\}_{i\in\mathbb{N}}$ such that $u_n \longrightarrow u$ and $y_n \longrightarrow y$ in V. The compactness of B, the lower semicontinuity of j and the pseudo-monotonicity of A allow us to pass to the limit in the inequality and to prove that y is a solution cor-

Remark I A particular case of inequality (I.I) is:

(1.6)
$$\langle Ay, z-y \rangle \geq \langle g, z-y \rangle \quad \forall z \in K$$
,

where K is a closed convex subset of V.It suffices to define $j(z) = \delta(z)$ where δ_K is the indicator function of K, i.e.:

responding to u of (I.4). To conclude, the weak lower semicontinuity of J on U×V assure us that $\{u,y\}$ is an optimal control-state pair.

$$\delta_{\mathbf{K}}(\mathbf{z}) = \begin{cases} 0 & \text{if } \mathbf{z} \in \mathbf{K} \\ +\infty & \text{if } \mathbf{z} \notin \mathbf{K} \end{cases}$$

Remark 2 Generally we have not uniqueness of the optimal control. A very simple counterexample is the following (V=U=R). The inequality is given by $(Bu=u+\sqrt{2})$:

(I.7) $y \cdot (z-y) \ge (u+\sqrt{2}) \cdot (z-y)$ $\forall z \in [0,1]$ The (unique) solution of (I.7) is given by $y(u) = \Pr_K(u+\sqrt{2})$, the projection of $u+\sqrt{2}$ on K=[0,1]. If we set $U_{ad}=U$ and $J(u)=u^2+(y(u))^2$, both u=0 and $u=-\frac{\sqrt{2}}{2}$ are optimal controls.

Former results on the optimal control of variational inequalities may be found in J.P.Yvon [6], or in J.L.Lions [3] (here a special case is considered); see also R.Kluge [2], and the bibliography listed there for further references.

2. Further results on the control of variational inequalities.

The existence theorem previously given can be extended to more general cost functionals, provided that the operator A is actually a monotone hemicontinuous and bounded operator. To do this, we need the following theorem of F.E.Browder [I] on the sequential lower semicontinuity of certain types of functionals.

Theorem 2.I We are given three real Banach spaces X, X_1 , X_2 ; a map $h: X_1 X_2 \longrightarrow \mathbb{R}$ such that:

- a) $h(x_1,x_2)$ is convex and strongly continuous in x_1 when x_2 is fixed
- b) h(x₁,x₂) is strongly continuous in x₂, when x₁ is fixed, and uniformly continuous in x₂ when x₁ varies in bounded subsets.
 We are given also L:X→X₁, a linear and continuous map, and
 M:X→X₂ a map sequentially continuous from the weak to the strong topology. Then, setting J(u)=h(Lu,Mu):X→R, J is weakly sequentially lower semicontinuous.

We note that in Browder's theorem it is required that M is a linear map, but this hypothesis can be suppressed, as can be easily verified.

To conclude, we give here briefly a result on the sensitivity of the control problem. We consider variational inequalities of type (I.6), where A is a strictly monotone hemicontinuous and bounded operator. We perturb A,K,z_d and f. More precisely, we consider a sequence of problems like this:

$$\begin{aligned} (P_n) : & & & \text{minimize} & & J_n(v) = \|y_n(v) - z_{d_n}\|_V^2 + \gamma \|v\|_U^2 \\ & & & & \text{for } v \in U_{ad} & \text{and } y_n(v) & \text{the solution of:} \\ & & & & & & & & & & \\ \langle A_n y_n(v), z - y_n(v) \rangle \geq \langle f_n + B v, z - y_n(v) \rangle & & & & & \\ \end{pmatrix}$$

The initial problem is:

$$(P_o): \quad \text{minimize} \quad J_o(v) = \|y_o(v) - z_{d_o}\|_V^2 + \nu \|v\|_U^2$$

$$\text{for } v \in U_{ad} \quad \text{and} \quad y_o(v) \quad \text{the solution of:}$$

$$\langle A_o y_o(v), z - y_o(v) \rangle \geq \langle f_o + B v, z - y_o(v) \rangle \quad \forall \ z \in K_o$$

If we assume that $f_n \longrightarrow f_o$, $z_d \longrightarrow z_d$, and that A_n, K_n and A_o, K_o verify the hypotheses introduced by U.Mosco in [5] to prove the strong convergence of solutions of perturbed variational inequalities, then we

obtain the following result:

Theorem 2.2 Given a sequence of optimal controls u_n for P_n , we can extract a subsequence u_n weakly converging to an optimal control \bar{u} for P_0 ; the corresponding states y_{n_i} converge strongly to $\bar{y}=y_0(\bar{u})$.

Let us give here a brief sketch of the proof. Our aim is to prove the boundedness of u_n , and this is obvious if we prove that $J_n(u_n)$ is such. To prove this fact, we note that $J_n(u_n) \leq J_n(u_0)$, where u_0 is an optimal control for P_0 . But $J_n(u_0)$ is bounded because the states $y_n^* = y_0(u_n)$ converge strongly to y_0 ; more precisely we obtain that: (2.1) $\forall \ \epsilon > 0$, $\exists \ n(\epsilon)$ s.t. $\left|J_n(u_0) - J_0(u_0)\right| < \epsilon$. This fact implies the boundedness of $J_n(u_n)$, so of u_n . If we consider a subsequence $u_n \longrightarrow \bar{u}$, we have $Bu_n \longrightarrow B\bar{u}$: from this follows that $y_n : u_n \to y_0(\bar{u})$. To conclude, the weak lower semicontinuity of the costs J imply that $\lim_{n\to\infty} J_n(u_n) \geq J_0(\bar{u})$. From this, and from (2.1), we get that $J_0(\bar{u}) \leq J_0(u_0) + \epsilon$ for every $\epsilon > 0$, so $J_0(\bar{u}) \leq J_0(u_0)$. But $J_0(u_0) \leq J_0(\bar{u})$ for definition of u_0 : this means that \bar{u} is actually an optimal control for P_0 .

References

- 1. BROWDER, F.E. "Remarks on the Direct Method of the Calculus of Variations", Arch. Rat. Mech. Anal., vol. 20, pp. 251-258, 1965.
- 2. KLUGE, R. "Optimal Control with Minimum Problems and Variational Inequalities", Lecture Notes in Computer Science, Optim. Techn. IFIP Technical Conference, Springer, Berlino-Heidelberg-New York, 1975.
- 3. LIONS, J.L. "Optimal Control of Systems Governed by Partial Differential Equations", Springer, Berlino-Heidelberg, 1971.
- 4. LIONS, J.L. "Quelques méthodes de résolution des problèmes aux limites non linéaires", Dunod, Gauthier-Villars, 1969.
- 5. MOSCO,U. "Convergence of Convex Sets and of Solutions of Variational Inequalities", Adv. in Math., vol. 3, pp. 510-585, 1969.
- 6. YVON, J.P. "Optimal Control of Systems Governed by Variatio nal Inequalities", Lecture Notes in Computer Science, 5 Conference on Optim. Techn., PartI, Springer, Berlin-Heidelberg-New York, 1973.