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ABSTRACT: In this paper it is proposed a method for the determination of the op-
timal distribution of N switcning points for a bang-—bang control applied to a dif-
ferential system.

After pointing the necessary conditions to be verified by such swit—
ching points it is showed the existence of an optimal policy for a fixed number N of
them.

Once characterized these points thru the application of the Pontryagin
principle the problem, considered till now in the space of step functions, is put in-
te the L space, in order to show the existence of a minimizing succession of the am
plified problem and analized its correspondence to an optimal policy.

n After reducing the problem into one of optimization on a convex K of
R~ there are added considerations which let us, with the proposed method, obtain the
optimal also with a number of switching points n- less than the predetermined N

Now it is proved that the function to optimize is of €% class in K
and the applied methods are these of the projected gradient and the conjugated gra=—
dient conveniently penalized.

Finally, the obtained algorithms are applied in one example: the shut
down policy of a nuclear reactor where the optimun is obtained with a finite number of
switchings; this number remains constant although increasing values of N are propo-
sed.

§1. STATEMENT OF THE PROBLEM. NECESSARY CONDITIONS OF OPTIMALITY. EXISTENCE OF MINI-
MUN IN THE CASE OF FIXED NUMBER OF SWITCHING POINTS:.

Given the dinamical system governed by the differential equation:

m X = F(t)x + G(tu xeR , uekl
with initial condition x(0) = X,
and the cost functional T
(2) J(.)) = ] 1x(s), uts), s)ds + g(x(T))
0

we try to find the control function u(.) that minimices J

(*) Reasercher of the 'Consejo de Investigaciones de la Universidad Nacional de
Rosario' for the project: "@ptimization and Control. Theory and applications'.

(*¥%) Director of the above referred project.



588

The control u(.} belongs to the family Upg that satisfy the following res -
trictions.

a) u(t) =v, or u(t) =v, ¥ te [0,T]
b) wu{.) is a step-function with n switchings
c) u(0) =v

L
We denote with 6,8 ,..., 8, the switching points and this set with the vector
g = {61,..., en)'

{3) ¢ satisfies the restrictions: 0 <8, <8, < ... < Bn <T

Then, if we fix 6 , we know the value of u(t) ¥ te [0,T] and we can think of
J(u(.)) as a function J(8) of 6 e & , where Q= {6 e R}/ 0<8 <...< en<T} .
If the minimm of the problem exists, the necessary conditions will be (because 8 be
longs to an open set):

3J aJ
=0 3 ... = =0
861 ? aen

We can modify the restrictions (3) in the following form:

(39 0<60

[ES

8 < ...x06_<T
= n =

1 2 e

and analyze the meaning of a peint in the boundary of &

a} ©, =0 means that the first step has the value u =v,
v, there are two simultaneous com-—
b) Bi = eiﬂ mutations that could be elimina-
£ ted and it remains a new control
ei/ 8141 function with n-2 commutations.
! there are three simultaneous swit
» . - -
8; i- 842 chings, we could eliminate two
<) 8; =854y :51+2 P t and obtain a new control with
Bi41 ] v, n-2 commtations.

d) en =T 2 commutation at the end that could be eliminated and the new control has
n-1 switchings.

With this meaning we can define the function J(8) in the set @ = {6 e R"/0 <

£0,26,5...26 <T} . In this compact set, under suitable eenditiens on 1, g,
F

,G, (itwillbe enough the continuityof 1 and g, and that F,G beintegrable), is J(€)
continuos; then there is an optimal control in  that provides the minimm value of
J and has n' <n switching points,

§2. THE RELATION BETWEEN THE NEGESSARY CONDITION g';_ao AND PONTRYAGIN'S MAXIMWN
PRINCIPLE. i

We shall see in the following number that %—g—— has the form:
i

%é_{: l(x(ei) au(ei’) ’ei) - 1(3{(85_} ’U—(ei"') ’ei) *P(ei}G{ei)[u(ei"') - u(ei‘}]
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where p{t) satisfies:
® - pEw + & x@,um,0)
= . 98
p(M) = - 3% x(T)
and u(8.-) = 1lim u(6,-€) ; u(ei+) = lim u(6i+ £)
1 £+ 0 * £>0
£>0 £>0

If we define:
H(x,p,u,t) = p()[F(t)x(t)

we can write:

38 =Hx(8,),p(8;),u(8;%)

We also know that in the problem min
ue

functions with values v ,v,

H(x(t) ,p(t) , u(t), t)

by definition

maximm principle:

where
’ M{x,p,t)

M(x(t), p(t), t) iscontinuousin t

b

lim M(x(t+¢), p(t+e),t)= lim
£ ot e+0-
but
lim  M(x(t+e),p(t+e) ,tre) =
e+ 0+ g>o0+
and also
lim M(x(t+e) ,p(t+e),t+e) =
g+ 0- g+ o-

from where it follows:

§‘§ = H(x(8;),p(8;) ,u(8;+),6;) -

then, the maximun principle implies the

3J

§3. COMPUTATION ae

* G(Hul(t)] - 1(x(t),ult),0)

6)-H(X(6)p(6),u(6 -),85) .

J{ut.)) , where cuad is the set of step

ad
,1f T(.) is the optimal control in this set,itmust satisfie the

M(x(t) ,p(1),t) a.e,

1

max H{x,p,u,t}
U

uZ
then:

M(x(t+e), p(t+e), t+e)

u=

1im H{x{t+e),p(t+e) ,u(t+re) ,t+e) =H(x(t) ,p(t) ,u{t+),t)

lim H(x(t+e) ,p(t+e) ,u(t+e) ,t+e) =H(x(t), p(t), u(t-), t)

H(X(el) ,P(ei} 9u(ei—} 981) =0

necesary conditions of optimality: %‘g—— =0 .
i

The equation of the system's evolution is

31 'ek+1
x(£) = o(t,0)x + Z:, J'
=1 ek
where j / eJ <tz ej+1
and we can calculate §§‘X(t}

We suppose G(t)
a t> ei

t
o (t,s)G(s)u(s)ds +f o(t,s)G(s)u(s)ds

0.
J

is continuous in the interval [0,T]
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2 _(e) - i
géz-x )= Q(tpei)c(ei)(vz - Vl)('!)

It must be remembered that ¢{t,s) is the solution of the matrix differential equa-—

tion a
Fea o(t,s) = F(t)8(t,s) ¢ vxv matrix

with initial condition: &8(s,s) =1

b} t<e® 5
x(t) does not depend on @i , then
In this form, we can say that

d 3 _ 3.
I (—a—e'ix(t))—- F(t) (éb-;x(t)) t > ei

with initial conditiomns:

3 500 PSR CRICARE AICPE
i i T

Je) = gx(My) = J 1(x(s), u(s), s)dr

o

i

if 1 and g are continuously differentiable, we have:

8d .
'é'e'; = 1(XL6i) 3 U(ei') ) ei) - 1(X(Si) P u(ei"') 3 61) +

T
, 2 j a1 3
* 8 ). XD+ | 55 (K90, ex(s)ds
i
if we introduce the adjoint vector p(t) that satisfies

{~ D (4 - pOFE) - & @0 ,ue),0)
P =- g (x(T))
we can write:

Q)

65

;
2 = 1(x(9;), u(8;-), 8;) - 1(x(8y), u(e;+), ;) +
T
d E
+ g (x(1)) - x(D) + f (P(OF(R) + G (0)5g; x(B)dt
1 0.
1
and integrating by parts we obtain:

_g%i_ = 1()((61) 9Uv(6i_)’ei) - 1(X(ei) ,u[@i+) + p(ei)G(ei) (Vl -VZ)("1)i

§4. CONTINUITY oF 20
36;

(1) 'S;g‘]‘: = 1(X(ei) ,U(ei‘) ’ei) - l(X(ei) ,U(ei‘*] ’ei) +P(9-1)G(ei) (Vl - VZ) ("])i

We suppose that F(.),G(.) are continuous and1l,g are continuouslydifferentiable.

g—‘;—— is a continuous function of x(ei) ,p(ei) and ei) . The values u(ei+) and
i L.
u(e;-) are constant (v, and v,) , then we must prove only the continuity of

x(8;), p(8;) to obtain the continuity of —g—‘é—;
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We can easily see that the transformation o : —> u(.) defined by

u(t) =v, ; 0<t<9
(2) u(t) =v, + (v, -VI)F—_—%'—D——}* 8 <t <0,
u(t) = v, + (v, - vl)[L;—z(*;uE]l bpstsT
is continuous from Q —> L1 (0 ,Tg
(3) x(t) = @(t,O)xO + fo o(t,s)G(s)u(s)ds

and this formula defines a continuous transformation from Ll(O,T) - C(0,T ;R\)') be
cause, if u (.}, u,(.) are two controls in L ,0,T) and x,(.), x,(.) the system's

evolution, it is:

@ Ix® - x| <Mf 1,090 - @ =l -l o
where
) M= ef N(P(t )| - ses[%p ]IIG(s)H
sefo, t]

and M is finite due to the continuity of G and @

Obviously
(6) x(.) — x(e.l) is continuous from C(0,T ;RV) —> R’

Then,
(N g —> x(ei] is continuous from R —> RV

From the differential equation of p(t) (p 1is a row vector)

d
(®) - S e = PO - =
we obtain the complete solution using the hemogenecus solution and ''variation of cons.

tants' method t
©) p(t) = p(D(T,6) + f 2 (x(5),u(5),5) . (s, )ds
T.

(10) p(T) = - g'(x(T)

thus, - g’(x(T))(b(T,ei) defines a continuous function from 6 € R™ —» RV , because
g' is continuous, x(T) 1is a centinuous function of € and ¢ is absolutely conti
nuous in its both arguments.The transformation R¥ —s L (0,T; R’ } given by:
6~—>u()-—->-—-(x(t) ,u(t),t) el 0,T ; R’ )
™ x() A7
is continuous from R® —s Ll(O,T ; R\))
To prove it, let 6,6_ be twoset of switching points such that [|s-o e” —> 0 -0,

T‘hen,' u(t) —— uE(t) a.e.
and max  f|x(t) - x_()ff — 0
. te [0,T] €
now, %f (xe(s) U (8),8) — _98_)_15 (x(8), u(s), s) a.e. , and
T
[ H“g',lz (x (s),u_(s),s) - —g—i (x(s}, u(s), s)ff ds —» 0 as we can see applying
)

Lebesgue's theorem.
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t
The formula }’ —g—)lz (x(s),u(s),s)?(s,t)ds defines a continuous transformation from

T
L 0,T; R\})—‘-;» C{0,T; R\)} . Then, taking into account all these resultswe proof

that p(@i) and also are continuous functions of 6 .

3
88-1
§5. NUMERICAL SOLUTION OF THE PROBLEM BY THE APPLICATION OF THE PROJECTED GRADIENT
METHOD.
We have seen that the problem of finding an optimal bang—bang policy with n'<n

switchings was reduced to the finite dimensienal problem.

5 min J(0) a-=loer" /0<e, <o 3‘-‘<@niT}
i <8,20,2 <

2
9 is a convex and compact subset where J 1is continuous, and this implicates the e-
xistence of a minimun,

We write the n+1 restrictions defiming € in vector form.
ntl

f(e);o fekR and £1=-61’£2=81—82""’fn:en—i-en’fnﬂzn-T
DEFINITION.
I(6) = {i/ £(8) +e20)}
DEFINITION.

Given a set of integers, I < {1,..., n*1} , the projection of y € R"  on the
subspace generated by the vectors Vfi, i e I is the vector FIE that minimizes
“Y - FIU”2 H where

| . - m
F =[Vfil,..., Vfim] , 1= {11,..‘, 1m} and ueR' .
It is easily shown that
U= (Fjl_ FIY] Fiy (F' is tramspose of B
Then, the prejection of y 1is:
- ! -
Pry = Fy(FiFp)
and we can define the prejection matrix
o hedl -1
Py = Fp(F{F) R
In the same form we define the prejection on the subspace orthogonal to Vf; ,1 e I

IFiy

and the corresponding matrix is:

LT -
PI I PI

In the definition of PI , we have supposed that the vectors vfi, i eI are linear

1y independent, and then the matrix Fi FI is invertible.

It is known (Kuhn-—Tucker's theorem) that if 8§ is a solution of the problem (1),
then
and

] == =

= _ [ o Tp =

v (Flom Fxoca)) Fr (e VI

We define a point asdesirable if:

a) 0eq b) vJ(e) = Fy (4y ul6] u(® <0
o]

7J(¥) =PIO{‘§)_1I U, 205000, §m<0

it is posible to apply the following algorithm: "Gradient Projected’.



ALGORITHM.

Step 0 :

Step 1

Step 2:

Step 3

Step 4 :

Step 5 :

Step 6 :
Step 7 :

Step 8 :

Step 9

Step 10 :

Step 11 :

Step 12 :

Step 13 :

: Assuning that 1 () ={kl,..., km,} and that k, <k, < ... <k,

583

Select eo €N

e'>0/%e>0,eg¢ {Vfi(e) /ie Ia(e), B e Q} is a set of 1i-
nearly independent vectors.

Choose 8 €-(0,1), e (0,e'), " e (0,%)

Set i=20
P Set 8 =08
Set €, = B3 and j=0 .
: Compute haj = PTEO(Q)VJ(G)
if ”hejll > gj ) h(g) = - hej and go to step 12; else, go to 5.
If &5 < e , compute h_(6) = P“I.O(B) vJ(8) and

_ -1
uo(e) = (Pio[e)FIO[G))‘ Fio(e}VJ{S) and go
to 6; else, go to 7 .
If u (6) <0 and Hho(e)ll =0 set 6,,, =0 and stop, else,go to 7.

= ' -1 1 :
Compute uej(e) = <FI€‘(8) FIeJ. (e)> FIéj(e) vJ(8)

If pg.(e);o , set EjH =st , set j = j+1 and go to step 3 ,

else, go to step 9 .

m

set y;{S) = uz_(e) for o =1,2,..., m' (where Ug_(e} is the ot

J J J
component of the vector ue_(e)) .

J
Find the smallest keI (8) such that the vector h_(8) =

= pfs.(e) -k vJ(6) satijsfies the relation !
_ ]
IF, @ = maxflieg (). W /1 O @) o
and set h(6) = - E:‘(e) .
If ||h(e)f] < €5 setJ €iag = Bey, set j = j*1 , and go to step 3;

else, go to step 12,

Compute A(8) > 0 to be the smallest scalar satisfying J(8+1{6)h(8))=
=min {J(6+ X (6) / A >0 , (6 + X h(®)) € 0}

Set eiﬂ = 6.1 + A(6)h(8) , set i =i+l , and go to step 1

We have shown that J is continuously differentiable, then is valid the following

theorem:

THEOREM. The sequence 8, gdven by the algonithm is finite and its Last elementis
desinable va is infinite and each accwmbation point of the sequence is desinable.
(The proof of this Th. is,essentially,the same thatwe find in [1], pag.195).
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§6. NUMERICAL SOLUTION OF AN EXAMPLE-: THE SHUT DOWN OF A NUCLEAR REACTOR.

The problem is the reduction of the power of a nuclear reactor in a fixed time.
The functional to minimize is the xenon poisoning.

The model is ruled by the differential equations:

I=-~al+bs
m x=al+cod- (d+ep)x
¢ =Us.

1 is the iodine concentration and X the xenon concentration.

¢ 1is the flux of neutrons.

U is the control and it can only assume two values.

The control is applied in the interval [0,T] in such a form that ¢(T) = ¢ ¢ (a fi-
xed value). After that (t>T) , the flux is held constant.

If we define Xy = éniw'(r x(t) , is possible to state the problem in the following
Find U(t), 0 £t <T , where U(t) 1is a step function with n' switching
(n* <n, n fixed) , that takes only the values V1, V2 and such that the co-
rresponding response of the system (1) satisfies ¢(T) = ¢ £ and gives the minimum va-
lue of xM(u(O,T)}

This problem differs from the models studied in the nonlinearities of the equa-

form:

tions (1) and in the fixed final condition.

In this case, it can be shown that J(8) = Xy (where @ = (61,...,6n) is the set
of switching points) is a continuous function both with the derivatives of J , and
then the theorem remains valid.

The final condition could be introduced in the functional through a penalization

function. Ancther method is the following, we use the propertie that ¢(T) = ¢, im-

[N+1) /2]
plies that ¥ u(0,T) / ¢(T) = ¢¢ £0) = X (szi‘ezi-ﬁ = constant
i=1 :

and consider this relation as an additional restriction, In the projected gradient al
gorithm,, the matrix FI (o) is enlarged in the following form:
€

FIE{S) — Fie@ = [ve V) e Vfim] {1},..., 1m}= 1_(6)
and the points constructed by the algorithm satisfie ¢(T) = ¢, ,provided the initial’
point (SO) satisfies that condition.

FORMULAS OF - J AND VJ:
We have defined J = Xy to compute it, we solve the equations:

I=-1+b¢
X = I+cd - (dredg)x for t>T
with initial conditions x(T) ,I(T) and find the value xy= max x(t) .(We set a=i

making a change of variables). t2T

If =0 , it is:



595

x=exp (- t*). __£_l+ exp (- dt*)[XCT) I(T)l if %%d <1 and
X = x(T) if )I(Eg d >1 where
P X(T) -
th = o In[d + Ty 40 d)] .
To compute ﬁ— p3(6 )x (8. )(V vl) (—1)i , we integrate backwardly the adjoint e-
quations: dpl
TE TR
dp,
- g = - p,(d+eh)
dp3
B * P, ~ P,-0:X * p3U
with final conditions: 3
2D =577y
Xy
p2( ) =- aI(T)
Xy
p, (M YY)

The projected gradient algorithm (with the shown modification) was used to solve nume
rlcally the problem. The values of J and VJ were computed integrating the diffe-
rential equations of x,I,b,p with a. 4 th order Runge — Kutta method.

NUMERICAL VALUES.

a=0.1 b = 0.67h x 1072
b =1.0 Xy = 2.0

c=1.0 Io = 10.0

d =0.05 ¢, = 1.0

e =0.95 T =10.0

v, =- 2.0

v2=0.0

NUMERICAL RESULTS.
The optimal values obtained for n=2 are:
0.6561
8.156
4,6351 » (for t =19.86)
M

[ I

217!
i

The following is a sample of the sequence produced by the algorithm, that shows T3
te of convergence.

61 82 XM
1.000 8.500 4,82751
0.625 8.125 4,63729
0.659 8.154 L.63514

0.656 8.156 4,63513
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u In ¢
0.656 8.156 10.0 t lp= 8.156 10.0
|o.6sb % :
' |
__j ¢ = 0.269 !
|
|
Control u Flujo ¢ }
o= 0.00673
I
!
|
!
| } |
]
0.656 8.156 10.0
Todo I
'fM=h.6351

Xenon: x
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For n>2 the sequences cbtained were convergent to the optimal point for n=2 ,as
is shown in the case n=6 . Then, in the set of control with 6 or less switchings ,
the optimal one is a pelicy with two switchings.

el % e3 eu e5 ee XM
0.250 1.000 1.250 2.000 2.250 8.250 4,7485
0.401 0.999 1.213 2.115 2.115 8.115 4.6634
0.488 0.993 1.195 2.115 2.115 8.191 4.6536
0.512 1.028 1.142 2.115 2.115 8.126 4.6470
0.568 1.026 1.132 2.115 2.115 8.172 4.6427
0.585 1.050 1.102 2.115 2.115 8.137 4.6396
0.645 1.059 1.085 2.115 2.115 8.171 4,6370
0.649 1.072 1.072 2.115 2,115 8.149 4,6352
0.656 1.072 1.072 2.115 2.115 8.156 5.6351

The switchings 2-3 and 4-5 are simultaneous and could be eliminated and the new po-
dicy is the optimal one for the problem with n=2

§7. FORM AND PROPERTIES OF THE SECOND DERIVATIVES OF J .

%;T 10x(0;),u(0;-),8;) - 10x(8;),u(0;4),85) + p(9;)6(8) (v, - v,)) (-1

32J
a)
20%
1 Bx(ei) ap(ei)
First, we find the formulas of T S
0. 1 1
x(8;) = 9(8;,0)x  + fl®«(ei,s)s(s)u(s)ds
(e}
then, ax(ei)
Frya F(Gi)X(Gi) + G(e,)u(e,-)
Also, 1 fT o
p(8;) = p(D)e(T,8;) - b, ox (x(s) ,u(s),s)e(s,8;)ds
with p(D) = - 38 (x(1)
Bp(ei) T ~
EC T = - p(T)e(T,0,)F(6;) + fe = (x(5),u(s),5)9(s5,8;)F(8;)ds +
i 1
+ 3L (x(o,),u(0.),8,) - (—g-é-x(TJ) -:—Z;E(xm) °(T,6) -
T ' i X
- _g (%6;((5)) —:—;% (x(s) ,uls) ,s)8(s,6;)ds

i
but, we know that, for t > 8;
3 _ i
N SRCRILCUNCCRIVASAIES
aei = - P(Si)F(ei) * X (X(ei) ,u(eiﬂ ’ei) -

- 0, )8 (00 (0 LB (xmect 0y -
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gf - i} (v, -v,)G"(8;)0'(s,6,) (X{s} u(s), s).9(s,8;)ds

1 2
Now, it is possible to compute §§7
92J 8 ‘
aez = 1\X(9) u(6;-3,8;) - (X(G) u(®,;+),8;) +

[——-—- 1(x(8,),u(6,-),8;) - (x(e ;) -u(8;+),0, )J[F(e )x(8;) + G(8,)uls, )}
46(6,) .
* p(ﬁi)(de. ) vy - v D7+ [’ p(8;)F(8;) + =% (x(e )su(8;4), 6, )]
1 - .
G0 vy v ) (1) L i(v;"vz)G' (6509’ (T,ei)—g;-f- (x(T))8(T,8,)6(8,) (v,-v,) -nls

i T 521 :
¥ (v - v, (-9) GS(ei}f @v{s,ei}—gy[x(s},u(ﬂ,s}@{s,ei}ds.c(ei) (v, =v,)(-1)
b) If §>i 9

357 x(8)= 0
then: J
; .
-3 = Lp(e) L GlepWv, -y DT,
i J
2
and we - must only know —a—— p(e;)to find the form of %6——8—6—
j o1
From the integral fomula ot p we obtain:
2 ), 228
5% p(8;) = € JX( . Tz XM o(T,8,) +
+ [ 22 (x(0,), u854),8.) - 51 (x(05) , u(8;7),87) [0(85,0,) -
S 321
L - (-1)3(v2-v1)G'cej)¢'(s,ej) 2 (<(3),u(5),9)0(5,8,)dr
and then, 0.

J *
geJ (aJ ) (- 1) (v,-v )Gv(e }&(T,6, ) (x(T)) o(T,8,)6(6.) (v, VZ)(__U:L N

ﬂ%MW”%”%*%MWM%%wP@&mwwfwmﬂ-

j 1 521 i
- ('%)va 'Vl)Gr{ej}f qw(s,ej} o (x(s),8)2(s,8;)ds . G(8;) (v, - v,) -1
0.
Q) If i>] J |
gg;‘ x('ibi) = @(el,ej)G(QJ)(Vz ‘Vl)(‘i)‘]

and J
3 5(8.) =- (Lx(T)) 2°8 (x(T))8(T,6.) _jT 3 (s ) L (x(s), u(s) , $)8(s,0, )ds
39] p i ‘«aej BXZ J sVy . SGJ 8 2
i
then, )
'g'é'; (%%‘“) =L% (x(9,),u(8;-3,8;) - 3}‘ (x(8;), u(8;4), e.)]cp(ei,e‘)

6(85) (v, -v JG N+ end (s, - v,)G' (85)0" (T, 0y 3 (X(T))@(T 0,)6(8,) (v, - Vz)(_ni )



599

-, -vl)e'(ej){3 0'(5,67) 23 (x(5),u(s) ,9)2(5,0,)ds.6(0) (v, -v) (-0F
i

It can be proved, in the same form we have done for the first derivatives,that the
second derivatives are contimuous provided ge C? ,1e¢(C® ,Ge (! and FeC
This continuity is important to obtain superlinear convergence when it is applied the
conjugate gradient method.

§8. SOLUTION OF THE PROBLEM USING A MIXED METHOD OF PENALIZATION AND CONJUGATE GRA—
DIENTS.

The problem of minimum with restrictions:

(1 mnJ) ; Q={0/0<6 <...<6 <T , 6eR"}
Q

A

n
is transformed inte another that could be solved using the methods of optimization wi
thout restrictions. This is done applying penality functions.

The new problem is:

ménJB(e) ; s"z:{eeR“/o<el<ez<...<en<T}
n+i
and - -1
J5(8) = 3(8) *32‘@1 (®
i=1
¢ =-8; : ¢i=—ei+ﬁi_1 i=2,...,n ; P41 =en-T .

ALGORITHM.
Step 0 Choose eoe o H E,O>0 H eo>0 and set i =0

Step 1: Apply the conjugate gradient methed to the minimization of JB until it
is obtained a point ©,,, such that ﬂws(ei-ﬂ)u < gy

By !

7

Step 2: Let Bi+1 = s €44 T i= i+ and go to 1

REMARK.

The conjugate gradient method could be applied in & , modifying the one dimen-—
sional search (along the conjugate directions) in such a form that the point are al-
ways chosen in Q. »

It is known (Kuhn—Tucker's theorem) that a necessary condition for optimality of
% in problem 1 is:

VI(E) + XM wVe(8) =0 w2 0
ieI(H)
16) = {i / 9,(68) = o}
DEFINJTION.
A point 6 is desirable if:
i) 6eQ
ii) vJ(e) + ) B Ve (8) =0 5 1 >0 ieI(6)

ieI(8)
The algorithm has the property:

LEMA: If J(8) 1is continuously differentiable, then the algorithm produces asequence
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of different points and all the accumulation points are desirable, or the sequence has
a finite number of different points and the last (infinitely repeated) is desirable.
PROOF.

i) g is relatively compact, then {eis has accumulation points.

Let be 8. =—> k=1,2,.....
Ik

G=0 , then 8en

It will be proved that § satisfies the Kuhn—Tucker conditions.
From the step 1 of the algorithm it follows:

n+i
(M w(eik) * 321 [eik / \o§(eik)} wj(eik) — 0

It is easily seen that, ¥ 8 € Q,I(8) has at most n elements and V\Pi(e),
ie I(9) } is a set of linearly independent vectors.

Then, ) )
VJ(eik> X [Bik / \oj(eik)]v\oj(eik) — 0
jel(e)
We define: by (matrix n xm)
k _
b, = (V. 5 Ve: ,eer, Vo, e, l=1(3
2N AL wjm] {3, inh=108)
and then:
B: /% (0.
S P
— 1 -1
/% (6, )
g, / %, (6,
Ix Im
because, Y; - Y = (V qij. (8), ..., lej (5)}‘ , this matrix is of maximun rank
- 1 m
and then \U{ wi —> Y'Y invertible matrix.
k
Then: . /2 (8. ) —u. >0 i e I(®
en Blk \ojs( 1k) qu 2 ig (®)

and also, taking limits in (1):
VI(B) + ) uiVe(8) =0
-~ B
5. . JjeI(8)
Thus, € is desirable.

i) If IN/ ¥i>N, 6, =8y > from Step 1 it follows:

N
; ] -1 .
IVJ(SN) +giv(_}:*@j~ (ei))n.—)o i+
but Bi —> 0 =
then: VJ(SN) =0 , BN e and Oy is desirable.
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NUMERICAL RESULTS.
We have applied this method to the problem of the shutdown of the nuclear reactor.
- The results are the same obtained with the projected gradient method: the optimal po-
licy in the set of step functions is a policy with two switchings.

The following table shows the convergence for n=2

0, 8, Jg B
1.000 8.500 6.62755 1.0000
0.913 8.413 5.49471 0.54000
0.792 8.292 4,98835 0.1600
0.720 8.220 4,77629 0.0640
0.684 8.184 469171 0.0256
0.667 8.167 4.65213 0.0076
0.659 8.159 4,64021 0.0023
0.658 8.158 4.63601 0.0004
0.6570 8.157 4.63530 0.00008
0.6564 8.1564 4.63516 0.000016

§9. PROOF THAT THE SOLUTIONS OF THE PROBLEM WITH FIXED NUMBER OF SWITCHING ARE MINIMD
ZATING SEQUENCE FOR THE PROBLEM WITH MEASURABLE CONTROLS.

The set of problems with step function controls (as were stated in§1) could be con
sidered as a set of approximations to the problem:
min  J(u(.))
with Uag
%ad = {‘u'(r.) measurable in [0,1] / u(t) = v, or u(t) =v, a.e.
3 = [ 1), us), $)4s + gxm)

b
and x(s) satisfies:

%XE (1) = F()x(t) + G(t)u(t)

x{(0)

)

X
o]

Under the assumptions that 1,g are continuous and F,G are integrable,it canbe
provedthat J is a continuous functional for u e AU d (with the L, (0,T) topology)

If we denote with T n the optimal solution with at most n switchings, we shall pro
ve that o is a minimizating sequence for the new problem.

Let w o be a minimizating sequence:
lim J(w )= inf J(u) w_oe U
50 n Cu’ad n ad
But, for the continuity of J , it is possible to find w

- (an a‘step func-—
tion / ﬁrn € Uyq) such that [J(ﬁn) - J‘(wn)| < ;IE
Let k(n) be the number of switchings of W , - By definition, ¥ k(n)

I () <TG
Then, using the property that J{@n) is non—incresing.
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lim J(ﬁm) < lim J(ﬁn) = lim Jw ) = inf J
m-+om n-> n-> o n ad
but: JT) > inf J
m Uaq
then lim J (ﬁm) = inf J(w)
m- ue‘ILE1d

§10. OTHERS RESULTS.

The bang —bang problem with restricted number of switchings could be analysed in
global form (i.e., the initial state x € R or X, € 2) and is reduced tc a se—
quence of stopping —times problems. Also in the problem with measurable control (u=0
or u=1 a.e.}) it is possible to prove existence theorems and to analyse the opti-
mal cost function with the hamiltonian technique. These are the objects of forthco —

ming papers.
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