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Abstract 

A linear time-varying stochastic system described in terms of input-output da- 

ta corrupted by noise is given and an optimal, time-invariant, low-order approxi- 

mating model is required. After the problem statement, the paper introduces an 

input-independent criterion and then considers the problem of its evaluation from 

the available data. A procedure is developed in order to obtain in closed form the 

upper bound, corresponding to a given level of probability, of the error functional. 

Finally, the minimization of this quantity leads to the optimal model parameters 

and to the approximation measure. 

1 . -  I n t r o d u c t i o n  

The problem of modelling a high-order linear differential system by means of 

a low-order reduced model has been recently studied by several authors both for 

the analysis and for the design of control systems. (A complete set of references 

on this subject is given in /i]. ) Most of the proposed techniques attempt to approx 

irnate typical responses of the system (impulse or step responses, transfer func- 

tion, z-transfer function, time-moments, etc. ) in terms of the corresponding re- 

sponses of the model (see for example /2_/ ]_3] ]__4 ]). An alternate approach is gi 

yen by the uniform approximation methods which essentially minimize a worst ea- 

se error (see for example /5__/]_6//__7_/). Usually the proposed procedures concern 

linear tirne-invariant systems and a relatively small attention has been devoted to 

the case where a linear time-varying system has to be modelled by a linear time- 

-invariant one of reduced order /_5_//__8 /i 9 /. In these references the given sys- 

tem is assumed to be described in exact form by its state equations. 

This paper considers the approximation by a linear tirne-invariant model of 

low-order of a time-varying stochastic linear system from input-output data cor- 

rupted by noise. This problem~which is of some interest in communication field 

/ I0 // II_]/_ 12_]] 13_/its approached from the point of view of the uniform approxi 

rnation. After the problem statement a modelling criterion is defined and a method 
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is given in order to determine the optimal model from the real data which descri- 

be the system. 

2.- Problem statement 

Consider the linear, time-varying, dynamic system described by the relation 

y(t) = /oco g(t, s) u( t -s)  ds (2. 1) 

where  u and y r e p r e s e n t  input and output r e spec t i ve l y .  The s y s t e m  is s tochas t ic  

s ince  g is  a r e a l - v a l u e d  s tochas t ic  p r o c e s s .  

In the m e a s u r e m e n t  s i tua t ion  the input s y s t e m  u is  exact ly  d e t e r m i n a b l e  while 

the obse rved  output is  given by 

z(t) : y(t) + d(t) (2.2) 

i . e .  the t rue  output of the s y s t e m  is co r rup t ed  by an addi t ive  r andom noise  d. 

It i s  d e s i r e d  to d e t e r m i n e  a l i n e a r  t i m e - i n v a r i a n t  model  of 1 0 w - o r d e r  d e s c r i b -  

ed by the input -output  r e l a t i o n  

y(t )  = g(s) u( t -s )  ds (2.3) 

(where g is a deterministic function) which gives the "best" approximation of the 

above system according to a certain criterion (see section 3). 

To this end some assumptions are made: 

a) on the system 

g :is a real ~valued,CJaussian~stochastic process for which the following conditions 

hold: 

g(t,s) = 0 for s < 0 (2.4) 

except on a set of sample functions of g of probability zero; 

E ;~ g(t,s) 2dtds ~ co (2.5) 

(E means expected value) for any bounded measurable set A in the plane; 

and 

E g( t , s )  = go(s) for  s ~ 0  (2.6) 

[g(t ,  s )g(t , ,  s , ) j  = Tg (t t,; s, s , ) .  go(S) go(s') ( 2  7) 

The i rnpulse  r e s p o n s e  go is  unknown. It is  s tab le ,  suf f ic ien t ly  smooth  and a t ime  
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T is known at which go(t) can be considered negligible. The system correlation 
s 

function ~g(t;s, s') is known. 

b) on the model 

The model impulse response g is defined by a low-dimension parameter vector p, 

i.e. : Es(p)J 

c) on the noise 

The noise d is a zero-mean, Gaussian, stationary, stochastic process having a 

known correlation function ~d(t). 

d) on the measurements 

Samples u M of the input and z M of the corresponding measurable output of the sys- 

tem are given, observed on a time interval of suitable length T M. 

3.- --Approximation criterion 

Let ~Lbe the set of the inputs u of system and model and let ~be formed by 

the square integrable functions on a certain time interval ~), TA]. According to 

the system assumptions also the corresponding outputs y of the system are square 

integrable (with probability one) and therefore two norms can be introduced 

I] 2 = f TA u2(t) dt (3.1) II u 
7o 

l~y-ylI2 = E ~I~ A [~-(t)-y(t)] 2 dt (3.2) 

Now, for every u, it is well known that / 14 / 

l [ ~ - y [ l  2 ~ K 2 l[ut[ 2 (3 .3)  

w h e r e  K 2 r e p r e s e n t s  the  Hilbert-Sch_r~dt n o r m  of the  d i f f e r e n c e  b e t w e e n  m o d e l  and  

system, i.e. 

fo 
Observe that K 2 represents an upper bound for the usual norm of the difference 

between model and system induced by definitions (3. i) and (3.2). 

At this point,according to relation (3.3),an input independent approximation cri 

terion is introduced and the optimal time-invariant model of low order for the giv- 

en system is defined as that which corresponds to the value Po of p minimizing the 
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quantity (3.4). 

Finally, in order to carry out this operation it can be remarked that the value 

Po to be determined also corresponds to the minimum of the expression 

f TA ( T A _ S ) { ~  rs(p)] _ g o ( S ) } 2  ds (3.5) 
O 

which can be  eas i ly  obtained f r o m  (3.4) and which d i f fers  f r o m  this  of a known va -  

h e  depending on the s y s t e m  c o r r e l a t i o n  funct ion ~g (see sec t ion  2). 

4. - Model de t e rmina t ion  

The evaluat ion of the index (3.4) (or (3.5)) and then of the opt imal  mode l  is not 

d i r ec t l y  poss ib le  s ince g can be eas i ly  computed  for  any fixed p but the impulse  r e  

sponse  go is unknown. T he re fo r e j t h i s  funct ion must  be e s t ima ted  f r o m  the ava i l a -  

ble input-output  data r e p r e s e n t e d  by s am p le s  u M and z M (see sec t ion  2). 

A c c o r d i n g  to (2.1) the re la t ion  (2.2) can  be e x p r e s s e d  in the f o r m  

i I z(t) = go(S) u ( t - s )ds  + [g(t, s ) -  go(S)J u ( t - s )ds  + d(t) 
O O 

and let t ing 

a s  

t 
O0 

Yv(t) = [g(t, s) - go(S) ] u( t-s)  ds 
O 

(4. 1) 

(4.2) 

Z T = [zM(O)  ZM(T c) . . . . . . . . .  z M[(rn-1)~c]  ] (4.4) 

T [go(O) go(Tc ) . . . . . . .  go [(n_ 1)Tc]]  ~ (4.5) G O = 

Yv = [Yv (O) Yv(Tc ) ....... Yv [(m-l)Tc]] (4.6) 

D = [d (O) d(Tc) ......... d ~m-1)Tc] ] (4.7) 

r 
OD 

z(t) = go(S) u ( t - s )ds  + Yv(t) + d(t) (4.3) 
O 

Now, by choos ing  a sui table sampl ing  t ime T such that  the funct ions  go (see s e c -  
c 

t ion 2) and u M can be suff ic ient ly  approx ima ted  f r o m  the i r  s amples  and by in t rodu-  

c ing the fol lowing ma t r i x  nota t ions  (the symbol  T means  t r anspose )  
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U 

[ .uM(O) O o O 

UM(T c ) uM(O) • O 

u M [<n-1)T c] u M [ (n -2 )T  e]  ° UM(O) 

u£~<m l>T0] ~'M[<m-2%] " u~,[~m-n%] 

<4.8) 

the relation (4.3),which corresponds to the observed data,becomes in discrete form 

Z = U G  O + Y v  + D (4 .9)  

Of  c o u r s e ,  y r e p r e s e n t s  a known  n o r m a l i z i n g  f a c t o r  , 

n = T s / T c  - 1, m = T M / T  c - 1 (4 .10)  

( s e e  s e c t i o n  2). It i s  a s s u m e d  m ~> n and  uM(O) ~ O. T h e  m i n i m u m  v a r i a n c e  u n b i a s -  

ed  e s t i m a t e  ( G a u s s - M a r k o v )  of t he  unknown  v e c t o r  G O i s  ] 15 / 

T O = (uTc-Iu)-I uTc-Iz (4. !i) 

where G is the covariance matrix of Yv+D, that is, in the case of g and d not corr_e 

lated 

c :  E[%Y~] + E[DD T] <4.12~ 

According to the assumptions of section 2, this matrix can be evaluated from the 

knowledge of u M and ~g for the first term and from the knowledge of ~d in a ve- 

ry direct form for the second term. 

The estimate error 

a = T o - G  O (4.13) 

i s  a G a u s s i a n  r a n d o m  v e c t o r  h a v i n g  z e r o  m e a n  v a l u e  a n d  c o v a r i a n c e  m a t r i x  

Q = (U T C - I  U) - t  (4 .14)  

T h e  c o m p u t a t i o n  of  t he  o p t i m a l  m o d e l  i s  o b v i o u s l y  b a s e d  on t h e  k n o w l e d g e  of  t h e  

e s t i m a t e  G O . 

In f ac t ,  c o m i n g  b a c k  to  r e l a t i o n  (3 .5 )  and  l e t t i n g  

~T = [ [ ( O )  g(T c) .......... g [ (n -1 )Tc]  1 ~" (4.15) 

this approximation index can be written as 

[&<p) _ %IT w[&<p) - G o] <4.161 
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where W is a diagonal nxn positive definite weighting matrix depending on the 

weighting function (T A - s)of (3.5). 

According to (4.13), if one defines 

e ( p )  : - 

(4.16) b e c o m e s  

(4.17) 

[e(p) + ~ IT W [e(p) + E] (4.18) 

which has to be minimized with respect to p. 

Indeed the expression (4.18) is a random variable with known statistics. The- 

refore it  s e e m s  to be  r e a s o n a b l e ,  by  fo l lowing  a w o r s t  c a s e  c r i t e r i o n ,  io  a s s u m e  

tha t  the  o p t i m a l  m o d e l  which i s  p o s s i b l e  to  d e t e r m i n e  i s  sought  by m i n i m ] z i n g  ( a l -  

ways  with  r e s p e c t  to  p) 

m a x  ( e +  ~ ) T  W ( e + E )  (4.19)  
E 

w h e r e  the  v e c t o r  ~ l i e s  in the  conf idence  r e g i o n  which c o r r e s p o n d s  to a g iven l e v e l  

of p r o b a b i l i t y  P.  Th i s  r e g i o n  ( see  above)  i s  obv ious ly  de f ined  by the r e l a t i o n  

E T Q - I ~  ~ F ( P )  (4 .20)  

where F is a known function of P. 

The problem of finding the quantity (4.19) with the constraint (4.20) is now take~ 

into account. 

Let be 

E e l / 2  Q1 /2  = , e = a (4.21)  

By substitution in (4.20) and (4.21) it is obtained 

max (a + C~)Q I/2 WQ1/2(a+C~ ) (4.22) 

~T 
¢( ~ F(P) (4.23) 

and introducing the lagrangian multiplier ]u the necessary condition for determin- 

ing (4.22) is written as 

0~=-  [ Q 1 / 2 W Q 1 / 2  ] Q 1 / 2 W Q 1 / 2  - ]uIj -I e (4.24) 

The use of (4.24) in (4.23) in order to derive ]u yields 

a T (QI/2wQI/2)[Q1/2WQ1/2-]uI]-2(QI/2wQ1/2) a .~ F ( P )  (4.25) 

The f i r s t  m e m b e r  of t h i s  equa t ion  i s  a q u a d r a t i c  f o r m  which is  de f ined  by a m a t r i ~  



726 

whose  e i g e n v e c t o r s  a r e  the s a m e  / 16 / o f  the m a t r i x  ( Q 1 / 2 W Q 1 ] 2 ) .  T h e r e f o r e l t h e  

d iagona l i za t ion  of th is  quadra t i c  f o r m  is  pos s ib l e  by in t roduc ing  the t r a n s f o r m a t i o n  

-1 b = M a (4.26) 

where  M is  the n o r m a l i z e d  moda l  m a t r i x  of (Q1/2 WQ1/2)  whose e igenva lues  a r e  

ind ica ted  by ,kf Then (4.25) can be r e w r i t t e n  in the  f o r m  

n 

X b- 2 - F ( 4 . 2 7 t  
i=1 1 (£i- p)2 

where  in t e r m s  of the o r ig ina l  v a r i a b l e  it is 

b M - 1 Q  - 1 / 2  = e (4.28) 

and where it is taken into account that the solution of the problem belongs to the 

boundary of the region defined by (4.20). 

Equation (4.27) has 2n solution for /u. What is, among these, the value /u o 

which allows to determine the quantity (4. 19) ? A sufficient condition can be easily 

derived from the second derivative of the functional (modified with the introduc- 

tion of the lagrangian multiplier). So, the matrix 

[ Q 1 ] 2 W Q 1 / 2  - / u I ]  (4.29) 

must be definite negative and hence the relation 

/u ~i ' i = i, 2 ..... n (4.30) 

must be satisfied. Therefore, according to the form of (4.27), /u ° is usually the 

only solution of (4.27) greater than the maximum eigenvalue of (QI/2 W Q I] 2). Ob- 

serve that singular cases can arise when the condition 

2 
n 2 ' t i  

b. ~ F (4.31) 
i : l  1 ( ~ i -  ]u)2 

holds ,  due to the fact  that  the coef f ic ien t  b i c o r r e s p o n d i n g  to the m a x i m u m  ~i is  

equal  to z e r o .  The  p r o b l e m  can s t i l l  be so lved  but mul t ip le  solut ions  can  happen  

]17]. 
F r o m  ]u ° it is  pos s ib l e  to c a l c u l a t e  the e x p r e s s i o n  (4. 19). In fact ,  by use  of 

(4.24),  e x p r e s s i o n  (4022) b e c o m e s  

a T [ i  _ Q 1 / 2 w Q l / 2 ( Q l / 2 w Q 1 / 2  _ ]UoI), 1 Q 1 1 2 W Q 1 / 2  
(4.32) 

[ I -  Q 1 / 2 W Q 1 ] 2  ( Q 1 / 2 W Q  112) - /Uot ) - l ]  a 

and th is  quadra t i c  f o r m  can  be d iagona l i zed  by in t roduc ing  the t r a n s f o r m a t i o n ( 4 . 2 6 ) .  
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Finally, the quantity (4.19) is written in the form 

n )~i/Uo2 
b. 2 (4.33) 

i=l  1 ( , k i _ / % ) 2  

and this represents  the required result .  

At this point the whole procedure of approximation can be summarized.  F rom 

the real data u M and ZM, the matrices U and Z are constructed and the estimate 

G_ of the unknown vector G~ is evaluated according to (4. Ii). Then, using eigen- 
o 

values and el env c or of-ll2w i]2., 1 . . . . .  "g e t Q Q tne so ution/u ° ol equation t~. 27) is found. 

Finally, the optimal approximating model is derived as that corresponding to the 

value of p which gives (see (4.33)) 

n X i po 2 
rain ~ b. 2 (4.34) 

p i:i I (X i-/Uo)2 

Remark that from (4.34) and through (3.5) the value K2(po) of (3.4) correspond 

ing to Po can be easily computed and therefore the method furnishes, together with 

the optimal model, also a measure of the reached approximation. It is possible to 

conclude that, for any square integrable signal u on [O, TA], on the basis of sys- 

tem knowledge which is possible to derive from the real data u M and ZM, there 

is at least a given probability P that the condition 

E [Yo(t) - y(t)]  2 dt ~ K2(p o) u2(t) dt (4.35) 

holds (Yo represen ts  the optimal model output corresponding to u). 

5.- Conclusions 

The problem of modelling a linear, time-varying, stochastic system described 

by input-output data corrupted by noise has been considered.- The assumption is 

made that the approximating model is time-invariant and has a simple structure 

described in terms of a parameter vector. An approximation criterion is introduc 

ed following a rain-max approach and the optimal model is defined as that which 

minimizes the Hilbert-Schmidt norm of the difference between model and system. 

The evaluation of this performance index is not directly possible from the availa- 

ble data on the system: therefore a procedure is given in order to obtain an esti- 

mate of such an index and in order to determine its upper bound corresponding to 

a given level of probability. Finally, the minimization of this quantity, which has 

to be carried out by a numerical iterative procedure, leads to the optimal appro- 
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ximating model and furnishes a measure of the obtained approximation which re- 

sults, of course, input-independent. 
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