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Abstract

A linear time-varying stochastic system described in terms of input-output da-
ta corrupted by noise is given and an optimal, time-invariant, low-order approxi-
mating model is required. After the problem statement, the paper introduces an
input-independent criterion and then considers the problem of its evaluation from
the available data. A procedure is developed in order to obtain in closed form the
upper bound, corresponding to a given level of probability, of the error functional.
Finally, the minimization of this quantily leads to the optimal model parameters

and to the approximation measure.

1. - Introduction

The problem of modelling a high-order linear differential system by means of
a low~order reduced model has been recently studied by several authors both for
the analysis and for the design of control systems. (A complete set of references
on this subject is given in [_—l:/.) Most of the proposed techniques attempt to approx
imate typical responses of the system (impulse or step responses, transfer func-

tion, z-transfer function, time-moments, etc. ) in terms of the corresponding re-

linear time-invariant systems and a relatively small attention has been devoted to

the case where a linear time-varying system has to be modelled by a linear time-

tem is assumed to be described in exact form by its state equations.

This paper considers the approximation by a linear time-invariant model of
low-order of a time-varying stochastic linear system from input-output data cor-
rupted by noise. This problem,which is of some interest in communication field
f__l(}:/ /:1 1_7 /:12_:; 1513:/,13 approached from the point of view of the uniform approxi

mation. After the problem statement a modelling criterion is defined and a method
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is given in order to determine the optimal model from the real data which descri-

be the system.

2.~ Problem statement

Consider the linear, time-varying, dynamic system described by the relation

©
y(t) = f glt, s) ult~s) ds (2.1)
o

where u and y represent input and output respectively. The system is stochastic
since g is a real-valued stochastic process.
In the measurement situation the input system u is exactly determinable while

the observed output is given by
z{t) = y(t) + d(t) (2.2)
i. e. the true output of the system is corrupted by an additive random noise d.
It is desired to determine a linear time-invariant model of low-order describ~
ed by the input-output relation

(¢ ]
yit) = { g(s) ult-s) ds (2.3)
o]

(where g is a deterministic function) which gives the "best" approximation of the
above system according to a certain criterion {see section 3).

To this end some assumptions are made:

a} on the system
g is a real ~valued,Gaussian,stochastic process for which the following conditions
hold:

glt,s) = 0 for g <0 (2.4)

except on a set of sample functions of g of probability zero;

E f/ g(t,s)zdtds < © (2.5)
A

(E means expected value) for any bounded measurable set A in the plane;
E glt, 8) = gols) for s 20 (2.6)
and
E [glt, s) glt', s")] = Pt s 8+ gols) gols) (2.7)

The impulse response g, is unknown. It is stable, sufficiently smooth and a time
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TS is known at which g,(t) can be considered negligible. The system correlation

function Pg(t;s, s') is known.

b) on the model
The model impulse response é’ is defined by a low-dimension parameter vector p,

i.e. gls) = g [s(p)] .

c) on the noise
The noise d is a zero-mean, Gaussian, stationary, stochastic process having a

known correlation function ﬁ(t).

d) on the measurements

Samples u,, of the inpui and z_  of the corresponding measurable output of the sys-

M M
tem are given, observed on a time interval of suitable length TM.

3.~ Approximation criterion

Let U be the set of the inputs u of system and model and let Whe formed by
the square integrable functions on a certain time interval [b, T A]' According to
the system assumptions also the corresponding outputs y of the system are square

integrable {with probability one) and therefore two norms can be introduced

Ta
Nl f w2(t) dt (3.1)
o
. Ta .
Wy-vi° - & { [y(t)-y(t)lZ at (3.2)
INe;

Now, for every u, it is well known that [14__/
~ 2 2 2
Iy -yl = &% ull (3.3)

where K2 represents the Hilbert-Schmidt norm of the difference between model and
system, i.e.
k?-E JfTA /’t {8 [s®] - et 9} ? atas (3.4)
O O

Observe that K2 represents an upper bound for the usual norm of the difference
between model and system induced by definitions (3. 1) and (3. 2).

At this point,according to relation (3. 3),an input independent approximation cri
terion is introduced and the optimal time-invariant model of low order for the giv-

en system is defined as that which corresponds to the value pg, of p minimizing the
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quantity (3.4).
Finally, in order to carry out this operation it can be remarked that the value

Py to be determined also corresponds to the minimum of the expression

Ta
f (Ty -0 {2 BO)] - gol)” as (3. 5)
O

which can be easily obtained from (3.4) and which differs from this of a known va-

lue depending on the system correlation function g {see section 2).

4. - Model determination

The evaluation of the index (3.4) (or (3.5)) and then of the optimal model is not
directly possible since é can be easily computed for any fixed p but the impulse re
sponse g, is unknown. Therefore,this function must be estimated from the availa-
ble input-output data represented by samples uy; and zy; (see section 2).

According to (2. 1) the relation (2. 2) can be expressed in the form

o @
z{t) = j go(s) ult-s)ds +J [g(t, s)- go(s}] ult-s)ds + dt) (4. 1)
o )
and letting
©
¥ (t) f [elt, o) - gols) ] ult-s)ds (4.2)
o]
as
[ o)
z{t) = [ golslult-skds + y,(t) + at} (4.3)
o

Now, by choosing a suitable sampling time TC such that the functions g, (see sec-
tion 2) and uy, can be sufficiently approximated from their samples and by introdu-

cing the following matrix notations (the symbol T means transpose)

z% = [z, 0 2T v 2y fm-17 ] .4
T

Go = [0 Eo(T,) vennn g [(n-l)TCI]Y (4. 5)

Yy = [7500 yy(T) ooennn. Vv [(m-l)'rc}] (4.86)

D =[dO &T)......... d fm-1r J] (4.7)
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[ upO) o . o] B
uM(TC) uM(O) e O
U = . . . . (4.8)
Uy [(n-1>TC] Uy [(n-Z)TC] . uy, (O)
] Uy [(m-l)Tc] Uy [(m~2)Tc] . uM[(m—n)Tc] ]

the relation (4.3}, which corresponds to the observed data,becomes in discrete form
Z=UGo+Y +D 4.9)
Of course, y represents a known normalizing factor ,
n=Tg/Te - 1, m=TM/TC—1 (4.10)

(see section 2). It is assumed m 2 n and uM(O) # O. The minimum variance unbias-
ed estimate (Gauss-Markov) of the unknown vector Gg is /:15:/

EO - wlctymt uTelz (4.11)

where G is the covariance mairix of Y _+D, that is, in the case of g and d not corre

lated
C=E [YVYf] + [ppT] (4.12)

According to the assumptions of section 2, this matrix can be evaluated from the
knowledge of U and ‘Pg for the first term and from the knowledge of :pd in a ve-
ry direct form for the second term.

The estimate error

&€= GO - GO (4.13)

is a Gaussian random vector having zero mean value and covariance matrix
- -1
Q- wlictw 4.14)

The computation of the optimal model is obviously based on the knowledge of the

estimate EO'

In fact, coming back to relation (3. 5) and letting
~ R . .
G" =[O T et g {tn—nTcﬂ Y (4.15)
this approximation index can be writien as

(G - Go ]T w(G(p - Go ] (4. 186)
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where W is a diagonal nxn positive definite weighting matrix depending on the
weighting function (’I‘A - s)-of (3.5).
According to {4. 13), if one defines

elp) = G(p) - Gg 4.17
{4.186) becomes
e+ e w [ep) + €] (4.18)

which has to be minimized with respect to p.

Indeed the expression (4. 18) is a random variable with known statistics. The-
refore it seems to be reasonable, by following a worst case criterion, to assume
that the optimal model which is possible to determine is sought by minimizing (al-

ways with respect to p)
max e+ &) Wie+e) (4.19)

where the vector g lies in the confidence region which corresponds to a given level

of probability P. This region (see above) is obviously defined by the relation
e'Qle ¢« F(P . 20)

where F is a known function of P.
The problem of finding the quantity (4. 19) with the constraint (4. 20) is now takeft

into account.

Let be
£=Q1/20( , e=Q1/23 (4.21)
By substitution in (4. 20) and (4. 21) it is obtained
max (a+ Q"% w @'/ %a +x) 4. 22)
vToa < mp (4. 23)

and introducing the lagrangian multiplier ju the necessary condition for determin~

ing (4. 22) is written as
x-- [@"2wal/2 - ui] @M 2wql/2% (4.24)
The use of (4. 24) in (4. 23) in order to derive ju yields
2T @2waH Q2 wol 2 n 2@ 2wq D aswm (425

The first member of this equation is a quadratic form which is defined by a matrig
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1/2 1/2
I2wqtl?
diagonalization of this quadratic form is possible by introducing the transformation

b-m1ta (4.28)

1/ /2)

whose eigenvectors are the same [16__/ of the matrix (Q . Therefore,the

where M is the normalized modal matrix of (@ 2 WQl whose eigenvalues are

indicated by ')‘i' Then (4. 25) can be rewritien in the form

2
Doog N
2 b ———— =F (4.27
1 A -
i T M
where in terms of the original variable it is
b-mlq 2 (4.28)

and where it is taken into account that the solution of the problem belongs to the
boundary of the region defined by {4.20).

Equation (4. 27) has 2n solution for a- What is, among these, the value
which allows to determine the quantity (4.19) ? A sufficient condition can be easily
derived from the second derivative of the functional (modified with the introduc-
tion of the lagrangian multiplier). So, the matrix

1/2WQ1/2

[Q - pu1] (4. 29)

must be definite negative and hence the relation

ush , i=1,2..... n (4.30)
/ i

must be satisfied. Therefore, according to the form of (4.27), eI is usually the

only solution of {4.27) greater than the maximum eigenvalue of (Ql/z WQ”Z}. Ob-
serve that singular cases can arise when the condition
n A 2
b3 bi2 ——— £F (4.31)
i=1 {}\i - /u)

holds, due to the fact that the coefficient b; corresponding to the maximum )\i is
equal to zero. The problem can still be solved but multiple solutions can happen
[17].

From JE it is possible to calculate the expression (4. 19). In fact, by use of

(4, 24), expression (4.22) becomes

T Qz]szl/z(Qilszljz ) quD—l Q2 ywotl?

(4.32)
[1- Q2 wql/? 2wl - 2 D 1]a

and this quadratic form can be diagonalized by introducing the transformation(4.26).
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Finally, the quantity (4. 19) is written in the form
n A ool
> 2 il
— P 2
i=1 ()\i /uo)

and this represents the required result.

(4.33)

At this point the whole procedure of approximation can be summarized. From

the real data u,, and Zor the matrices U and Z are constructed and the estimate

M
GO of the unknown vector G? is evaluated according to (4.11). Then, using eigen-
values and eigenvector of Q@ /2 WQ“2 the solution ug of equation (4. 27) is found.
Finally, the optimal approximating model is derived as that corresponding to the

value of p which gives (see (4.33))

n N M 2
min S b2 ——% (4.34)
« i 2
p i=1 (A‘ ju )
1 o

Remark that from (4.34) and through (3. 5) the value Kz(po) of (3.4) correspond
ing to p, can be easily computed and therefore the method furnishes, together with
the optimal model, also a measure of the reached approximation. It is possible to
conclude that, for any square integrable signal u on [O, T Al’ on the basis of sys-
tem knowledge which is possible to derive from the real data up and zy, there
is at least a given probability P that the condition

Ta . Ta
E/ [y, - y(t)]2 a £ Kz(po) [ u%(t) at (4.35)
o o

holds (gro represents the optimal model output corresponding to u),

5. - Conclusions

The problem of modelling a linear, time-varying, stochastic system described
by input-output data corrupted by noise has been considered. The assumption is
made that the approximating model is time-invariant and has a simple structure
described in terms of a parameter vector. An approximation criterion is introdug
ed following a min~max approach and the optimal model is defined as that which
minimizes the Hilbert-Schmidt norm of the difference between model and system.
The evaluation of this performance index ig not directly possible from the availa-
ble data on the system: therefore a procedure is given in order to obtain an esti-
mate of such an index and in order to determine its upper bound corresponding to
a given level of probability. Finally, the minimization of this quantity, which has

to be carried out by a numerical iterative procedure, leads to the optimal appro-
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ximating model and furnishes a measure of the obtained approximation which re-

sults, of course, input-independent.
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