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ABSTRACT 

We consider dynamical systems with norm-bounded uncertainty in (i) the system 

parameters (model uncertainty) or in (ii) the input (disturbance). 

For case (i), the nominal (null uncertainty) system is linear with constant 

matrices. Such systems with norm-bounded control as well as with a control penalty 

are treated. However, in the former the treatment is restricted to single input sys- 

tems in companion form, and in the latter to second order systems. Fer case (ii), the 

system is linear with time-varying matrices and norm-bounded control. 

Using some results from the theories of differential games and general dynamical 

systems, we deduce feedback controlswhich render the origin uniformly asymptotically 

stable in the large for all admissible parameter uncertainties or input disturbances; 

these may be both time and state dependent. 

The application of the theory is illustrated by examples. 

Research Associate, Natienal Research Council. 
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l° INTRODUCTION 

The problem of designing a feedback control for uncertain systems has been dis- 

cussed in a series of articles, [1-7]. In principle, we distinguish among three 

types of uncertainties : 

a) Uncertainty in the model (parameter) 

b) Uncertainty in the input (disturbance) 

c) Uncertainty in the state (measurement) 

Here we deal only with the first two types of uncertainty, model and input 

uncertainties for linear t systems. 

To motivate the discussion, consider an aircraft maneuvering at a high angle 

of attack. It is possible to describe the dynamical behavior by a set of nonlinear 

differential equations such that the "nominal" part is a set of linear differential 

equations. Often two difficulties arise: 

l) The nonlinear characteristics of the parameters are known but it is 

impossible to find a "best" controller for achieving desired specifi- 

cations, e.g. controlling the system asymptotically to rest. 

2) Because of lack of experimental data, there is incomplete information 

about the parameter characteristics, except that their value belong 

to known sets. 

In both cases we approach the difficulty by allowing for the "worst" nonlinear 

characteristics with respect to an appropriate performance index and for that 

nonlinearity we seek the "best" controller. This "worst case" philosophy does 

not imply that the "worst" situation will occur, but rather that a controller 

capable of achieving the desired end under the "worst" of circumstances will also 

do so under more favorable ones, and hence under all allowable ones. 

The theory of two-person zero-sum games is employed to generate "worst case" 

controllers. Towards this end, an appropriate performance index is stipulated; 

it is to be maximized by the uncertainty and minimized by the controller, respec- 

tively. If a saddlepoint strategy pair exists, then the controller assures him- 

self a cost (in terms of the assumed performance index) that is no greater than 

the saddlepoint one, no matter what the strategy of the disturbance. 

2. MODEL UNCERTAINTY WITH CONTROL PENALTY 

2.1 Problem Statement 

Here we treat a class of second order dynamical systems with parameter 

uncertainty. Consider 

TThat is, when the "nominal" system (namely, the system without uncertainty) is linear. 



731 

P 

x ( t )  = [A ° + ~ A i v i ( t ) ]  x ( t )  + B V p + l ( t )  u ( t )  (1) 

i=l 

x(t o) : x ° , t e [to,tl] 

where 

x(t) ~ R 2 is the state of the system at time t ; 

A i , i = 0, l, ..., p, are constant 2 X 2 matrices, each containing a single 

non-zero element ; 

B is a constant 2 × m matrix; 

v i ( t )  , i ~ =  1 . . . . . .  p ,  w i t h  I v i ( t )  ] ' <  l , and 

V p + l ( t )  w i t h  V p + l ( t )  E [ 1 , q ]  , q = constant  > 1 

are values of parameter uncertainty at time t ; 

u(t) E R m is the value of the control at time t . 

We are interested in the asymptotic behavior of the system (1) under all 

possible uncertainties 

v(t) = (vl(t),v2(t) ...... Vp+l(t))', t 6 [to, ~) . 

Since we are concerned with the asymptotic stability of the origin x = {0}, 

we introduce a measure of deviation from that state subject to a control penalty. 

That is, we introduce the performance index 

t 1 r 
= | [ x ' ( t )  Q x ( t )  + u ' ( t )  H u ( t ) ]  dt (2) 

| 
~ t  

0 

where 

Q is a constant positive semidefinite sym~aetric 2 X 2 matrix; 

R is a constant positive definite sym~netric m X m matrix; 

and consider the differential game with state equation (i) and cost (2) . 

That is, we seek a saddlepoint (p*(-), e*(.)) in a given class of strategies 

p ( . )  : R 2 x ~ l ~ H m , ~  e ( ' )  : B 2 X H l +~P+Z 

such that 

u(t) = p(x(t),t) , v(t) = e(x(t),t) 

Note that we are looking for a feedback control p*(') while admitting an 

uncertainty e(') that may depend on state and time. 

Having found a saddlepoint candidate (p*('), e*6")) , we inquire then under 

what conditions the feedback control p*(') renders x = {0} uniformly asymptoti- 

cally stable in the large (in the sense of Lyapunov) a~ainst ever"~ allowable 

uncertainty e(-) . 

2.2 StabilitY 

Before discussing the asymptotic behavior of the system, we invoke necessary 

conditions for a saddlepoint candidate (p*('), e*(o)) , e.g. [8-9]. These con- 

ditions lead us to consider the following procedure, [10]: 
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Step 1. For each possible combination 

{v.* : v.* = 1 or -1 , i = l, ..., p} 
I i 

Compute 
P 

A-- A ° + ~ a i v*~ (3) 
i=l 

Let A(k ~ denote the value of A corresponding to the k-th possible combination. 
~ 4 

S}e~ 12. Using (3), compute P(k) ' the solution of 

PA + A ~ P  - PBR - 1  B 'P  + Q = 0 

corresponding to the k-th possible combination of the v.* . 
i 

S t e p  3. D e f i n e  O'.k(o) : R 2 * R $ by  
1 

~(x) ~ x' [P(k) Ai + a~ P(~)] 

Step 4. Define a decomposition of R 2 by the lines given by 

~(x) = o 
I 

i = l, 2, ..., p~ k = i, 2, ..., 2 p 

and d e s i g n a t e  t h e  d e c o m p o s i t i o n  by D ~ {X l ,  X 2 ,  ° . ° ,  X~} 

The X i are the open subsets of the decomposition, ~There X i n Xj = 

fori+j ~d R 2 = $ - t .  • 
3.- 

i = l  

Step 5. Determine a, control candidate p*(') by the following algorithm: 

(~) 

(5) 

(6) 
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~O rithm 1 : 

Select Xj E D 

I Select a possible I 
combination of the vg. 

1 

~I Select a new possible I 

I sgn , i = i, 2, ..., 

......... No ~ i ~  T No 
> ~ s b l e c o ~ n a ~ n ~ _ ~  

~/ -~'~of v~ were checked / 

~Yes 

p*(x,t) = -R -1 ~' P(k) x I 

for x E Xj . l 
I 

Yes 

I Algorithm 
fails for 

Definition 1. Algorithm 1 is said to be positively satisfied on Xj iff there 

is ~ least one possible combination of the v~ such that the equality test is 
l 

answered in the affirmative. 

Remark 1. If there is a region of R 2 on which the equality test is met by 

more than one possible combination of the v~ then one may be able to introduce 

an altered decomposition of R 2 , on each of whose members p*(.) takes on v~ues 

corresponding to on_~eof the combin~ions meeting the sign test ; for instance, see 

Example 1. If this has been done, we still denote the members of the decomposition 

by X i , ie {1, 2 ..... ~} . 

%Since k(. ) is continuous on R 2 , the sgn gk(x) , i 

c o n s t a n t  o n  Xj . 

= i, 2, ..., p, remain 
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Before continuing, we introduce some definitions. 

Definition 2, The set Z C R 2 is positiyel_~ invariant with respect to (p(°), e(')) 

~) ÷ R 2 is a solution z~(t) e~ V t ~  [ t  o , ~ )  , ,~here x ( - )  : [ t  o , iff x ° 

of (1) generated by (p('), e(')) and x(t o) = x ° 

Definition 3. The origin is eventually uniformly asymptotically stable in the 
1 

large iff given any (Xo, to) ~ R 2 X R+ there exists at least one solution 

x(') : [to, =) ÷ R 2, x(t o) = x o , and for every such solution there is a T > to 

such that the origin is uniformly asymptotically stable (in the sense of Lyapunov) 

with respect to x(') I 
[T ,~) 

Now suppose that Algorithm I is positively satisfied on X i and Xj E D t , 

Xi N Xj ~ ~ ~ i + j , for the k.-thl and k.-thj possible, combinations 

i ÷ R TM satisfying of the v.* respectively. Consider p(') : R 2 X R+ 

=-R -z B' P(ki)x V(x,t) E X i x R l + 

~(x,t) = -R  - 1  B'  P(kj)X V(x,t) E X. X 1 J R+ 
(7) 

e {_R - I  B ' [ ~ P ( k i )  + (z-~) P(kj>] x : ~ e  [ 0 , l ] }  

V(x , t )  e-~j  n~.j x R+I . 

Now we need one more definition, 
^ ^ R 2 } Definit.ion......b_. L e t  x e  2 i n Xj  + ¢ , i @ j , = x e  { x  : d ' x  = 0 , x 6 . 

Let h.(x,t)l and hj<x,t) be the r. h. s. of (i) corresponding to (p('), e(')) 

on Xi and Xj ~ respectively. The boundary X'm F~ X.j is attractive, iff 

V (~('), e(')) and V x E Xi N Xj there is a ball B(x) in R 2 with center 

at x such that 

where d 

for all 

- 1 
d'hi(x,t) >I 0 V(x,t) E B(x) N Xi X R+ , and 

d ' h . ( x , t )  <~ 0 V ( x , t )  E B ( x )  F~ X. X l J J R+ , 

points into Xj . The boundary is a transition one iff 

d'h,(x,t)1 > 0 and d'hj(x,t) > O or 

d~h'(x~t)l < 0 and d~hj(x,t) < 0 

- i ( ~ , t ) ~ x  in~j x R+ 

V G ( ' ) ,  e ( ' ) )  

TDecomposition D may be an altered decomposition; see Remark 1. 
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Consider the following assumptions. 

~slumptions i. 

R 2 i Rp+l R 2 (i) Admissible uncertainty e(') : × R+ + is continuous on and 

piecewise continuous on any compact subinterval of R 1 + " 

(ii) Algorithm 1 is positively satisfied on every Xj ~ D . 

(iii) Triple {C, A, B}, where Q = C'C and A is given by (3), is completely 

controllable and observable for all possible combinations of the v.* 
i 

(iv) Every boundary Xi ~ XJ @ ~ ' i @ j , is either an attractive or a 

transition one. 

(v) Decomposition D is such that there exists at least one k E {1, 2, ..., ~} 

such that, given P(') , X k is positively invariant with respect to 

(~(') , e(')) for all a~missible e(') 

(vi) If a solution x(') : [to, ~) ÷ R 2 generated by (p('), e(')) reaches 

an attractive boundary at x(T) , then the origin is uniformly asymptotically 

I[ ; see Remark 3. stable with resDect to x(') T,~) 

Now we are ready to state a stability theorem, 

Theorem 1. Consider system (1). If Assumptions 1 are met there exists a feedback 

control p(-) satisfying (7) such that the origin is eventually uniformly asymp- 

totically stable in the large for all admissible uncertainties e('). 

Proof. Since 5(') is discontinuous and hence considered not unique, (1) becomes 

a generalized dynamical system, [ll-16], 

x(t) 6 c(x(t),t) (8) 

where the set valued function C(-) is given by 

p 

C(x,t) = {[A ° +i!iAi ei(x,t)]x + B ep+i(x,t) u : u = p(x,t)} 

1 
We show first that, given any (Xo, to) E R 2 × R+ , there exists at least 

one solution of (8) and that such a solution can be continued on any compact sub- 

set of R 2 × R+I .T This can be done by showing, [10] 
1 (i) C(x,t) is convex for all (x,t) E R 2 X R+ . 

1 
(li) C(x,t) is compact on any compact subset Of R 2 X R+ . 

R 2 1 (iii) C(') is upper semicontinuous on X R+ . 

(iv) Every member of C(x,t) satisfies a linear growth condition. 

To prove the eventual uniform asymptotic stability of the origin, we show 

that the origin is eventually uniformly asymptotically stable with respect to 

every solution, and, as indicated above, at least one solution exists and is 

continuable for every initial point (Xo, to) . 

TAt points of discontinuity of e(x, °) , solutions can be joined in the usual way. 
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First consider any 

satisfied; suppose this is accomplished by the 

v~ . Let Vk(') : X. ÷ R 1 be given by 
l j 

Vk(X) = x ' P ( k  ) x 

where P = P(k)  i s  t h e  s o l u t i o n  o f  

P A(k ) + Aik ) P - P B R -1  B'P + Q = 0 

With p 

A(k) = A° +i~l Ai sgn ~ki (x) 

1 l 1 

In view of (iii) of Assumptions I, Pfk~ 

Next we show that V~ o x(t) decreases along a solution x(') 

generated by (p(') e(')) for all x(t) @ Xj . For all x(t) e X; , O 

w(t) = g~aa Vk(X(t)) ;(t) 
P 

= 2 x'(t> P(k) [(Ao +l~iAivi(t).= x(t) + B Vp+l(t) ~(x(t),t)] 

Xj ~ D ~ By Assumption i (ii), Algorithm I is positively 

k-th possible combination of the 

(9) 

(10) 

is positive definite and symmetric, [17]. 

o f  (3) 

where 

vi(t ) = ei(x(t),t) 

~(x(t),t) = - R -= B'P(k ) x(t) 

However, since Ivi(t) I <d l~ i E {l~ 2, ..... p} 

k (x(t)) sgn k (x(t))>- vi(t) ~(x(t)) (II) 

so that 

W(t) ~< x'(t) [P(k) A(k) + A'(k) P(k) Ix(t) 

- 2 ~'(t) [P(k) B ~-l B'P(k )] x(t) ~+l(t) 

Since P(k) B R -1 B'P(k ) is positive semidefinite and Vp+l(t ) E [!, q] 

W(t) ~< x ' ( t )  [P(k)  A(k) + A ' ( k )  P(k)  - P(k)  B R -1  B ' P ( k  ) ]  x ( t )  

- x'(t) [P(k) B R -I BFP(k )] x(t) 

In view of (i0) we have 

W(t) ~< - x'(t) Q x(t) - x'(t) [P(k) B R -I B'P(k)] x(t) (12) 

Now we have two possibilities: 

(i) X(t) ~ Xj ~ t E It', t"] , and "Nature" does not use her 

strategy. 

"optimal" 

Then (ii), and hence (12), is a strict inequality; thus, W(t) < 0 . 
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(ii) x(t) ~ Xj , vi(t) = sgn q[(x(t)) , i = i, 2 ..... p, Vp+l(t) = i 

t ~ [t', t"] . Then the system is linear with constant coefficients (linear, time- 

invariant). Further more, 

- W(t) = x'(t) Q x(t) + x'(t) P(k) B R -I B'P(k ) x(t) 

= x'(t) c'c x(t) + u'(t) R u (t) = 0 (IB) 

on [t', t"] . Since both terms in (13) are non-negative 

x'(t) c,c x(t) - o , u'(t) ~ u(t) =0 . 

Since R is positive definite, u(t) : 0 , and the system is 

x ( t )  = A(k ) x ( t )  , t ~ [ t ' ,  t " ]  . 

But, since ~, A(k), B} is assumed to be observable, x~(t) C,C x(t) - 0 

cannot occur and so neither can W(t) - 0 . We conclude that V(k ) o x(t) 

decreases along a solution x(') for all t such that x(t) E Xj E D. 

Finally we note : 

a) If a solution x(') : [to, ~ ) ÷ R 2 remains in an )Lj ~ D for all 

t E IT, ~), T >I t , the origin is eventually uniformly asymptotically stable 
O 

with respect to x(" ) since the requirements for Lyapunov stability 

are met with respect to x(')I[T, ~) 

b) If a solution leaves an X e D it cannot return to it by Assumptions 1 
J 

(iv) and (v). Since the decomposition D is finite, a solution must 

remain in Some Xj (case a)), or enter an attractive boundary, or reach 

an invariant set X k E D . If it enters an attractive boundary, Assumption 1 

(vi) assures eventual uniform asymptotic stability. If it enters an invariant 

X k , it must remain in X k (ease a)) or reach an attractive boundary. In 

either case, eventual uniform asymptotic stability is assured, since X k 

exists by Assumption l(v). 

Remark~ 

2, Assumptions I ar~ sufficient but not necessary to assure that p(') is 

stabilizing, [10]. 

3. Assumptions i (iv) - (vi) depend on the properties of boundaries Xi ~ XJ @ 

For some c~es, for instance single input systems in companion form, these 

prCperties are readily checked, [10]. 
1 4. Feedback control ~.) is defined almost everywhere on R n X R+ . Due to a 

real controller's delay in switching~ chattering across an attractive 

boundary occurs, [ll- 13]; see also Example 1. 

2.3 Example i 

Here we consider a simple example to Illustrate the theory developed in 

Section 2.2, namely, ~ second order system with a single input and a single 

uncertainty: 
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xl(t) = x~(t) (l~) 

#2(t) = 1.6 v(t) x2(t) + u(t) 

with uncertainty v(t) E [-i,I], and control penalty matrix R = 1 . 

Furthermore, let matrix 

With.the ~Fstem so specified~ we have only two possible combinations for 

. These, together with the pertinent Pfk ~. . , ~k(x) and p(x,t) are v W listed 

below. The decomposition induced by ~ (x) = 0 , k = i, 2~ is shown in Fig, I. 

V* = 1 v* = -i 

P(1) = 3. P(2) = O. 

~l(x) = x 2 (3.2 x I + 12 x 2) 2 = x2 (3.2 x I + 1.7 x 2) 

~(x,t) = -x I - 3.7 x 2 ~(x,t) = -x I - 0.5 x 2 

The algorithm is positively satisfied on each member of the decon~osition 

induced by ~k(x) = 0 , k = i, 2; the corresponding switching functions are in- 

dicated on Fig. i. As can be seen, on two members of the decomposition, the 

algorithm is positively satisfied with both possible combinations. Furthermore, 

both combinations satisfy the algorithm positively on two pairs of adjacent 

members of the decomposition. Thus, these adjacent members can be combined into 

a single one; e.g., the ones for sgn 2 = -I . Recalling that one assumption 

underlying Theorem 2 requires that every boundary of the decomposition be either 

attractive or a transition one, we verify readily that the boundaries given by 

x 2 = 0 are transition ones; however, the boundaries given by 3.2 x I + 12 x 2 = 0 

are neither. Thus, ~ze alter the decomposition by rotating this line until we 

obtain boundaries satisfying the above assumption, in this case attractivity. 

The final decomposition is shown in Fig. 2. 

If we denote system (14) by 

x ( t )  = A x ( t )  + b u ( t )  

then, upon setting u(t) = ~(x(t),t) and v(t) = sgn ~k(x(t)) for 

k = l, 2, we get % 

x(t) = ACL x(t) 

where matrix 

1 - 2 .  

Line AOA contains one eigenvector of ACL • 

tFor special features of single input systems in companion form see [i0]. 
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Finally, Fig. 3 shows some typical solution curves of system (14) subject 

to a parameter uncertaintY that is a random piecewise constant function of 

time. Note that the solution curves reach the attractive boundary X20 X3 

and then move along it towards the origin. 

INPUT DISTURBANCE WITH BOUNDED CONTROL 

3.1 Problem Statement 

No~ we treat a class of dynamical systems with input disturbance. Consider 

x(t) = A(t) x(t) + B(t) u(t) + B(t) v(t) (15) 

x(t o) =x ° ,to [to, tl] 
where 

x(t) E R n is the state of the sysi~em at time t ; 

A(') is an n X n matrix, continuous on R 1 ; 

B(') is an n × m matrix, continuous on R 1 ; 

u(t) E U = {u E R m : II u II ~< Pu = constant E (0,~)} is the control; 

v(t) E V = {v E R m : U v If <~ P v = constant E (0,~)} is the disturbance. 

Since we are again concerned with the asymptotic stability of the origin 

x = {0} , we introduce a measure of deviation 

Itl 
J = x'(t) Q(t) x(t) dt (16) 

t 
o 

where Q(') is a symmetric n x n matrix, continuous on R 1 , 

and consider the differential game with state equation (15) and cost (16). 

That is, we seek a saddlepoint (p*('), e*(')) in a given class of strategies 

p(') :Rn×RI÷R m , e(') :Rn×RI÷R TM 

such that 

u(t) = p ( x ( t ) ,  t) , v(t) = e(x(t), t ) .  

Again, we look for a feedback control p*(') while admitting a disturbance 

that may depend on state and time. 

Having found a saddlepoint (p*('), e*(')), we inquire under what condi- 

tions feedback control p*(') renders x = {0] uniformly asymptotically stable 

in the large ( in the sense of Lyapunov) a6ainst ever~ allpwable disturbance 

e(.) 

3.2 Saddlepoint Strategy 

On invoking necessary conditions for a saddlepoint, e.g. [8-9], and then 

sufficient conditions, e.g. [18-19], we find the following saddlepoint for the 

case Pu = Pv = p : 

I B'(t)P(t)x 
. tI~,,~,,,,,(,~)p(t)xl t ~ v ( x , t )  ~ ~ 

p*(x,t) = - e*(x,t) = (l?) 

any admissible value V(x,t) ~ N 
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(ii) 

( i i i )  

where 

N = {(x,t) E R n X R 1 : B'(t) P(t) x = 0} 

and matrix P(.) is the solution of 

P(t) + P(t) A(t) + A'(t) P(t) + Q(t) = 0 

P(t l )  = o 

The details of the derivaZion can be found in Chapter 2 of [I0]. 

(18) 

3.3 Stability 

Having deduced a saddlepoint, we ask no~ whether the controller's 

saddlepoint strate~ p*(-) results in asymptotic stability of the origin 

against any allowable disturbance strategy e(') . Thus, consider a 

1 + U given by feedback control p(') : R n X E+ 

i B'(t)P(t)x #(x,t) = - IfB'(t)P(t)~l Pu V(x,t) @ N 

u e U = {u E R m :ii u II < pu } 

with, [20] , 

P(t) = ¢ ' ( T - t )  Q(T) # ( T - t )  dT 

t 

wh ich  i s  a p a r t i c u l a r  s o l u t i o n  o f  ( 1 8 ) ,  where 

of x(t) = A ( t )  x(t) . 

C o n s i d e r  the  f o l l o w i n g  assumpt ions .  

V(x,t) e 

(19) 

(20) 

¢(') is the transition matrix 

Assumptions 2. 

i + V c R m is continuous on (i) Admissible disturbance e(°) : R n X R+ 

R n and pieeewise continuous on any compact subinterval of R I • + 
I 

Cl~ c 2 E (0, ~) such that IIA(t)tl ~ c I , ilB(t)It ~ c 2 Vt @ R+ • 

Q(t) is positive definite (symmetric); that is, 3 c3,c4 E (0, ~), c 3 ~< c 4 , 

such that c3I~ Q(t) ~< c4I Vt E R I+ . 

(iv) A(t) is uniform!y asymptotically stable. 

(v) Pu > Pv" 

Now we are ready to state a stability theorem. 

Theorem 2. Consider system (15)• If Assumptions 2 a r e  met there exists a 

feedback control p(') satisfying (19) such that the origin is uniformly 

asymptotically stable in the large (Lyapunov) for all admissible disturbances 

e ( ' ) .  

Proof. Since p(') is discontinuous and hence considered not unique, (15) 

becomes a generalized dynamical system, [ll-16] , 

x(t) e C(x(t), t) (21) 

where the set valued function C(" ) is given by 

C(x,t) = {A(t)x + B(t)u + B(t)e(x,t): u = p (x,t)} 
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As in the proof of Theorem l, it can again be shown, [i0], that, given any 

(Xo, to) E R n X R I+ , there exists at least one solution of (21) and that such a 
1 solution can be continued on any compact subset of R n × R+ . 

To demonstrate the uniform asymptotic stability of the origin, we consider 

the function ¥(') : R n × R~ ÷ R I given by 

V(x,t) = x'P(t)x (22) 

where P(t) is defined by (20). 

Sihee A(t) is uniformly asymptotic~ly stable and Q(t) is positive 

definite according to (iii) and (iv) of AssumptiOns 2, matrix P(t) is positive 

definite, [20]. In particular, there existl c5' c 6 E (0, ~), c 6~ c5, such that 

c5[r~12~ V(x,t)~ c611~1 2 ¥(x,t)E R n X R+ • 

Thus, V(') is a Lyapunov function candidate. 

Finally, we observe that V o x(t) decreases along a solution x(') of 

(21) generated by (p('), e(*)) . Namely, for (x(t), t) @ N, 

W(t) = grad x V(x(t), t)x(t) + 3t 

B'(t)P(t)x(t) B(t)e(x(t),t)] 
= 2x'(t)P(t)[A(t) x(t) - B(t)iiB'it)P(t)x(t)II Pu + 

+ x'(t)P(t)x(t) 

= x!(t)[P(t) + P(t)A(t) + A'(t)P(t)] x(t) 

-2PulrB'(t)P(t)x(t)II + 2x'(t)P(t)B(t)e(x(t),t) 

= -x'(t)Q(t)x(t) - 2PullB'(t)P(t)x(t)~ + 2x'(t)P(t)B(t)e(x(t),t) 

- x'(t)Q(t)x(t) -2(Pu . pv)HB'(t)P(t)x(t)~ 

< 0 V Pu ~ Pv " 

For x(t) ~ N but x(t) ~ 0 , 

W(t) = - x'(t)Q(t)x(t) < 0 . 

This concludes the proof. 

Theorem 2has an immediate corollary. 

Corollaz~l. The average measure of deviation from the origin along a solution 

x(') : [to, ~] ÷ R n, X(to) = x ° , generated by (p(°), e(')) is 

~t x'(t)Q(t)x(t)dt ~ x' o P(to)Xo " 

O 

R 1 , [20]. Proof. In view of (ii) - (iv) of Assumptions 2, P(t) is bounded on + 

Thus, the result follows upon integration of W(t). 

Remarks 

5. If matrices A(t) and Q(t) are constant and t I ÷ ~ , then 

constant matrix solution of the Lyapunov equation, [20], 

PA + A'P + Q = 0 

6. Chattering across the singular manifold N 

P(') is the 

(23) 

is possible,Ill-13]. 
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7. In the scalar input ease, the control p(x,t) is bang-bang. 

8. If the matrix A is not stable but {A,B} is stabilizable~ Theorem 2 is 

applicable,j21]. 

9. The results of this section, in particular Theorem 2, remain unaltered if 

input matrix B is state and time-dependent; i.e., B(') may be continuous 

on R n × R ! . 

i0. For state-independent input matrix B(') , control p(x,t) is only output- 

dependent for outputs y = C(t)x where C(t) = B'(t)P(t) depends on Q(') • 

3.11 Example ~ 

As an example illustrating the theory of Section 3.2 consider the third 

order system 

x(t) ~ A x(t) + B u(t) + B ~-(t) 

where 

A= 0 i B= 

-3 -2.9 

The solution of (15) is 

= 1 .6  P .8 6.3 

1.6 O. 

and 

, Q= 21 

Ix I + 1.6 x 2 + 0.9 x 3 I 
"I 

] B~Px 

L3.8 x I + 6.3 x 2 + 1.6 x 

Note that N is of dimension n - 2 = i. 

Figure 4 shows the response of this system under a random piecewise constant 

disturbance and a control given by (19). 

3.5 Exa~ple 3 

Finally, as another illustration of the stabilization of a system with 

input disturbance consider the second order single input system 

x(t) = A x(t) + h u(t) ÷ b v(t) (2~) 

A = , b = ' Q= 23 
22 -24 2 ~-g 

Following Section 3.2, it is readily shown that 

~(x,t) =-sgn(x l+x 2) f o r  x l+x 2% 0 (26) 

Here, the singular manifold N is of dimension n - i = I , and chattering 

occurs due to delay in digital computation. 
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Figures 5 and 6 show the system's response under four types of disturbance -- 

constant, sinusoidal, randompiecewise constant, and "worst" -- and control (26). 

For comparison, Figure 7 shows the analog computer solution for zero as well as 

sinusoidal disturbance. As expected, the analog solution is smoother than the 

digital computer one (Of the discretized system); tNe response slides along N 

rather than chattering across it. 

4. MODEL UNCERTAINTY WITH BOUNDED CONTROL 

4.1 Problem Statement 

Now w e return to a class of model uncertainty problems. 

n-th order single input systems in companion form. Consider 

Here we treat 

P 

x(t) = [A ° + [ Aivi(t)] x(t) + b u(t) 
i=l 

x(t O) = x ° , t e [to, tl] 

where 

x(t) e R n is the state of the system at time t; 

A is a constant n × n matrix of the form 
O 

(27) 

A o 

"0 

0 

0 

i 0 . . . 0 

0 l 0 

o 

with al = constant, i = l, 2, ..., n ; 

A. , i = l, 2, ..., p , are constant n X n matrices of form 
l 

a 1 

with a i = constant ~ 0 , b = [0 ..... 0 I]' E R n ; 

vi(t), i = i, 2, ..., p, wit~ Ivi(t) I g i , are values of parameter uncertainty 

at time t; 

u(t) E R l, with lu(t)I ~ Pu E (0, ~) , is the value of control at time t . 

Again, we are interested in the asymptotic behavior of system (27) under 

all possible parameter uncertainties. Towards that end we introduce a 

performance index 
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/tl 

J = - }t x'(t) Q x(t)dt ( 2 8 )  

o 

where Q is a constant positive definite symmetric n X n matrix. 

4.2 Stability 

Before proceeding we note that the system may be converted into an 

equivalent input disturbance one: 

~( t )  = A j ( t )  + b u ( t )  + b ~ ( t )  (29) 

with 

v(t) = c'(t)x(t) 

where 

c ' ( t )  = [ a l v l ( t )  a 2 v 2 ( t  ) . . . a n V ( t ) ]  e R n , and  

- r , x ( t > ,  I ~ ( t ) f  ~ Jlo(t)H !Ix(t)il  
=l ai} 

Thus, we allow disturbsnces subject to 

We see now that the equivalent input disturbance problem is of the type 

treated in Section 3, with the sole exception of the state dependence of the 

disturbance constraint. 

Upon applying necessary conditions for a s&ddlepoint 

Pu = Pv = a I lxi l  = p ( l l x l l )  (31) 
1 

one finds the results of Section 3 unchaaged. Hence, we can state a stability 

theorem for the equivalent input disturbance problem. 

Theorem 3. Consider system (29). If Assumptions 2(i) and (iv) are met there 

exists a feedback control ~(-) : R n X R I ÷ R I satisfying + 

# ( x , t )  = " 
I an admissible value Y(x,t) e {(x,t) : b'Px = 0} 

where 

PA +A' P+Q= 0 
o o 

such that the origin is uniformly asymptotically stable in the large for all 

admissible disturbances e( • ). 

Remarks 

ll. If, in addition to the parameter uncertainties~ there is also an 

input disturbance~ say w with lwl < Pw ' then p(') is stabilizing 

provided p(llxil) : pw + ( ~i=l ~2~½ a . ,  # x l l  . 

(p*('), e*(')) , with 
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12. The results are readily extended to the case of time-varying matrix 

A by means of Section 3,[10] . 
O 

4.3 Example 4 

To illustrate the preceding results let us consider a second order system 

(27) with 

[°o i] , [o i] , [Oo o] A o , , 

1 

and 

Q[ I 
Of course, herg 

( l x l )  = Ilxl 

Then it is readily shown that 

~ ( x , t )  = - (x  1 + 2 . 4  x 2)  - p( l lxl l )  s g n  (x  I + 2 . 4  x 2)  

f o r  a l l  ( x , t )  ~ {(x ,Ja)  : x I + 2 . 4  x 2 = O} . 

Here, matrix A ° is not stable but {A , b} is stabilizable by linear feedback; 
o 

this accounts for the first term in the expression for p(') ; see Remark 8. 

Finally, the digital computer response of the system under the indicated 

parameter uncertainty and control p(') is shown in Figure 8. 
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