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Abstract 

In this paper, the asymptotic behavior of posterior distributions on parameters 

contained in random processes is examined when the specified model for the densities 

is not necessarily correct. Uniform convergence of likelihood functions in some way 

is shown to be a sufficient condition for the posterior distributions to be asymp- 

totically confined to a set (Theorem i). For ergodic stationary Markov processes 

uniform convergence of likelihood functions is established by the ergodic theorem for 

Banach-valued stationary processes (Proposition i). A sufficient condition for the 

uniform convergence is also shown for general random processes (Proposition 2). 

These results are used to analyze the asymptotic behavior of posterior distributions 

on parameters contained in linear systems under incorrect models (Example 1 and 2). 

i. INTRODUCTION. Let {X }, ~=I , 2, ... be a family of random variables defined on a 

probability space ( @ ,~, P ). A model is given which specifies that the joint den- 

sity of random variables X I ,...,X~ is one of the densities f~(xl,x2,..., x~lO) , 

where the indexing parameter 0 takes its values in the parameter space O , assumed 

to be a compact metric space. = denotes a prior distribution on (O,~(O)), 

where ~(O) is the Borel ~ ~field of O , and =n denotes the corresponding 

posterior distribution of the parameter given XI,X2,-'-,X~. Thus, for any 

A e ~ ( O )  , 

(i) l r r~A=6fn(X,  , '",Xrr l O) drr(O ) / f f  r~ ( X, , . . . ,X [ O )dzr ( 0 ) .  
o 

In this paper we study the asymptotic behavior of the sequence { ~ n } under the 

situation that the joint density of {X } need not correspond to any of the densi- 

ties in the specified model. Such an analysis was done by Berk [i] when {Xe } are 

identically and independently distributed (i.i.d.). 

It is, however, desirable to do the same kind of analysis for more general cases 

since most of the stochastic processes we encounter in practical problems are not 

i.~.d.. 

As was shown in Berk [i], when the process {X~ } is i.i.d., uniform convergence of 

the likelihood functions f~(x I ,...,X I 0 ) in some way ensures that the posteri- 

or distribution for the parameter 0 is asymptotically confined to a set (which is 
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called the asymptotic carrier by Berk), In Theorem I, it is shown that the same 

thing is true when {X~} are not necessarily i.i.d. 
In general, it is impossible to determine the asymptotic carrier since the true 

density for the observed process is not known. We can, however, analyze to some ex- 

tent the asymptotic behavior of posterior distributions under a misspecified (incor- 

rect) model by investigating the property of the asymptotic carrier. 

In section 3, the uniform convergence of likelihood functions is established 

for ergodic stationary Markov processes using the ergodic theoremin Banach space, 

and an example of the analysis is given. A sufficient condition for the uniform 

convergence is given for general processes in Section 4. These results are then ap- 

plied to the analysis of the asymptotic behavior of posterior distributions on para- 

meters involved in multi-input, multi-output linear systems when the model is incor- 

rect. 

2. CONVERGENCE OF POSTERIOR DISTRIBUTIONS. We assume the following: 

(AI) For any ~ and 0 E O,f~(~ ,---, ~I 0 ) is jointly Borel-measurable. 

(A2) f~(x, ,.-., X~ ] 0 )>O with probability one, 

(A3) For any nonempty open set Ae~(O.) ,= (A)>0. 

As was indicated in Introduction, the following theorem states that, if the 

likelihood functions f~(X1 ,...,X~IO ) converges uniformly in 0 in some way, then 

the posterior distribution { =g } defined in (I) is asymptotically confiend to a set. 

Theorem I. Assume (AI - 3). Suppose that, for a continuous function ~ ( 0 ) defined 

on O ,  

(2) ~u> t t_ OeO r iog f=(x~ , ' " ,Xr~iO)- -~7  ( 0 )  t~O in probability, 

then, for any open set Ae~(O) which contains the asymptotic carrier A0 , 

(3) = A~I in probability 

where Ao is defined as Ao ={0 ;~*=~(0) ,~*=~(0) } 

Remark i. Since ~(-) is continuous on the compact set O,~* is finite and 

not empty. 

Proof. 

/I0 is 

The proof follows the method given by Berk [i]. It is sufficient to prove 

~c A ~ 

n. 

in probability 

where 

We should note that = A>0 for all 

Now 

A e is complement of the set A. 

with probability one because of (A2 - 3). 
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L,~A~-fof,~(Xa ,. . . ,Xv. IO ) d r : ( O ) / f f  ( X , , . . . , X  I O) dzr (0)  
A n 

m e r~ A 

We shall show that, for any A6; ,2(O) ,  

10)) ~d~r (0) . 

(4) (/(exp log/n(Xa ,'",Xl 0 ))~(0))~ sup exp~ (0) 
-~ 0 ~  

in probability. 

By the condition (2) in the theorem, 

(5) sup l I O eA ~ - l o g f n ( x ~ , - - - , X  i0)--  T ( 0 ) [ ~ 0  

in probability. 

Hence we have 

I 
(6) sup I exp~-log/~(X~ ,---,X 1 0 ) - e x p ( 0 ) l ~ 0  

0£A 

in probability. 

In fact, defining F (a~;0)by  

(7) 

f ( c o ; O ) = ! l o g / , ( x , , . . . , X  [0), 

SUD I expF (co;O)-expT/(O)l 
0 e ~  

_ ~ s u p t F ( c o ; 0 ) - 7 / ( 0 )  l e x p { t r / ( 0 ) l + t F  ¢o~ ;0 ) -~ (0 ) t}  

_~suP0Ea[F~(o:0)-~(0)i "exp{suP0~at,7(0)l+suP0EaIF ( o ; 0 ) - , 7 ( 0 ) 1 }  

Since exp(-) is continuous, using (5) and Theorem 6 in 3, II in Gihman - Skorohod 

[2], 

e x p { g u p l F n ( c o ; 0 ) - ~ ( 0 ) [  } ~ 1 
O~A 

in probability. 

Hence again, by noting 6xp{supl~(0)l )<co the last term in (7) converges to 0 in 
U 

probability and (6) follows. 

Now by Minkowski' s inequality 

± ± 
I ( f ( e x p F n ( ~ ; O ) ) n d r c  ( 0 ) ) n _ ( / ( e x p T / ( O ) n d ~  (0) )  n { 

a A ! 

~__(f] ~ x p F  (o s ;0 ) - exp~(0 )  J~dn (0 ) )  ~ 
A 
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< s u p i  expF ((.o;O)-expT}(O) I ~ 0 
O~o 

in probability. 

On the other hand 

! 

( f (expZ](O) )~d~ (O) )~O 6A expz](O) 

(see Yoshida ( [8] ,  Theorem I, 3, I, P. 34)). 

Now 

Sup 
limL A=liml O~A ° 

Combining these results, (4) follows. 

in probability. 

By noting that AC is compact, ~(.) is continuous and that ADA o , 

O~sup exp.(O) /sup expT] (0)<1 
OfiA ° Oe~ 

and hence 

L A~ 0 in probability. Q.E,D. 

Remark i. The above proof shows that, if the convergence in (2) holds with probabil- 

ity one, then the convergence in (3) holds with probability one. 

Remark 2. Suppose 

! E  l o g / , ( x , , - - - , X  ! O ) ~ ( O )  
/ 'b 

for each 0. Let f~(X1 ,...,X iOo) be the true density of 

~(00 )_~ (0). In fact, 

( O o ) - - ~ ( O ) = t i m ! ( E l o g f , ~ ( X ~ , . . . , X  tOo) 
i$ __~oo ?'b 

-E iogf,~(X, ,...,Xn. IO) ) 

1 f ~ ( X ~ , . . . , X  IOo ) 
= i i m - - E l o g  . . . . . . . . .  ~ 0 .  

,~-,oo ~ f ~ ( X~ ~''*ltx [O) 

It is well know-n (Kullback [3]) that 

f ~ ( X ~ , . . . , X  [0o ) 
E l o g - f  (X, , . . . ,X  i O ) ~ O  

{X } . Then we have 
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Theorem 1 shows that the asymptotic behavior of the posterior distributions 

under a specified model can be analyzed by using 7(0) once likelihood functions 

converges uniformly to 7(0) in amanner definedin,~2)~. For i.i.d, random variables 

{X }, Berk [i] established the condition (2) by using the strong law of large num- 

bers for Banach-valued ~.~.d. random variables. By the similar idea, we can show 

that the condition (2) holds for ergodic stationary Markov processes by the ergodic 

theorem for Banach-valued stationary processes. This will be done in the next sec- 

tion. 

3. THE CASE OF ERGODIC STATIONARY ~iARKOV PROCESSES. In this section we treat the case 

where the process {X }, 3=I, 2, ... is an ergodic stationary Markov process. We 

shall show that, under a specified model described soon, the condition (2) in Theorem 

1 is satisfied for this class of stochastic processes. 

Let f(ylx,Oo ) be the transition probability density of the process {X } 

characterized by a parameter Oo .f(x [ 00) denotes the density of the random vari- 

able X~ . Then, given a parameter set O which is a compact metric space, 

f , ( x ,  ,...,X lO ) = f  (X, [0) II f ( x  i tXi_ 1 , 0 ) , # =  1,2,--. 
i==2 

is the likelihood functions of { X } defined on the parameter set O . We shall 

adopt the functions f (x~ ,...,x [0),r~=1,2,... as a model for the densities of the 

process { X }. The following assumptions are made: 

(BI) f(.,-[ .) is jointly measurable and, for each fixed (x, y), f(y]x, .) is con- 

tinuous, f( • I0) is measurable for each 0 cO. 

(B2) There exists a measurable function K(ylx) such that 

EK(X2 Ix, )<oo and ta. og f ( y l x ,  O)l ~ K ( y l x ) .  

Let us define 

(8) 
~(O)=E logf(X2 IX~ ,0 ) 

~ f  log f (y lx ,  O). f (  ylx,  Oo ).f(xlOo )dydx. 

Note that under (BI - 2) Elogf(XzlX, ,.) exists in the sense of Bochner's integral. 

Then we have 

Proposition I. Under the assumption (BI) and (B2), 

s u p i  1 Oeo ~logfr~(Xl'""XnlO)--~7(O) t~O 

with probability one, 

Proof. We use the ergodic theorem for Banach-valued stationary processes. Let #(O) 
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be the space of all continuous functions defined on O with the sup-norm. Since 

I X sup I ~f( I [ 0 ) i ~ 0 with probability one, 
060 

it suffices to prove 

(9) supl ~;I ~:21ogf(XilXi_! ,0) i ~8 
Oee 

with probability one. 

By the assumption (BI) and separability of the space C(O) with the aid of Lemma 

2.2.1 of Padgett-Taylor [4], Y :iogf(Xi+1 ] Xi'')'i:1' ...... are random vari- 

ables in C(@). Hence if we can show that the process {Y~ } , ~=1,2,.-- is an 

ergodic stationary process in Banach space C (8), then the ergodic theorem for 

Banach-valued stationary processes (see Parthasarathy [5]) asserts (9) and the con- 

clusion follows. 

To show the stationarity of the process { Y } , it is sufficient to prove, for 

example, 

(10) P { w ;  ( Y ~ ( o ) , ' " , Y k ( o ) ) 6 A } = P { ~  ; ( Y 2 ( ~ ) , ' " , Y k + I ( O ) )  6A} 

f o r  any k and A~N3(CA(O))  where  Ck(O) i s  t h e  p r o d u c t  s p a c e  o f  k c o p i e s  o f  

T h i s  can  be done by t h e  same method  as  i n  Lemma 2 , 3 . 4  of  P a d g e t - T a y l o r  [ 4 ] ,  

The s e t  

C(O) 

U= { { x~C'~ ( O) , f ( x )  <b } • f6Ck (O) *andI)egt }, 

where ck(o) * is the dual space of Ck(O), is a family of unicity for the Borel- 

field ~8(Ck(O)) (P. 25 of Padget-Taylor [4]), and it suffices to show that (i0) 

holds for any A 8 U . Now, 

for B={x~Ck(O) , f ( x ) < b  }~U, 

P { w ;  (Y~,.**, Y ~ ) E B } = P { ~ ; f ( Y t , ' " ,  Y ~ ) < h  }. 

Since Yi =i°gf(Xi+1 J Xi ' " ) 'f( Y' '"" Yk ) is a function of XI ,-'., Xk+ I , ~ • e. , 

/ ( Y I °.-., Y~) ~-J ( XI ,--., Xk+ I ). 

is a composite function of j~ and g~ where 

y, : ( x~ ,..., x~+1)6  R k + l ~ ( f  (x2 ix,, - ) , . - - , f ( x k +  1 Ix k, ") )6C~(0) 

.9'2 : ~o ~ 9 ~  ( X~ (ca) ,..., Xk+ 1 (co)) 6R k+l 
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The assumption (BI) and separability of Ck(O) 

9 is measurable. With this fact and stationarity of the process 

Xk+ I ) and if( X~ ,--., Xk+2) have the same distribution. 

P{o)  ; f ( y ,  ,..., Y k ) < h  } 

= P  {o2 ; 9' (X,  , '",  Xk+ 1) < b  } 

= P  {o) ; 9'( Xz ,--., X ~ + 2 ) < b  } 

= P  {w ; f ( Yz ,..., Y k + l ) < b  } 

= P  { co ; ( Y2 , - ' ,  Yk+l ) ~ B }. 

This establishes (i0) and, hence, stationarity of {y }. 

Finally 

ergodicity of { Y } is also proved by showing that for every z/e~(c~+I(o)), 

k== 1,2,-. . ,  

1 N 
(11) -3~.S1zA(Y ,...,rr~+,~)-*P((o', ( Y I , . . . , y k + I ) ~ A )  

with probability one where Z~ is the characteristic function of the set A . Since 

Z d(Y ,.*.,Y +k) is a function of {X } ,~. e., 

zA(Y , . . . ,Y .+,~)=g(  X , . . . ,X.+ k ,X  +k+l ) , 

just as before if(.) is a measurable function. Hence the process {Z } , where 

Z ~g( X ,.-., X +k+ I) , is ergodic and stationary, and by the ergodic theorem 

I N I N 
-;ZZ .Z.(Y ,-'-, ( X  ,---, ) .tv,,= 1 ~, ~, r,~+k)='~r~21 g X~,+k+l 

E g ( X, ,---, Xk+ 2) 

= E l  A ( Y ~  ' " "  Yk+l ) 

=P {o ; Y~ ,.-., Y ~ I  ) ~ A } .  

Thi s  shows t h e  r e l a t i o n  ( l l ) .  

Remark 3. From Remark 2 we have ~(0o)~(#). 

(_~) - 

If the following condition 

and f(ylx,Oo) and f(x[0o) are both positive, 

ensure measurability of q~ , and hence 

{ X  },  g ( X ~ , . . . ,  

Hence 

Q.E.D. 
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holds then 

Example i. 

given by 

~(~o)=$(0) implies 0~--=0 . 

Let us consider a first order ergodic stationary Markov process {X(~) } 

X(n) =@oX(r~- 1)+Gow( r~- 1 ) ,u=. . . ,  - 1 ,  O, I ,'" 

where X(~I~R d and {w(e)} is a k-dimensional vector valued ~.i.d. random se- 

quence with normal distribution N(O,I k) , I k identity matrix. @o and Go are 

unknown d Xd and d X k matrices respectively, and we assume that absolute values 

of all eigenvalues of @o lie in a unit circle, We investigate the asymptotic be- 

havior of posterior distributions of the parameter 0=(@,G) on a compact set O 

which need not contain the true parameter ~=(@o ,Go ) The transition density of 

the process {X(n)} is given by 

_I 
I f ( y l x , O o  ) = ( ( 2 ~ ) ~ l G o G o ' l )  2exp{ - -~ (y -@ox) ' (GoGo ' ) - - l ( y - -@ox)}  

where we assumed nonsingularity of the matrix GoG~ ~ • 

is normal N(o,F) where f is given by 

The density ](x[00) of X(~) 

f':=GoGo' +@oGoGo' @o' +@o z GoGo' (@o) z + . . .  

Now the function ~ (0) defined by (8) is 

(12) 

I d 
~ ( 0 ) = - ~ - ± o g ( 2 ~ )  IGG: I 

1 
- ~  f ( y - @ x )  ' ( c~ ,  ) - I  ( y - @ x  ) f ( y l x ; O o )  f ( x l O o  ) dyd~ 

= - - m t o g ( 2 ~ ) d i c ~ , t -  t r a c e [ ( C ~ , ) - I c ~ G o ,  ? 
2 

- ~ f x ' (  ¢o-@) ' ( G G ' ) - l ( @ o - @ ) x f ( x l 0 o )  dx 

= - ~ l o g  ( 2 ~ )  I G G ' l - - ~ t r a c e [ ( O G ' ) - l g o c ~  , ] 

- I - - t r a c e ( @ o - @ )  ' ( GG' ) - 1 ( @ o - q ) )  f 
2 

where we are assuming nonsingularity of G~ for all 

As we have shown in Remark 2 

1 ~ ( 0 o ) = - T Z o g ( 2 r c )  e IGoGo' l - ! d  
• 2 

O=( @ , G) ~ O .  

The asymptotic carrier Ao for the parameter set O can be calculated by using (12) 

and this enables us various kinds of analysis for the asymptotic behavior of posteri- 

or distributions. For example, let the parameter set O be such that O~ {(@,GI) , 
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@eO1, GROG0} where Ot is a compact set regarding the parameter @ and contains ~ . 

For this case the asymptotic carrier Ao contains only one point ( @o, Gt) since 

trace(@0-@)'(GG')-1(@0-@)F=O if and only if @=@0 • Hence even if the specified 

model does not include the true density ,i.e.,G~Go. as far as the parameter @ 

is concerned the posterior distributions on @ converge to the true point @0 • 

4. A SUFFICIENT CONDITION FOR GENERAL CASES. Returning to the general case, let 

{X },n~1 ,.-., be a random sequence. Given a joint density model f~(xl,...,x I0) , 

0 EO, n=1,2,.-, for the process {X } , we have the following proposition regarding 

the uniform convergence of likelihood functions. 

Proposition 2. Assume that 

(1) Var ( 1 l o g /  (X, , . . . ,X lO ) ) ~ o  

uniformly in O 

(ii) E ( 1 1 o g f  (X, ,--.,x [ 0 )~ (0) 

uniformly in 0 , then the condition (2) in Theorem 1 is satisfied 

Proof. Application of Chebyshev's inequality easily shows the result. 

an arbitrary number c> O, 

In fact, for 

. { o . ; g u p t ~ o g / . < x , , . . . , x  t o ) - ~ ( o )  l > o l  

~P{~; sup[ I ~ - Oce ~-~ogf,(x~, . - - ,x  I 0 ) -  E~ogf ( x , , . . . , x  Io) 1 } 

+P {o~; s u p ] l g l o g f  (X1 ,.--,X 1 0 ) - ~  ( 0 )  1>-~} 
060  2 

By Chebyshev's inequality 

o , ( ~ u p l  EloJ ,~(Xt , . . . ,X ,~lO)-~(O)  I }' 
Eo 

By Fatou's lemma, the first term in the above equation is less than 

, 1 
o--~{~up El ~og/,~(X~,.-.,X IO) - - !E log f~ (X , , . . . ,X  [0)[}  ~ 

OEo n~ 

Hence the conclusion follows. Q.E.D. 

Remark 4. (a) In Proposition 2 if 7(#) is continuous, then we can apply Theorem 1. 

(b) When the process { X } is an independent (but not necessarily identically 
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distributed) sequence, the density model is given by 

f ( x ,  ,'",%~1 0 ) = / ,  ( x ,  i ~ )'"f,~(%~t 0 ), OeO 

where fi( x,l 0 ) is the density model for random variable X i • 

In this case the assumption in Proposition 2 takes the form: 

( i )  -2-2 2 Var  l o g  f i(X~ I 0 )~0  u n i f o r m l y  i n  0 • 

(ii) __i ~ E log fi(Xi I 0 )~(0) uniformly in 0 . 

ExamP!e.2. Let us consider the following linear system: 

X +1==@X +GU ~ ~ X~ ; given 

where X 6Rd,Y ,~ 6R l,U ~I~ and matrices @,G,H, have appropriate 

dimensions. { U } is a given control sequence and we assume that { ~ } is an 

independent and normally distributed sequence with mean zero and covarianee matrix 

F . The unknown parameter 0 consists of •, G, H and F. The process { Y } is 

clearly independent but not identically distributed. ~o, Go,Ha and F0 denote 

the true parameter. Then Y has a normal distribution N(HoX (Oo),Fo) where 

X (00) is the state vector corresponding to the true parameter 00, and the den- 

sity model is given by 

where 

f ,~ (Yt  , ' " ,Y~tO ) = , ~  f (Yil O) 

__t {_~(yi_HXi(#)) ,p_1(yi_HXi(O)) ) fi(Yi{O)=((2=)lIFl) 2exp 

and 

We assume the following: 

(CI) @o and @£0 are stable matrices, ~.e., 

values of these matrices lie in a unit circle, 

(C2) The control sequence is uniformly bounded, 

property such that 

Xi(O ) is the state vector corresponding to the parameter 0. 

absolute values of all eigen- 

~.e.,IU i~K . and, it has the 

1--2(NoX~(Oo)-NX ~(o))(HoX~(O)-EX~(O)) '  
N 

converges to a function of # uniformly in 0 • 
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Then conditions (i) and (ii) in Proposition 2 are satisfied. To show this, first we 

note that the state vector X (0) is uniformly bounded, i.e., IX (0) I~M for 

all n and 0 eO U {00 } . In fact, since 

X (0) =GUn_ 1+0 GUr~_2+@z GU _5+...+ @ "-IGu o +@r~Xo , 

I x  ( 0 ) t ~ I I G I I I U _  l i + t l ~ l l  IIGII I u _ 2 i + . . . + l / ~ l l ' - l t l G I t  tUol÷l l~lt=iXot 

where the matrix norm [ ] A l [ i s  defined by I l A I I  = s u p i A x l  . 
I= I<1 

The right hand side of the above inequality is less than 

(13) 

Kl l  GII ( 1+ I I~ I1+ II • I1~ + -.. ) + l ~ l  

I 
=KI I  C II , - - - - - - - -T + I ~ 1 <M 

[ ] 1  - [I  ~) 

Note that by (el) II @ II<1 • The last inequality in (13) is due to the compactness 

of the set @ , and the uniform boundedness of X ( 0 ) follows. Since { Y } are 

independent, according to Remark 4 (b), let us calculate Vat logf~(Y I # ) • 

Since 

l o g f ( Y l O )  =log((2~) 1 Irl ) - 1 2 - 1  (HoX(Oo).Bx(o)) 'r-1 (HoX(Oo)-HX(O)) 

-~'r -I (Hox (0o) - H X  ( 0 ) )  

1 - - J  , r -~e  , 

we have 

Vat logf (Y IO)=E (¢~f'-1(/IoX (0o) -HX (0))+2$,F-I$ 

- 1 E ~ - r - l ~  )~ 
2 

~__2E (~, /,-1 (Ho X ( O o ) - / t X  ( 0 ) ) ) 2  +2Var(2@" F-1 £ ) 

~ i  

where M does not depend on O. 

The last inequality comes from finiteness of the moment of $ and uniform bounded- 

ness of HoX (Oo)-H~(O). Now the condition (i) in Remark (b) is easily checked 

by noting that 

Var (~ log/~(Yl, "-', ~ I O ) ~ i f l V a r  l o g f i ( Y  i t O) 

M 
~---~0 uniformly in @ 
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Similarly, by the condition (C2), 

~ - i f  1 E l o g  / n (Y  I O)--~lim--~.~ S log / i ( Y i  I O)----~l(O) 
w -''~'° #"/'--~ 1 

uniformly in fl. 

Thus by Proposition 2 we have 

sup ! 1 Oeo --~ log f ~  ( Y , , . . . ,  F I 0)-77(0)t--+0 

in probability and ~ (#) is given by 

_ !  ±} 
( 0 ) : l o g ( ( 2 ~ ) ~ l f ,  i )  2 - - - l i r a  (RoX (Oo)--BX ( 0 ) ) ' 1  '-1 

2 N-~o N i = l  

1 F -  1 
2 

As was done in Example l in Section 3, we shall investigate the asymptotic behavior 

of posterior distributions on (@,G,R) under the condition that F is arbitrarily 

fixed, ~. e. F~Fi. Let the parameter set O be such that 0~1'i ×O1 where 01 is a 

parameter set regarding (O,G,FI) and we shall assume that 81 contains the true 

parameter ( @o ,Go ,Ilo ).Clearly ~ (01)----sup 7(0) where 01 ----(F~ ,@0 ,Go ,F/0 ) and hence the 

asymptotic carrier No contains 0, . But in this case ~(01)~(0) does not imply 

01~O since, for all non-singular matrix T , O~(F,,T~T-I,TGo,HoT -I) gives the 

same values to 7(0). When the input U and the output y are both one dimension- 

el, a necessary and sufficient condition on the input sequence {U } for the asymp- 

totic carrier A0 to contain only one point, i. ~. 0~(I"i,@0 ,G~ ,H0 ) is known 

(Aoki and Yue [6]) under the condition that (@,H) has a cannonical observable form 

and (o,G) is a controllable pair. 

We shall consider more general cases. To simplify the analysis, we assume (C3): 

The control sequence {U } is a uniformly bounded i . ~ . ~ random process and 

W ~ j  ;F/ '  positive definite 
E U~Uj " = { 0 ~ =J 

Furthermore, since we are only concerned with the asymptotic behavior of posterior 

distributions, we assume that the time index ~ of { L} tends to infinite past, 

Then since 

X = G U  +@GU +@~GU +.-- 

and {~} is a uniformly bounded ~.~.~ sequence, by (CI) {Tf } is an ergodic 

stationary process and so is { L } " 

Now {yn, } are no more independent, but since ~Y,~-f:loX,~(Oo) is an 
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independent and normally distributed sequence, the likelihood function 

f (Y~, "", Y t O) of y ~ , . . . , y  is given by 

(14) 

f ~ ( Y a ,  '" , Y _ 1 )' I O) ~ ( ( 2 ~ ) L I P I )  -1 exp {-~ (Yi-lIZi(O) 
/--I 

p-1 (yi_BXi(O))} ' 

and we shall assume that this function f~(Y1, "", Y IO) is to be the density model 

for {Y } Let us investigate the asymptotic behavior of (I/~)log f (Y,,...,Y I 0) 

directly without using Proposition 2. Since 

_~ I i~1(]t ° Oo )-HXi(O)) 'T-t  ---I logf~(Y~ , ' " , Y r l  O ) = l o g ( ( 2 = ) l l P l ) - ½  ~ = Xi( 

" ~ }~' r-~(HoX/(Oo)-Hx(O)) (ttoX i (0o)-//Xi(O ) ) [~-/=1 i 

I 1 .} e,r-~e. 
2 ~g~1 ~ ?,, 

we shall apply the ergodic theorem to each term of the above equation. Noting that 

by the same discussion as in Section 2 {X (0)} is an ergodic stationary process 

in Banach space C ( 0 ) , by the ergodic theorem in Banach space we have 

~pt-~ } r-~(Ro~(Oo)-Hx (o)) l-,o 
OE e {=I 

with probability one. 

Here we used the fact that 

Similarly 

and H0X (00)-HX (0) are independent. 

fie0 rr ~:1 

with probability one, 

and 

sup 1 I__ ~ {~" (~ox{(oo)-Rxi(o ) r-~(~oxi(Oo )-Rxi(o)) 
OEo ~ ---- 

- e(HoX, (Oo)-HX, ( O ) ) ' r  -I(Hox,  (Oo)-HX, ( 0 ) )  I~O 

with probability one. 

Hence we have 

~up I ! OEe ~ l°g/~(Y1' "'" with probability one 

where 
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1 1 F -  1 rl(O)=log((2~)ZIPl)--2--~ t r a c e  Fo 

1 
- ~  E (//ox~ (00) - / / x~  ( O) ) ' r  l (goX, ( Oo )-Hx~ (0 ) )  

2 

Leg us calculate 

(no×, ( 0 0 ) - / / x ,  ( O ) ) ' r  q (~o x, ( 0 o ) - g x ,  ( 0 ) )  

= t  r ace  r- lE(/ /o x~ (0~)-gX~ ( 0 ) )  (//o X~ ( 0 . ) - / / X ,  ( 0 ) ) ' .  

Since 

BX~ (O)=ltGUo+H@GU_I +ItCZGU_2 +,-° 

and by (C3), we have 

E (Hox, ( 0 o ) - / / x ,  (0))(Rox~ ( 0 , ) - / / x ,  ( 0 ) ) '  

= ~ o  (Eo o~ Go - t t~ic)w(t tO q#oCo 

Hence 

(i5) 

t I 
~? ( 0 ) - - - - l o g ( ( 2 / c ) Z [ F i ) - 2 - - -  t r a c e F - 1 F  '~ 

2 

I ~ r a c e F -* i z0 (Ho ~ C o  - H O  ~ C ) w  (Ho O~Co - g  ~ c )  ', 
2 

Let ~ (01 )=r /  (8) where O~ = ( F i  ,Oo,Go ,//o). Then 

//0 @% Go ~@r'G for all ~_0 • 

Thus under the assumption 

(C4): For all ~@U{Oo 

[ X ~ @X +GU 

the system 

is a minimal realization~ 

there exists a non-singular matrix T such that 

(16) @~--T@o T -1, G=TGo ,H=HoT -~ 
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(See Brockett [7]). 

As we have already shown, if the parameter (@,G,H) is completely unknown, 

(~0)=~ (0) does not imply ~0 ----0. Motivated by this fact, we shall consider the 

case where some of elements of (@o,Go ,No ) are known a priori so that the follow- 

ing condition (C5) holds: 

(C5) : 0 e @ , which satisfies (16), is equal, to 0~ . 

Then under this assumption ~ (01)----7 (0) implies 01-~= 0 . 

We summarize here the obtained result. 

Proposition 3. Consider the linear system: 

X = @X +GU 

Y ~ t t X  + $  r ~ . - .  , -  1 , O ,  1 , . . .  
/b //,, //. 

Under the condition (el) and (C3), 

s u p  [ 1---logf~(Y1,..-,YnrO)-;'](~)l--.,13 
O~e 

with probability one 

where f~(Yl"',~lO) and ~ (0) are given in (14) and (15). 

For a case where @~FI×@, (defined earlier), under further assumptions (C4) and 

(C5), ~(0~)=~(0) implies 01~0 and hence the asymptotic carrier ~ contains 

only one point 0 ~(F~,@o,Go,Ho) 
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