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I. INTRODUCTION 

An information processing machine of the most general type is characterized by its 

ability to generate information for a predefined purpose. This information is the 

result of a processing operation for which both input data and internally stored data 

have been utilized. There are many types of information processing machines. Examples 

are the Touring Machine, the Analog Computer and the Digital Differential Analyzer. 

The digital computer, or as we nowadays call it, the data processing system, is another 

special case. It is characterized by the sequential processing of individual instruc- 

tions of a prestored program and the fact that program and data occupy a common "Main 

Store". Data Processing Systems can be classified by their major application as In- 

formation Systems, Problem Solving Systems, and Object Systems. As to mode of opera- 

tion, they can be classified as batch systems and interactive systems: 

INFORMATION SYSTEM 

PROBLEM SOLVING SYSTEM 

OBJECT SYSTEM 

BATCH 

DATA BASE 

STANDARD BATCH 

DATA COLLECTION 

INTERACTIVE 

RESERVATION SYSTEM, 

DATA BASE/DATA COMMUNICATION 

SYSTEM 

TIME SHARING 

AUTOMATION & CONTROL 

There are three major elements which make a data processing system into an information 

processing machine: hardware, system software and application programs. Hardware and 

system software are supplied by the manufacturer of a data processing system. There 

is no clear distinction between those two functions, and there are some types of 

systems which perform functions in hardware which other types of systems perform 

through system programs. 
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The application program contains the algorithm which defines how to generate output 

information using both input and internally stored data. In addition it contains 

features which adapt it to the executing system. A data processing system is thus a 

machine which is capable to execute many, independently produced application programs. 

Its architecture and structure can be described independently of its application 

programs. 

The architecture of a data processing system can be defined as the functional appear- 

ance of the system to a user, its phenomenology. The structure of a system is char- 

acterized by the manner in which the individual building blocks are interconnected 

to implement the architecture. A modern system architecture has three major components 

(Fig. 2): 

Processing 

Storage 

Input/Output 

A possible implementation is shown in Fig. 2. 
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2. UNDERLYING DRIVING FORCES 

Features and characteristics of a computer system architecture and structure are 

driven by three underlying forces~ The first of these has to do with the concept of 

the digital computer. Characteristics are indicated in Fig. 3. 

The second underlying driving force is controlled by consideration of the teah~ology 

used for implementation and the resulting operational efficiency. During the last 

30 years technology developments have to a significant extent, been one of the under- 

lying driving forces in the development of computer structures. Fig. 4 indicates some 

of these developments. It has been popular to indicate technological progress on an 

exponential curve, but it is unusual to see exponential development curves continue 

for periods as long as 30 years. Usually, a technological development curve is S-shaped 

with a period of slow evolution, rapid growth and final maturity. The extended progress 

in data processing technology has been sustained by the repeated superposition of 

several of those curves, as indicated in Fig. 5. The replacement of the Williams tube 

by the core memory and later by the monolithic memory are an example in point. 

Because of technological deficiencies, emphasis has been placed on improving the 

operational characteristics of a data processing system. Features are implemented to 

achieve optimum results from given technological capabilities. Examples are: 

Multiprogramming 

Mu!tiprocessing 

Job and Task Management 

Allocation and Resource Management 

The third underlying driving force has to do with the "Management of Complexity". Data 

processing systems are among the most complex structures ever invented and built by 

man. Managing this complexity has been a problem of ever increasing importance. 

Problems associated with the Management of Complexity have to do with designability, 

useability and adaptability: 

/ 
DES IGNABILITY 

INTERFACES 

MANAGEMENT OF COMPLEXITY 

USEABILITY ADAPTABILITY 

TIME SHARING PROGRAM COMPATIBILITY 

PROMPTING DATA INDEPENDENCE 

MAPPING OF 
ABSTRACTIONS 
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The problem of designability in particular is being attacked by creating interfaces 

within a system structure. Interfaces decrease performance and increase manufacturing 

cost. They do, however, reduce the development effort, and improve reliability, re- 

covery, and repairability. They are not defined by physical science and strongly im- 

pacted by technological progress. Examples are: 

/370 channel interface 

3830 DCI interface 

Machine-micro-nano-instructions 

Supervisor/Problem status, SVC interrupt 

Operating System control blocks, e.g. TCB, DCB, UCB 

Disk physical data organization (count, key, data fields) 

Disk access methods, e.g. VSAM 

Data Base schema and subschemata, DL/I 

Branch and Link 

Structured Programming 

There are probably many cases of "natural interfaces" which impact performance and 

cost only to a moderate degree. Finding such natural interfaces appears to be any- 

thing but an exact science. 

In many cases there are strong pressures for architectural standardization of existing 

interfaces. It should be emphasized that only well understood functions lend them- 

selves to standardization. Our understanding of data processing functions is much more 

limited than we frequently believe. For example, a function like the EDIT instruction 

in the /360 architecture found poor utilization because it is not properly defined. 

Every system in the /370 product line succeeded in implementing a different address 

translation buffer scheme. The VSI and VS2 operating systems have different page re- 

placement algorithms, with only limited understanding as to the advantages and dis- 

advantages of the different algorithms being utilized. 

The three underlying driving forces mentioned so far, have had different levels of 

importance over the years. This is indicated in Fig. 6. 
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3. MANAGEMENT OF COMPLEXITY 

Next to designability, improvements in useability are a major issue in the management 

of complexity. Prompting, checkout and debugging aids fall into this category. Inter- 

active use, especially time sharing in problem solving applications is another case. 

The most important contribution to improvements in useability have been achieved 

through the use of abstractions. The user works with logical abstractions of a data 

processing system which are simpler and easier to understand than the actual physical 

features of the system. To this purpose, simplified logical structures are mapped onto 

the more complex physical structures. A modern system contains several levels or layers 

of abstractions which in turn apply to programs, data, and system commands. Mapping 

is performed in 4 major system areas: language translators, system programs, CPU hard- 

ware, and channel and control unit hardware. An overview over this multilayered mapping 

of abstractions is given in Fig. 7. 

The most important abstraction level is the layer of machine architecture, character- 

ized by machine instructions, I/0 instructions, and data addressing facilities for 

both main store and external data. Most application programs are written for a higher 

abstraction level in a "Higher Level Language" like Cobol, RPG, Fortran or PL/I~ A 

given system usually has a single architecture interface but multiple higher level 

languages, thus the duality of these two layers. 

Mapping of one level of abstraction onto the layer below is usually done interpreta- 

tively; higher level language compilation being one major exception. CPUs very often 

execute machine instructions through an interpretation hierarchy. Early computers had 

relatively limited instruction sets. As time evolved, the instruction sets of inter- 

mediate and large size systems became more comprehensive both in the sizd of the 

repertoire and the complexity of system control functions implemented in individual 

instructions. ~= 

The system /360 architecture, introduced in 1964, utilized therefore in most imple- 

mentations the microprogramming concept originally proposed by Wilkes [I]. The first 

/360 machines had microinstructions of the horizontal type characterized by the fact 

that they usually could be executed within one machine cycle. Lateron microinstructions 

:=It is interesting to note that the increase in instruction set complexity applied most 
to logical and system control functions. Early computers, e.g. the Harvard Mark II, 
had special instructions to perform complex mathematical functions (e.g. sin). Modern 
machines use mostly subroutines for this purpose. 
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themselves became more complex, in particular with the introduction of the writable 

control store in intermediate size systems [2]. Because of their complexity, inter- 

mediate systems started to use an interpretation approach for the microinstructions 

themselves, which leads to nano- or picoinstructions, as indicated in Fig. 8. The 

2-1evel instruction interpretation implies some inefficiency in instruction execution. 

Large systems therefore do not use microinstructions or at least not a dual inter- 

pretation hierarchy. Because they perform instruction execution mostly in parallel, 

the utilization of a complex instruction repertoire is an advantage. With the use of 

these two parallel implementation approaches we see a trend to utilize the same ar- 

chitecture for both intermediate and large systems. Mini systems (e.g. S/32, PDP II, 

Eclipse) feature a functionally more limited architecture to achieve lower cost (Fig. 9). 

Data structures are mapped into several layers of abstractions in a similar way as 

programs. Particular examples are the virtual store concept and the data models and 

data submodels used in data base systems. 

In actuality, the storage part of a system architecture gives to the user the exter- 

nal appearance of 3 independent stores, two of them implemented by a storage hierarchy. 

This is indicated in Fig. I0. Of particular importance is the fact that data sets are 

stored in a different type of logical store than program instructions and working 

buffers. The READ-, WRITE-, GET-, PUT-operations logically map a single record of an 

external data set logical store into a corresponding work buffer area of the virtual 

store (Fig. 11). The MULTICS system has tried to merge both types of logical storages 

into a single storage [3]. However, the industry so far has not been able to find 

ways and means to implement this concept in today's systems. 

Adaptability is the third major element to manage complexity. Emulators, virtual sys- 

tems, link edit and data independence functions are its major components. In particular 

data base system structures are to a large extent impacted by the requirement for easy 

adaption to an ever changing set of external influences. 
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4. ARCHITECTURAL CLASSIFICATION 

System complexity results in a stratification of abstraction levels within a given 

system architecture~ System size leads to a classification of different system archi- 

tectures. It is interesting to compare subsequent generations of machines of the same 

architecture. Fig. 12 shows the CPU cycle time vs. the CPU speed for two subsequent 

generations of machines of the /360 and /370 architecture. Faster machines get their 

speed, compared to slower machines, partially through faster CPU cycles, and partially 

by using fewer CPU cycles for each machine instruction execution (and a corresponding 

increase in CPU hardware). It is also interesting to see that the more powerful, but 

also more complex /370 architecture requires a noticeably shorter CPU cycle time than 

the /360 architecture for each average machine instruction execution. A similar trend 

can be observed if we plot the CPU circuit count against CPU speed, as indicated in 

Fig. 13. Main store access time seems to have very little relationship to CPU speed 

(Fig. 14)~ while the main store transfer rate grows more than linear with CPU speed 

(Fig. 15). Large systems compensate for slow memory access time through techniques 

like parallel memory access, cache, etc. 

CPU speed is only one of several factors which determine system performance. The 

industry presently manufactures and uses a wide spectrum of different system sizes. 

A classification of these system sizes into microcomputers, mini systems, intermediate 

systems, and large systems is given in Fig. 16. Important classification factors are 

addressing and I/O architecture, operating system characteristics, main store and disk 

store size. A significant break can be observed between a microcomputer, which has 

programmed I/O, and the minicomputer which works with interrupt I/O. The next signifi- 

cant architectural differentiation is between the mini system which advantageously 

utilizes a 16 bit addressing scheme in a non-virtual memory operation, and the inter- 

mediate system which eliminates both these limitations. As indicated before, inter- 

mediate and large systems often have fewer architectural differences. Microprocessors 

and minicomputers have a less complex and less powerful architecture than larger 

systems; they feature many characteristics which were typical for larger systems 15 to 

25 years ago. 

The last few years have seen a very significant proliferation of mini computer systems. 

This has been partially due to the first time availability of fairly inexpensive hard- 

ware (especially LSI). Another reason is the "sponsor problem". It becomes increasing- 

ly difficult in large organizations to reach agreement between various departments 

as to optimum computer operation and utilization. This particular "Management of 

Complexity" problem often gets resolved by a single department taking the responsibi- 

lity for buying, installing, operating and maintaining its own system. Additional 
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motivation is given by "organizational reliability". This addresses the fact that a 

particular department can maintain access to its own computer more easily, than to a 

central computer, when another higher priority area in an organization gets into diffi- 

culties. 

The "Departmental" approach offers another attractive possibility. A single, well 

understood application of moderate complexity can be shaped such that it fits on a 

system not only of moderate size but also of moderate functional capability. The 

machine gets programmed at what is essentially the microprogramming level of an inter- 

mediate system. Programming is more complicated than if done in a Higher Level Lan- 

guage on a full function system. On the other hand, the lower functional capability 

of the mini system tends to decrease programming complexity. 

Assuming the application is small, well understood, and needs to be done only "once 

and for all", this approach is often very attractive. Large organizations therefore 

now often maintain multiple small "Departmental Systems" in addition to their large 

computer center system(s). As it turns out, however, applications of these depart- 

mental systems are often not as isolated as originally assumed. We therefore observe 

a recent trend to interconnect these independent and usually architecturally incom- 

patible machines into loosely or tightly coupled computer networks, possibly with 

interaction by a large central computer. This is sometimes done to share workload, 

functional capabilities~ or I/O devices , more often, however, to share data. Network 

structures feature layers of abstractions just like individual computer systems: Link 

Control, Path Control, Session Control. Especially the last two require additional 

system architecture and system structure innovations which are still in the process 

of evolution. 

A related trend has to do with the observation that many "once and for all" applica- 

tions grow in time, both in terms of size and complexity. As a consequence, the de- 

partmental system grows: more main store, more disk storage, more complex system soft- 

ware. Very often the increased capabilities can only be obtained in a system with a 

different architecture, featuring more powerful hardware functions like extended 

addressing, protect mechanisms, supervisor-state functions, I/0 channels, more power- 

ful I/O devices (especially disk storage), and more powerful operating system func- 

tions like data management, resource control, overlay supervisor and virtual storage. 

The switch to a different architecture usually implies an expensive conversion process. 
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5. CONCLUSION 

Management of Complexity is the overriding concern in the development of modern Data 

Processing Systems. We observe a split into systems which are used in a computing 

center, and systems which are used by an individual department. The first class of 

systems is characterized by general purpose attributes of its structure and features 

for adaption to a wide spectrum of individual users. The second class is characterized 

by a tayloring of hardware and software features to individual applications. 

Decentralized departmental systems can achieve significant efficiency improvements 

through application tayloring, if and when their applications can be treated as iso- 

lated from each other. Where this is not possible we observe a development trend 

towards computing networks with distributed intelligence, very often with a powerful 

central host system. In this case, issues of architecture integrity, compatibility, 

program and data portability are a major concern, and will impact future developments 

to a significant extent. 
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