TRENDS IN COMPUTER SYSTEM STRUCTURE AND ARCHITECTURE

W.G. Spruth

IBM Entwicklung und Forschung
7030 Boeblingen, Germany

1. INTRODUCTION

An information processing machine of the most general type is characterized by its
ability to generate information for a predefined purpose. This information is the
result of a processing operation for which both input data and internally stored data
have been utilized. There are many types of information processing machines. Examples
are the Touring Machine, the Analog Computer and the Digital Differential Analyzer.

The digital computer, or as we nowadays call it, the data processing Sys;e@, is another
special case. It is characterized by the sequential processing of individual instrue-
tions of a prestored program and the fact that program and data occupy a common "Main
Store'. Data Processing Systems can be classified by their major application as In~-
formation Systems, Problem Solving Systems, and Object Systems. As to mode of opera-

tion, they can be classified as batch systems and interactive systems:

BATCH INTERACTIVE
INFORMATION SYSTEM DATA BASE RESERVATION SYSTEM,
DATA BASE/DATA COMMUNICATION
SYSTEM
PROBLEM SOLVING SYSTEM STANDARD BATCH TIME SHARING
OBJECT SYSTEM DATA COLLECTION AUTOMATION & CONTROL

There are three major elements which make a data processing system into an information
processing machine: hardware, system software and application programs. Hardware and
system software are supplied by the manufacturer of a data processing system. There

is no clear distinction between those two functions, and there are some types of
gsystems which perform functions in hardware which other types of systems perform

through system programs.

13

The application program contains the algorithm which defines how to generate output
information using both input and internally stored data. In addition it contains
features which adapt it to the executing system. A data processing system is thus a
machine which is capable to execute many, independently produced application programs.
Its architecture and structure can be described independently of its application

programs.

The architecture of a data processing system can be defined as the functional appear-
ance of the system to a user, its phenomenology. The structure of a system is char-—
acterized by the mamner in which the individual building blocks are intercomnected
to implement the architecture. A modern system architecture has three major components

(Fig. 1):
Processing
Storage

Input/Output

A possible implementation is shown in Fig. 2.

2. UNDERLYING DRIVING FORCES

Features and characteristics of a computer system architecture and structure are
driven by three underlying forces. The first of these has to do with the concept of

the digital computer. Characteristics are indicated in Fig. 3.

The second underlying driving force is controlled by consideration of the technology
used for implementation and the resulting operational efficiency. During the last

30 years technology developments have to a significant extent, been one of the under—
lying driving forces in the development of computer structures. Fig. 4 indicates some
of these developments. It has been popular to indicate technological progress on an
exponential curve, but it is unusual to see exponential development curves continue

for periods as lomg as 30 years. Usually, a technological development curve is S-shaped
with a period of slow evolution, rapid growth and final maturity. The extended progress
in data processing technology has been sustained by the repeated superposition of
several of those curves, as indicated in Fig. 5. The replacement of the Williams tube

by the core memory and later by the monolithic memory are an example in point.

Because of technological deficiencies, emphasis has been placed on improving the
operational characteristics of a data processing system. Features are implemented to

achieve optimum results from given technological capabilities. Examples are:

Multiprogramming
Multiprocessing
Job and Task Management

Allocation and Resource Management

The third underlying driving force has to do with the "Management of Complexity’. Data
processing systems are among the most complex structures ever invented and built by
man. Managing this complexity has been a problem of ever increasing importance.
Problems associated with the Management of Complexity have to do with designability,

useability and adaptability:

MANAGEMENT OF COMPLEXITY

DESIGNABILITY USEABILITY ADAPTABILITY

INTERFACES TIME SHARING PROGRAM COMPATIBILITY
PROMPTING DATA INDEPENDENCE
MAPPING OF

ABSTRACTIONS

15

The problem of designability in particular is being attacked by creating interfaces
within a system structure. Interfaces decrease performance and increase manufacturing
cost. They do, however, reduce the development effort, and improve reliability, re-
covery, and repairability. They are not defined by physical science and strongly im-

pacted by techmological progress. Examples are:

/370 channel interface

3830 DCI interface

Machine-micro-nanc-instructions

Supervisor/Problem status, SVC interrupt

Operating System control blocks, e.g. TCB, DCB, UCB

Disk physical data organization (count, key, data fields)
Disk access methods, e.g. VSAM

Data Base schema and subschemata, DL/I

Branch and Link

Structured Programming

There are probably many cases of "natural interfaces” which impact performance and
cost only to a moderate degree. Finding such natural interfaces appears to be any-—

thing but an exact science.

In many cases there are strong pressures for architectural standardization of existing
interfaces. It should be emphasized that only well understood functions lend them—
selves to standardization. Our understanding of data processing functions is much more
limited than we frequently believe. For example, a function like the EDIT instruction
in the /360 architecture found poor utilization because it is not properly defined.
Every system in the /370 product line succeeded in implementing a different address
translation buffer scheme. The VS1 and VS2 operating systems have different page re-
placement algorithms, with only limited understanding as to the advantages and dis-

advantages of the different algorithms being utilized.

The three underlying driving forces mentioned so far, have had different levels of

importance over the years. This is indicated in Fig. 6.

3. MANAGEMENT OF COMPLEXITY

Next to designability, improvements in useability are a major issue in the management
of complexity. Prompting, checkout and debugging aids fall into this category. Inter-—
active use, especially time sharing in problem solving applications is another case.
The most important contribution to improvements in useability have been achieved
through the use of abstractions. The user works with logieal abstractions of a data
processing system which are simpler and easier to understand than the actual physical
features of the system. To this purpose, simplified logical structures are mapped onto
the more complex physical structures. A modern system contains several levels or layers
of abstractions which in turn apply to programs, data, and system commands. Mapping

is performed in 4 major system areas: language translators, system programs, CPU hard-
ware, and channel and control unit hardware. An overview over this multilayered mapping

of abstractions is given in Fig. 7.

The most important abstraction level is the layer of machine architecture, character-
ized by machine instructions, I/0 instructions, and data addressing facilities for
both main store and external data. Most application programs are written for a higher
abstraction level in a "Higher Level Language" like Cobol, RPG, Fortran or PL/1. A
given system usually has a single architecture interface but multiple higher level

languages, thus the duality of these two layers.

Mapping of one level of abstraction onto the layer below is usually dome interpreta-
tively; higher level language compilation being one major exception. CPUs very often
execute machine instructions through an interpretation hierarchy. Early computers had
relatively limited instruction sets. As time evolved, the instruction sets of inter-
mediate and large size systems became more comprehensive both in the sizé of the
repertoire and the complexity of system control functions implemented in individual

instructions.®

The system /360 architecture, introduced in 1964, utilized therefore in most imple-
mentations the microprogramming comcept originally proposed by Wilkes [1}. The first
/360 machines had microinstructions of the horizontal type characterized by the fact

that they usually could be executed within one machine cycle. Lateron microimstructions

%It is interesting to note that the increase in instruction set complexity applied most
to logical and system control functions. Early computers, e.g. the Harvard Mark II,
had specjal instructions to perform complex mathematical functions (e.g. sin). Modern
machines use mostly subroutines for this purpose.

17

themselves became more complex, in particular with the introduction of the writable
control store in intermediate size systems [2]. Because of their complexity, inter-
mediate systems started to use an interpretation approach for the microinstructions
themselves, which leads to nano- or picoinstructions, as indicated in Fig. 8. The
2-level instruction interpretation implies some inefficieney in instruction execution.
Large systems therefore do not use microinstructions or at least not a dual inter-
pretation hierarchy. Because they perform instruction execution mostly in parallel,
the utilization of a complex instruction repertoire is an advantage. With the use of
these two parallel implementation approaches we see a trend to utilize the same ar-
chitecture for both intermediate and large systems. Mini systems (e.g. S$/32, PDP 11,

Eclipse) feature a functionally more limited architecture to achieve lower cost (Fig. 9).

Data structures are mapped into several layers of abstractions in a similar way as
programs. Particular examples are the virtual store concept and the data models and

data submodels used in data base systems.

In actuality, the storage part of a system architecture gives to the user the exter~
nal appearance of 3 independent stores, two of them implemented by a storage hierarchy.
This is indicated in Fig. 10. Of particular importance is the fact that data sets are
stored in a different type of logical store than program instructions and working
buffers. The READ-, WRITE-, GET-, PUT-operations logically map a single record of an
external data set logical store into a corresponding work buffer area of the virtual
store (Fig. 11). The MULTICS system has tried to merge both types of logical storages
into a single storage [3]. However, the industry so far has not been able to find

ways and means to implement this concept in today's systems.

Adaptability is the third major element to manage complexity. Emulators, virtual sys-
tems, link edit and data independence functions are its major components. In particular
data base system structures are to a large extent impacted by the requirement for easy

adaption to an ever changing set of external influences.

4. ARCHITECTURAL CLASSIFICATION

System complexity results in a stratification of abstraction levels within a given
system architecture. System size leads to a classification of different system archi-
tectures. It is interesting to compare subsequent generations of machines of the same
architecture. Fig. 12 shows the CPU cycle time vs. the CPU speed for two subsequent
generations of machines of the /360 and /370 architecture. Faster machines get their
speed, compared to slower machines, partially through faster CPU cycles, and partially
by using fewer CPU cycles for each machine instruction execution (and a corresponding
increase in CPU hardware). It is also interesting to see that the more powerful, but
alsc more complex /370 architecture requires a noticeably shorter CPU cycle time than
the /360 architecture for each average machine instruction execution. A similar trend
can be observed if we plot the CPU circuit count against CPU speed, as indicated in
Fig. 13. Main store access time seems to have very little relationship to CPU speed
(Fig. 14), while the main store transfer rate grows more than linear with CPU speed
(Fig. 15). Large systems compensate for slow memory access time through techniques

like parallel memory access, cache, etc.

CPU speed is only one of several factors which determine system performance. The
industry presently manufactures and uses a wide spectrum of different system sizes.

A classification of these system sizes into microcomputers, mini systems, intermediate
systems, and large systems is given in Fig. 16. Tmportant classification factors are
addressing and 1/0 architecture, operating system characteristics, main store and disk
store size. A significant break can be observed between a microcomputer, which has
programmed I/0, and the minicomputer which works with interrupt I/0. The next signifi-
cant architectural differentiation is between the mini system which advantageously
utilizes a 16 bit addressing scheme in a non-virtual memory operation, and the inter-
mediate system which eliminates both these limitations. As indicated before, inter-
mediate and large systems often have fewer architectural differemces. Microprocessors
and minicomputers have a less complex and less powerful architecture than larger
systems; they feature many characteristics which were typical for larger systems 15 to

25 years ago.

The last few years have seen a very significant proliferation of mini computer systems.
This has been partially due to the first time availability of fairly inexpensive hard-
ware (especially LSI). Another reason is the "sponsor problem”. It becomes increasing-
1y difficult in large organizations to reach agreement between various departments

as to optimum computer operation and utilization. This particular "Management of
Complexity' problem often gets resolved by a single department taking the responsibi-

lity for buying, installing, operating and maintaining its own system. Additional

19

motivation is given by "organizational reliability". This addresses the fact that a
particular department can maintain access to its owm computer more easily, than to a
central computer, when another higher priority area in an organization gets into diffi=-

culties.

The "Departmental” approach offers another attractive possibility. A single, well
understood application of moderate complexity can be shaped such that it fits on a
system not only of moderate size but also of moderate functional capability. The
machine gets programmed at what is essentially the microprogramming level of an inter-—
mediate system. Programming is more complicated than if done in a Higher Level Lan—
guage on a full function system. On the other hand, the lower functional capability

of the mini system tends to.decrease programming complexity.

Assuming the application is small, well understood, and needs to be done only "once
and for all", this approach is often very attractive. Large organizations therefore
now often maintain multiple small "Departmental Systems” in addition to their large
computey center system(s). As it turms out, however, applications of these depart-—
mental systems are often not as isolated as originally assumed. We therefore observe
a recent trend to interconnect these independent and usually architecturally incom-
patible machines into loosely or tightly coupled computer networks, possibly with
interaction by a large central computer. This is sometimes done to share workload,
functional capabilities, or I/0 devices , more oftem, however, to share data. Network
structures feature layers of abstractions just like individual computer systems: Link
Control, Path Control, Session Control. Especially the last two require additional
system érchitecture and system structure innovations which are still in the process

of evolution.

A related trend has to do with the observation that many "once and for all" applica-
tions grow in time, both in terms of size and complexity. As a conmsequence, the de—
partmental system grows: more main store, more disk storage, more complex system soft—
ware. Very often the increased capabilities can only be obtained in a system with a
different architecture, featuring more powerful hardware functions like extended
addressing, protect mechanisms, supervisor-state functions, I/0 channels, more power-—
ful I/0 devices (especially disk storage), and more powerful operating system func-
tions like data management, resource control, overlay supervisor and virtual storage.

The switch to a different architecture usually implies an expensive conversion process.

20

5. CONCLUSION

Management of Complexity is the overriding concern in the development of modern Data
Processing Systems. We observe a split into systems which are used in a computing
center, and systems which are used by an individual department. The first class of
gsystems is characterized by general purpose attributes of its structure and features
for adaption to a wide spectrum of individual users. The second class is characterized

by a tayloring of hardware and software features to individual applications.

Decentralized departmental systems can achieve significant efficiency improvements
through application tayloring, if and when their applications can be treated as iso-
lated from each other. Where this is not possible we observe a development trend
towards computing networks with distributed intelligence, very often with a powerful
central host system. In this case, issues of architecture integrity, compatibility,
program and data portability are a major concern, and will impact future developments

to a significant extent.

21

LITERATURE

[1] M.V. Wilkes, "The best way to design an automatic calculating machine”,

presented at the Manchester University Comp. Inaugural Conference, Manchester,
England, 1951, p. 16

[2] C. Schuenemann, "Micro- and Picoprogram Stores", Proceedings of the IBM Infor-
matik Symposium on Rechnerstrukturen, R. Oldenbourg, 1974, p. 36-74

[31 E.I. Organick, "The Multics System", MIT Press, 1972

22

INPUT/OUTPUT PROCESSING

STORAGE

FIG. 1 SYSTEM ARCHITECTURE

/\\ N\
P

COMMUNICATION \ 7 \\

Y CPU \

/ /0 /0 : \
|

PRO ESSOR PROCESSOR

i
\\ TSy —

70
PROCESSOR | MAIN

FIG. 2 SYSTEM STRUCTURE

23

PROCESSING

RELATIONS

BETWEEN
INPUT ——p» INPUT DATA AND ——p OUTPUT

INTERNAL DATA

INFORMATION PROCESSING

MACHINE
/ (AUTOMATON)
SEPARATION OF INTEGRATION OF
PROCESSING AND PROCESSING AND
DATA STORAGE DATA STORAGE
FUNCTION FUNCTION
DIGITAL COMPUTING ANALOG COMPUTER
SYSTEM DIGITAL
(2 CYCLE ENGINE) DIFFERENTIAL ANALYZER
LEARNING MATRIX
PERCEPTRON

ASSOCIATIVE MEMORY

v

PROCESSOR STRUCTURE DATA STRUCTURE
(ADDRESSING

RELATIONS)

FIG. 3

24

TECHNOLOGY DEVELOPMENTS

LOGIC RELAYS = TUBES = TRANSISTORS s
wp SILT =p MS| = LS|
PACKAGING SOLDER = WRAPPING = CARDS & BOARDS

SOCKETS = SLT = C4 s MLC
WIRES = FLAT CABLES = LIT

INTERNAL STORAGE COUNTERS = STORAGE TUBE & DELAY LINES
& REVOLVERS wp CORES = MONOLITHIC MEMORIES

EXTERNAL STORAGE PAPER TAPE =9 CARDS = MAG TAPE
DISK =9 TAPE LIBRARY

PROGRESS1

FIG. 4 YEAR ==

TEGHNOLOGICAL
PROGRESS
e |
c]
»
Vei
TECHNOLOGY ¢ ,’
B I
4
‘I
—”
1] ’¢
TECHNOLOGY
A
TIME sacelite-

FlG. 5 TECHNOLOGICAL. PROGRESS OVER TIME

25

LEVEL
OF
IMPORTANCE

\ TECHNOLOGY & OPERATION /

MANAGEMENT OF
COMPLEXITY
CONCEPT
-+ :
Y 1946 1976
TIME=—3~

TRENDS IN THE LEVEL OF IMPORTANCE

FIG.6

26

L "Oid

1INN SNOILOVYHISAY 40 DNIddVIN d3HIAVIILINW
JOHINOQD Buissaippy
+ TINNVHO Buissesoe pioosi ajid uoyonisyj io pueisdg uonnoaxs uopeladp
r A ~ e A -~ —~ A N
Buissoooid o [aaa] 81940 auiyoeN

feubis jenyoy 10 weiboid.oueN

spley eleq

-Kay ‘-unon e {oAs] welboid-i

(SMDD sapnjouy)
g |2A8) @6enBue| sulyoew
10.21nPaYdY

101§ 188
eleq |es1shyd

ﬁﬁm i1 ¢ ¢
ot DISVE “1dV ‘L/7d ‘NVHLHOA
eieq |eaibo 10802 ‘DdH ‘HIGWISSY B 3
‘(eBenbue |aAsT J0YBIH)
oAl TIH
fepow i sanljioey
-Qng Bieg » I + s JUITNOIGRS 10 UONOUN} TIH
INJISAS STIVO 3ILIUM ‘avay “ STIVD ‘SNOILONNS siNawawvis HITHdNOD
ONILYHddO0 11a ‘ANd 139 |
Wy | J
i Y
i weiboid uonesiddy

spuewWon

INTERMEDIATE
LEVEL
MICROPROGRAM
MACHlNE |
LANGUAGE ;
LEVEL i — ,
/370 PROGRAM ,z" /
; ’,/ E——
i :,/I _fl', ,/’
,=- // —
,/' E— -
_1’~~~~ E—. ™
e \:\:\
—— . N
\\\ ~~~~~ A
E— \\\ EE——
‘\\ E—
O \‘\ E—
‘\\ EE—
— \‘_'

27

CONTROL SIGNAL
LEVEL
NANO- OR PICO-
PROGRAM

p—y

~,
hes

hES

~

28

[9A8] 819k
auiysew

ETEY!
IMPapYIIY

6 Oid

S3ZIS INIHOVIN SNOIYVA HO4 TOHLNOD NOILNOAX3 NOILONYLSNI

e

2160
1043U00 uonouny

pasmpiey

ybnoayy
uonejaidiajuy

LT -

TR A A A NN N

abie

SUOIOTLIISUIOIOIN
jejuozuoy
ysnoayy
uonejaidiajuy

SWasAs

suononisul-oueu
(WOH) pyuozuoy
ybnosyy
uoneaadiaiu]

o160

[01U0D uoaUN}
palimpley ySnoayy
uoneyasdiaju)

/ @A)

SUORONIISUIOINN
{esiuaa ybnoay
uoiejasdiony)

CIUE 17 .0
i ajeipaualul Lt

weiboxd-rf
[eO1BA

[EYETRE Y)

- auyoeN

[oAs]
= a1mos Yy

29

O1"9id

(I3A3T H3TaNTSSY 1V) AHOUVHIIH DNISS3IHAAV IDVHOILS

AHVHAIT

SEL
viva
- 1Nd\ 139
=T

3HOLS SNOILONYLSNI

|~
ya Nvw [[FHPY9 ssT wvuooud
—
HY

SH31SID3H LNIOd ONILVO1d —

(3Sva Sv a3sn 10N 4i)
SH31SIDIH 3SOddNd TVHINIO

30

123456789 RECORD NO.

)

123456789........ RECORD NO.

)

A DATA SET ON EXTERNAL
STORAGE DEVICE, E. G. DISK
(SEQUENTIAL, LIST, ETC))

GET/PUT

——
[READ/ REAL MAIN STORE

IWRITE
a

|
|
|
| I/ |
| _ PAGES MAPPED
| INTO FRAMES
| N
|
| VIRTUAL
| MEMORY
|) 1
| ! -
le——-} [OP] ADDR —
CPU] D
PAGING DISK

FIG. 11

3

e SAIN OO st o4 e S IN DO vl O
{SdIN) | = NdD OL FHOLS NIVIN WOHS TIvH HIJSNYHL (Q=3dS NdO} § = FNIL $SIDOV FHOLS NIV
% _wau 891 szl
mm.w b ™ pry Syt Je—-~-e5li
- 71 \OI Vs
gat P Vel 851 S OSNe
+ %oy . i A/ o
R g6t 1 S SEL
7
P } S v/
g9l \ i/ i/
% x [V4 t/
/s 1,7 1/
\\ soL ot
/
/
/ ANILL $SI00V
/ FHOLS NIV
/ %80l ALvY HAISNYHL 001 «
ALAGIN
/ 001
set/
Xi
e (JLSOLAY SN G OL SN DO €1 91 e (336 "HLSNI NOITIIW) SliIN DO 2ol
(SdIW qaLsnrav) 3=
(10 1 = 118 OF) FHOLSOHOIN "TONI ez
H1D DISVE + OSW + NdD LNNOD LINOYID = GWIL FIOAD NdO} §= SdIA
ov

INIL

TDAD

Ndd

atey!

S6lw INNOD LINOHID sz
901 " «

32

NOLLVDIHISSVT1D 3ZIS WILSAS

9l Oid

an Alowauw sjpuueyds
000 0L 9L OL-b-1 jenuiA juspuadspui walshs
adninw ajdiinw abien
feainba
10
191160y
Alowap [suueyd walsAg
00s 14 #201-9G¢-v9 {eniiA wr_wﬂCUQOﬁC_ 9jeIpauLIdu|
s|buis ofuig
sajjioe} '
punoibai0) pajiwi
oL L #9-91-b suonied o4uon NdO waishg
punoib 071 Wdniaiul UIN
¥oeq o|buis
g ot
- - . . 1B|GIBSSY 0/I 12ndwon)
b-i-99e oineWl pawwesboid ‘ 0IOIN
_
salhg W so|puids 914g M wiaysAs uonoung EYLIEESTITSTI
azig BupesadQ lauueyd Bujsseippy
8Zig al;g ¥sia 2101 uiey (o] 210} utey

