
INTEGRITY~ CONCURRENCY~ AND RECOVERY
IN DATABASES

Rudolf Bayer
Institut fur Informatik

Technische Universitat M~nchen
8 Munchen 2, Germany

i. INTEGRITY

In this paper we will discuss some aspects of obtaining correctness of

databases. Several conditions mqst be met to achieve correctness:

I) proper operation of the hardware,

2) proper construction of the software,

3) proper use of the system.

I) will be of interest only to the extent that the recovery scheme described in

section i0 can also be used to recover from hardware failures, see also [Wil 72].

This paper deals mainly with 2). 3) is concerned with techniques to prevent

mischievous or accidental misuse of a computer system, i.e., with its security.

This will not be discussed here.

Correctness is of particular concern in database systems for several reasons:

l) Longevity: Even rare errors will in the long run lead to contamination and

degradation of a database. Purging erroneous data and their consequences from

a database is difficult.

2) Limited repeatability: Even if errors are discovered, it may be impossible or

useless to rectify them due to time constraints, unavailability of the correct

source data, unavailability of a correct system state preceding the fault.

3) The need for immediate and permanent availability: This prevents a practice

often used elsewhere, namely running a program and checking the results

repeatedly until correctness is obtained.

4) Multiaceess: Databases are manipulated by many users with different quality

standards. It is infeasible to completely entrust the quality control to these

users and difficult to track the source and the proliferation of errors.

*
During the Academic Year 1975/76 visiting at IBM Research Laboratory, San Jose, CA
95193, USA

80

It seems hopeless to give a precise and complete description of what we mean

intuitively by a "correct database." Still from our knowledge about the meaning of

the data, a set of necessary (but not sufficient) conditions can be derived which

must be satisfied by a correct database. We call much conditions

integrity-constraints and we say that a database is in a state of integrity, if

all integrity-countraints are satisfied.

Integrity might be enforced by allowing on certain data only a limited set of

precisely specified meaningful, and therefore integrity preserving operations [Bay

74], [LiZ 74] by adopting a set of strict programming and interaction conventions,

by dynamically checking the results of updates, or by proving for each program

manipulating the database, that the integrity-constraints will be satisfied. Much

work still needs to be done on how to describe, to enforce, and to implement such

integrity-constraints.

2. TRANSACTIONS AND CONSISTENCY

In multiaccess database systems certain activities of users must, for several

reasons, be considered as atomic operations, called transactions [CBT 74]. Thus,

performing a set of transations {tl,t2,...,t n} on a database must have the same

effect as performing some sequence (precisely which is irrelevant) (til'ti2'''°'tin)

of transactions where (il~i 2 ~in) is some permutation of (l,2,...,n).

The execution of a transaction requires in reality a sequence of actions. We

write t_j = (ajl,aj2, o~,ajk) for a transaction t.~ composed of the actions

a. ,a.2~ ,a° . Performing transactions serially may be too costly (because of
01 J Jk

too low a utilization of hardware resources) or too slow (since other transactions

must wait for people to react). Therefore transactions should run concurrently,

subject to the constraint~ that concurrency produces the same net effect on the

database as some serial execution.

We call this last constraint consistency [EGLT 74]. It can be considered as

a special integrity constraint establishing the conditions under which transactions

81

can run concurrently. To achieve consistency, one could run transactions serially

after all, or one might prove that running two transactions~ tl,t2~ concurrently

is consistent.

More formally, we write {tl,t 2} for parallel execution, (tl,t2) for serial

execution of t I followed by t2, and E for equivalence of two executions in the

sense of yielding the same result for the database. Showing that {tl,t 2} is

consistent amounts to establishing the truth of

{tl,t 2} ~ (tl,t2) v {tl,t2} E (t2,tl).

T~e generalization of (i) to an arbitrary set of transactions is obvious.

(i)

A third technique is qenerally followed in database systems to guarantee

consistency. Before a transaction is allowed to execute, it must acquire all the

resources it might possibly need. Here resources are the data objects in the

database. Resources are acquired by locking them in the proper mode. We will see

later that more complicated lock-modes than the read-locks and write-locks (or

shared and exclusive locks) commonly found in operating systems are needed for

database locking.

Most work to date concerned with integrity has been limited to consistency,

i.e., to those integrity problems arising from the activity of the operating system:

i) the effort to schedule transactions to be processed in parallel as far as

possible [EGLT 74], [Eve 74], [KiC 73], [CBT 74],

2) the need to acquire resources, in particular sets of data objects or individual

data objects (also called "records" in [CBT 74] and "entities" in [EGLT 74]),

for exclusive or shared use.by a transaction and to lock those resources

accordingly,

3) the induced problems of deadlock among locking transactions, of deadlock

discovery, of deadlock prevention, and of preemption of resources from

transactions to resolve deadlocks.

82

Locking techniques and the associated problems have been investigated

~xtensively for operating systems. These techniques are of limited applicability

in database locking and require considerable modifications to become useful here.

3. LOCKING IN OPERATING SYSTEMS

We will briefly survey locking techniques developed for operating systems and

indicate, why they are not satisfactory for database applications. As usual in

this field we use ~'process" as the analogon for "transaction." The list of

techniques is adopted from [Eve 74] and [CES 71]. Our main interest is in the

treatment of the deadlock problem.

Presequence Processes: Processes potentially competing for resources must be

presequenced and must execute one after the other. For database transactions it

is often not known a priori, which data resources will be needed. This means that

any two transactions will be potentially competing and must be sequenced.

Therefore, no parallelism is possible. Still presequencing transactions, e.g.,

through time-stamping, may be useful for other purposes, like preventing indefinite

delay of transactions.

Preempt Processes: This technique relies on discovering deadlocks after they have

occurred. It then terminates (or backs up to an earlier state) one of the processes

involved in the deadlock, the resources locked by that process are freed. As we

shall see, this technique plays an important role in database locking, too~ but

its application is difficult due to the large number of transactions and resources

involved. Deadlock discovery, preemption of resources, and transaction backup to

recover a state of integrity of the database become complicated and expensive.

Suitable algorithms to solve these problems are challenging.

Preorder all System Resources: The processes are required to claim their resources

according to a total order defined on the set of all resources. In databases the

resources are data objects~ which often do not have such a natural order.

83

Furthermore a process might not be able to claim resources according to such an

order, since his needed resources might be data dependent [EGLT 74], [CBT 74].

Preclaim needed Resources: Before starting to execute, a process must claim all

the resources it will ever need. Typically they are specified on the control cards

preceding a job or job-step, and the process is not started until the operating

system has granted to it all the requested resources.

In databases this technique requires considerable modifications to become

feasihle. Claiming resources may itself be a complicated and lengthy task requiring

searching through large areas of a database. These searches themselves should run

concurrently if possible.

Deadlock Prevention Algorithms: They often rely on too special properties of

resources - like Habermann's banker's algorithm [Hab 69] - or on too special models

of computation - like Schroff's algorithm [Seh 74]- to be generally applicable

here.

4. A PROPOSAL FOR DATABASE LOCKING

In [CBT 74] a technique is proposed to provide consistency for database locking.

The technique can be considered as a modification and combination of several methods

described in section 3. Since transactions are to be considered atomic, integrity

of the database must be guaranteed at the beginning and again at the end of a

transaction, it may be - and generally must be violated by the single actions. Due

to the potential interference of two or more transactions executing in parallel,

transactions must lock certain parts of the database for exclusive or shared use.

The scheme proposed in [CBT 74] therefore requires each transaction to lock all

its resources (parts of a database, e.g., individual records or fields of records)

during a so-called "seize phase" before starting the "execution phase." During

the seize phase the database must not be modified by the seizing transaction. For

such a transaction preemption of locked resources and backup to wait for the

preempted resource are easy.

84

Once a transaction has started its execution phase~ it is not allowed to claim

more resources, thus no backup will be necessary due to deadlock. At the end of

an execution phase a transaction must free all its resources before starting a new

seize phase.

The seize phase may be a rather complicated task and seize phases of

transactions should be run in parallel. This raises the deadlock problem again as

usual: Let tl, t 2 be two transactions, t 2 trying to seize resource r I already

locked by t I must wait until r I is freed by t I. But since resources are not locked

in any particular order~ t I may wish to lock first rl, then r 2. If t I successfully

seizes r I and t 2 successfully seizes r2, then a deadlock has occurred. Such

deadlocks must be discovered and a resource must be preempted from a transaction

involved in the deadlock, say r 2 from t2, causing t 2 to wait for t I on r 2.

In [CBT 74] an aging mechanism is attached to transactions to avoid indefinite

delay. It is then shown in [CBT 74] that in the scheme described each transaction

will eventually be processed. This requires, of course, suitable algorithms for

discovery of deadlocks between transactions in their seize phases, for preemption

of resources, and for backing up transactions to certain points within their seize

phases.

It is now clear, that the scheme proposed in [CBT 74] is a shrewd modification

and combination of the following:

I) Try to preclaim needed resources.

2) If i) would lead to deadlock, preempt resources.

3) Superimpose a presequencing scheme for transactions - e.g., through

timestamping - to enforce an aging mechanism and to avoid deadlock due to

indefinite delay of transactions.

5. ON-LINE TRANSITIVE CLOSURE ALGORITHMS FOR DEADLOCK DISCOVERY

The deadlock discovery algorithm [KiC 73] mentioned as useful in [CBT 74] is

85

not really applicable, since it requires that a transaction t may wait for at most

one other transaction. In general, however, t may be waiting for several

transactions.

To clarify this, let us assume that a lock request for a resource r is a pair

(t,~) where t is a transaction and ~ is a lock mode, meaning that t requests a lock

of mode B. Associated with each resource r there is a FIFO waiting queue ~(r) of

lock requests and a set G(r) of granted lock requests, also called the granted

group [GLP 75]. The next request in Q(r) can be granted if the mode of the request

is compatible with the modes of all requests in G(r).

To grant the request (t,~) perform:

G(r) := G(r) u ~ {(t,~)};

Q(r) := Q(r) remove {(t,~)}

We also say that t now has a ~-lock on r.

To release the granted request (t,~) perform:

G(r) := G(r)~{(t,~)}

To issue a request (t,~) for r perform:

Q(r) := q(r) append {(t,~)}

When t i issues a request (ti,~) for r, t i will enter a wait state until the

request is granted. Thus, t. will be waiting in at most one queue for a resource
l

r. Before the request (ti,~) can be granted all transactions with

lock-request-modes incompatible with~ which are in G(r) or ahead of t. in Q(r)
l

must finish their execution phase and release their locks. We denote this set by

B i = {til,ti2,...,t~ } and say that t i is (directly) waiting for tj if t.3 E B i.

l
Therefore, a~y transaction tk, for which B k ~ ~ is in a wait state. We may then

formally define the wait relation wc._TXT where T is the set of transactions, such

that (ti, tj)ew iff t. g B
3 i"

86

The wait graph G is the directed graph
w

G = (T, w). ~y

Deadlock discovery amounts to finding cycles in G or, equivalently, to finding
w

+
pairs (t, t) in the transitive (but not reflexive) closure w of w. Thus deadlock

+
exists iff t g T : (t~t)gw .

Maintaining w is trivial. Calculating w + from w is, on the other hand, quite

expensive, the best known algorithms requiring O(n 3) [War 62] or O(n'm) [Bay 74]

[Pur 70] steps, where n is the number of nodes in G and m the number of arcs,
w

i.e., n = ITI, m = !w I . It would be sufficient, however, to have a good "on-line"

+
transitive closure algorithm since w need only be partly modified as arcs are

added to and deleted from w.

More precisely, "on-line" transitive closure algorithm means an algorithm

solving the following problem:

+
Given w, w ~ calculate

wT~ w '+ where

w ' = wu{ (ti, tj) } or

w' = w {(ti,tj)}.

Although it is simple to add an arbitrary arc and calculate w '+ from w +, it

seems in the general case notoriously difficult to delete an arbitrary arc and to

calculate w ~+ fromw +. No better alternative seems to be known than calculating

w '+ from scratch, i,e., starting with w' and ignoring the fact that we already have

+
w .

Fortunately, we have a very special case yielding a simple on-line transitive

closure algorithm. Since we remove deadlocks immediately the wait graph G is
w

acyclic. Therefore~ we can represent w + as an integer matrix M with the

87

interpretation: M[t,u] := number of different paths in G
w

tw+u iff M[t,u] > O.

from t to u. Then

To insert or delete an arc from t to u in G update M as follows:
w

M[s,v] := M[s,v] ± M[s,t]. M[u,v] ; s ~ t; u ~ v

M[s,u] := M[s,u] ± M[s,t] ; s ~ t

M[t,v] := M[t,v] ± M[u,v] ; u ~ v

M[t,u] := M[t,u] ± i

It is clear that the worst case complexity of this on-line update of w + for

inserting or deleting a single arc in G is O(n2). This algorithm can easily be
w

modified to have an average complexity of o((Wi~i)2).

To discover deadlock, tentatively update M when inserting an arc. Then check

the diagonal of M for the existence of a t such that M[t,t] > O. If such a t

exists, the insertion of the arc caused a deadlock. The action to be taken to

break the deadlock is described in section 6. The tentative update of M is

cancelled. If a deadlock does not exist make the tentative update of M definite.

Another highly special case arises when w + and therefore M must be updated at

the end of a transaction t when t releases all its locks. Since t was executing~

it was not waiting for other resources, and therefore it is a sink of G . t and
w

all arcs leading into t can be removed from G . w + is now simply updated by
w

removing a row and a column from M if necessary, a very simple operation. A

simililarly simple update of M is performed when granting a lock request to t. For

further details on on-line transitive closure algorithms see also [Bay 75].

6. BREAKING A DEADLOCK

Assume that adding t to the end of Q(r) and updating w and w+ accordingly would

cause a deadlock. Then one of the following actions can be taken to break the

deadlock.

88

6.1: Move t forward in(_~: Since t issued a lock-request before causing the

deadlock, t was not waiting. Therefore moving t forward in Q(r) reduces the number

of transactions t is waiting for, hereby the deadlock may be broken. The deadlock

will definitely be broken, if t can be added to the granted group G(r). Note that

this strategy overrides the FIFO rule for servicing lock-requests for the purpose

+
of breaking deadlocks only. Note also that the available w can be used to find

out very easily, how far t should be moved forward in Q(r) in order to break the

deadlock~

6.2: Backup t: Note that all cycles in G after tentatively appending t to Q(r)
W

+
and updating w pass through to Thus backing up t towards the beginning of its

seize phase, taking away resources previously granted to t in the opposite order,

in which they were granted, will eventually break all cycles in G w.

6.3: Minimal-cost node cut set: Find a cheapest node cut set breaking all cycles

in G and back up all transactions in this cut set to the beginning of their seize
w

phases, thus taking away all their resources~ This technique may be attractive,

if the cost of backing up and rerunning the seize phase of a transaction is

available and is very high.

7. PREVENTING INDEFINITE DELAY

The methods just described can cope with the deadlock problem, but they do not

guarantee that a transaction t will eventually reach its execution phase and

complete, t might be prevented from execution by being backed up again and again.

The relation w # can be used advantageously to cope with indefinite delay. Let

us assume that all transactions in the system are time-sttamped. We can then use

+
w to partition the set T into priority classes PI,P2,..o,Pk for some integer k.

Let E 1 be the oldest transaction in T, the set of transactions in the system.

Define the highest priority class P1 as follows: PI := {tl} u {t : E 1 w + t}. In

general, define the classes, PI,P2,...,Pk by:

89

U : =
o

~i := oldest transaction in T ~Ui_ I

Pi := {~i } u {t : ~i + t}\ui-1

U i := Ui_ 1 u Pi

for i = 1,2,...,k where U k = T

We now propose four increasingly effective, but also increasingly radical

strategies for preventing indefinite delay. It seems quite feasible to employ

several strategies within one system successively in order to force transactions

Which have passed a certain age threshold into their execution phase and out of

the system.

Strategy i: Use the priority classes for scheduling, starting with the highest

priority class PI" This strategy will tend to move older transactions through the

system faster.

Strategy 2: Stop all transactions in seize phases, except those in PI"

Strategy 3: Let E 1 preempt r from t g P1 if E 1 is directly waiting for t unless

t is executing, i.e., move E 1 ahead of t in Q(r) or replace t in G(r) by E 1.

Strategy 4: Stop all t which are not in their execution phases, apply strategy 3.

Strategy 5: When breaking a deadlock do not allow t to pass E 1 in 6.1, do not

backup E 1 in 6.2 or 6.3, but backup some cutset of transactions (not necessarily

the cheapest) not containing E 1.

It is clear that all five strategies will tend to bring E 1 closer to its

execution phase. Strategies 1 and 3 might still allow indefinite delay in very

special circumstances, but it is easy to construct plausibility arguments that

strategies 2, 4, and 5 do prevent indefinite delay.

90

8. PHANTOMS AND PREDICATE LOCKING

In [EGLT 74] a technique is described to use predicate locks ("predicate

locking") for locking logical~ i.e., existing as well as potential subsets of a

data base instead of locking individual data objects ("individual object locking").

This technique also solves the "phantom problem." To explain briefly, what phantoms

are, let us assume that there is a universe ~of data objects (called "entities" in

[EGLT 74] and "records # in [CBT 74] which are the potential data objects in the

data base B° Thus B i ~. Two transactions tl, t 2 may have successfully locked all

their needed resources, and they may be executing, t I may add a new object r I c~to

B and t 2 may add a new object r 2 g~ to B, such that t I would have locked r 2 and t 2

would have locked rl, if t I or t 2 would have seen r 2 or r I resp. during their seize

phases, r I and r 2 are called "phantoms," since they might, but not necessarily

will appear in B (materialize) while t I or t 2 are in their execution phases. It

is clear that individual object locking as described so far does not solve the

phantom problem.

The appearance of a single phantom, say rl, does not cause any difficulty. The

parallel schedule {tl~t 2} has the same effect as running the transactions tl,t 2

serially, namely in the order t 2 followed by tl, therefore, {tl,t 2} is consistent.

It is the goal of predicate locking to schedule transactions in parallel as far as

possible under the restriction, that consistency is preserved.

To enforce consistent schedules each transaction t is required to lock (for

read or write access) all data objects E(t)!~- irrespective of whether they are in

B or are just phantoms - which might in any way influence or be influenced by the

effect of t on Bo E(t) shall he locked by specifying a predicate P defined on ~(or

on a part of ~, e.g., on a relation [Cod 70]) such that E(t)!S(P) where S(P) is the

subset of elements of ~ satisfying P.

Two transactions tl,t 2 are then said to be in conflict, if for their predicates

PI,P2 it is true that 3rES(PI)nS(P2) and t I or t 2 performs a write action on r.

Thus conflict can arise even if r is a phantom. In this case tl, t 2 must be run

91

serially. The order in which they are run is irrelevant for consistency. This

order might be important for other reasons which are not of interest here. The

main difficulties in using such a locking and scheduling method are the following:

i) Find a suitable predicate Pt for t. Ideally E(t) = S(Pt) should hold,

but then Pt might be too complicated. If Pt is chosen in a very simple

way, then S(P t) might be intolerably large, increasing the danger of

phantoms, which are really artificial phantoms.

2) The problem "S(PI)nS(P2) = ~" may be very hard. For first order predicates

this problem is undecidable. Thus for practical applications and a given ~it

is necessary to find a suitable class of locking predicates, for which

the problem "S(PI)nS(P2) ~ ~" is not only decidable, but for which a very

efficient decision procedure is known. For more details and a candidate

class for suitable locking predicates see [EGLT 74].

Phantoms might turn out to be a very serious but mostly artificial obstacle to

parallel processing in the following sense: phantoms in S(PI)nS(P2) prohibit t 1

and t 2 from being run in parallel. But if these phantoms do not materialize, and

if furthermore S(PI)nS(P2)NB = ~, then, of course, t I and t 2 could have been run in

parallel. How much of an artificial obstacle phantoms are to parallel processing

seems to be unknown and can probably be answered only for concrete instances of

databases.

9. LOCK MODES AND PROTOCOLS FOR A PARTITIONED DATABAS E

Let us start with an important observation which will lead to the simple

strategy i for handling phantoms: "Transactions, which are readers, do not need to

lock phantoms." A transaction is a reader, if it does not contain any write

actions, it is a writer otherwise. Obviously for many database applications the

readers are a very important class of transactions.

To understand our observation, consider two readers tl, t 2 first. Since there

are no write actions~ there is no possibility for phantoms to materialize, and they

need not be locked. Now let t 3 be a writer. Consider the interaction between t I

92

and t 3. Assume there is a phantom rgS(P1)nS(P3) such that t 3 might perform a write

on r. Then t I and t 3 could not run concurrently~ if t I would use predicate locking.

If, however, t I uses individual object locking and successfully terminates its

seize phase, then t I can run in parallel with t 3 provided that

where'= S(PI)

S/~PI) nS (P3) =

NB, i.e., the set of real data objects (without phantoms) in B
A

which t I needs to lock in order to see a consistent view of B. But now/S(P~can

be locked by t I using conventional "individual object locking" as, e.g., described

in [CBT 74] instead of predicate locking. If t 3 should materialize phantoms, then

obviously {tl,t 3} E (tl,t3).

The following observation should also be clear now: To control the interaction

between the writer t 3 and the reader t I if suffices, that t 3 use individual object

locking according to [CBT 74]. t 3 need not lock its phantoms except as they are

materializing since t I is not interested in phantoms anyway. We can conclude that

the problem of phantoms - and therefore of predicate locking - arises only between

writers. The preceding observations suggest several alternative approaches for

handling the phantom problem:

Strategy i: Serialize Writers:

Since, as we just observed, phantoms cause difficulties only between writers,

the simplest solution is, not to schedule any writers to run concurrently.

Concurrency is possible between arbitrarily many readers and at most one writer.

Consistency is guaranteed by individual object locking and by handling deadlocks

and preemptions as described in the earlier pa~t of this paper. The problem of

phantoms does not arise.

As mentioned before, in many applications most transactions are readers.

Serializing writers in those cases should not cause a significant loss of

93

concurrency and has the advantage that predicate locking with its associated

difficulties is not needed. Several more involved strategies are described in [Bay

75].

Strategy 2: Partition Database:

The following approach can be thought of as a highly specialized and simplified

predicate locking technique, although predicates are no longer used explieitely.

The technique allows a high degree of concurrency between transactions, and avoids

the phantom problem, if all transactions use the proper locking protocols. A

similar technique is described in [GLP 75], [GLPT 75] and has been implemented in

System R, an experimental relational database system [ABC 76]. For explanatory

purposes we first describe a simplified case, a sketch of the general case should

then be easy to understand.

Assume that our database B is partitioned into a finite number of blocks

BI,B2,...,B k. Each object of B belongs to a unique block. When inserting, deleting

or modifying an object in B, we assume that the block or blocks affected by such

an update are known. Partitioning of databases, e.g., into files or relations, is

a widely used technique. In terms of predicate locking, the sets BI,B2,...,B k can

be thought of as:

B I = B n S (PI)

B 2 = B n S (P2)

B k = B N S (Pk)

for a fixed set of predicates PI,P2,...,p k having the special property that for

all possible database contents B and blocks Bi,Bj, i ~ j it is true that

94

B.I n B.j = (B n S(Pi)) n (B N S(Pj)) = B N S(P i) n S(Pj) = ~.

Now assume that we can lock the blocks B!,.°o,B k and also individual objects

of B in various lock modes as we shall see suitable shortly.

Partition Lockin$: Obviously a transaction t could then guard itself against

phantoms which might materialize in B i by simply locking B.I in exclusive mode X.

It suffices, however, that t lock B. in a mode preventing other updaters from
i

modifying B. in any way while still allowing objects of B. to be read by t and by
i i

other transactions. A shared lockmode S allowing read access to all objects in a

partition block serves that purpose as long as locks used for update purposes on

B. are not compatible with this lock.
i

In addition to allowing X- and S-locks on blocks, we also introduce an

analysis-lock, called an A-lock. This A-lock can be used by a transaction t while

analyzing a block with the intent to update it. Also a new version of the block

can already be prepared while still maintaining the old version available for read

access to other transactions.

During this analysis phase no phantoms may he created by t or other

transactions. Thus read accesses, but no update accesses by other transactions

are allowed. Furthermore, no analysis accesses by other transactions can be allowed

since the intended update of B i hy t would invalidate such analyses.

To finally perform the update, or to finalize (commit) an already prepared

update for Bi, first convert the A-lock into an X-lock. Thus the update cannot be

committed, until all S-locks which might coexist with the A-lock on a block have

been released. From the intended use of the locks it is now clear that the

compatibility matrix for the three lock-modes $,A,X should be defined as follows:

Fig. i:

95

S A X

+ + - + means compatible

+ - - - means incompatible

Compatibility Matrix for Lock Modes S,A,X.

Data Object Lockin$: Locking at such a coarse level as the partition blocks may

cause an inacceptable decrease of concurrency since much larger parts of the

database than really necessary might have to be locked. Although it requires more

overhead in setting locks it is, therefore, desirable to be able to lock at a finer

level, namely individual data objects, in order to increase potential concurrency

of transactions. This is expecially true for transactions, e.g., readers as we

saw before, which are not concerned about phantoms and which can run consistently,

as long as they are able to lock all objects in the database, in which they are

interested, in the proper mode.

In addition to readers there are many writers which have additional knowledge

about the semantics of the database and need not be concerned with guarding

themselves against phantoms in order to obtain consistency. Therefore, they do

not need to lock out other transactions at the block level.

In order to make partition locking still work it must be known what sort of

object locking is going on within a block. This can be achieved by leaving certain

traces at the block level [Ram 74] or equivalently by introducing additional lock

modes at the block level [GLP 75], [GLPT 75]. These lock-modes are:

IS: (intention share) to indicate that a transaction intends to set S-locks on

objects within the block locked with IS.

IX: (intention exclusive) to indicate the intention for setting S-locks or X-locks.

SIX: (shared, intention exclusive) to guard against phantoms within the block and

thereby getting (without further object locking) read access to all objects in

96

the block, and to indicate the intention to set X-locks on objects in the block

locked with SIX.

Note: It is not necessary to set S-locks on objects in a block already SIX-locked.

Also there is no need for an SIS-lock (with the obvious meaning) since SIX

would imply read access to all elements within the block already without setting

further object locks. Thus, using S instead of SIS serves the same purpose.

These considerations then lead to the following system of locks which is similar

to the one arrived at in [GLP 75] with a somewhat different motivation than the

one given here. This lock system with appropriate protocols serves to solve the

phantom problem, allows locking at the proper granularity - to allow a trade-off

between overhead work for setting locks and the degree of concurrency achievable

- and still allows highly concurrent access to a partitioned database using a

relatively simple locking protocol~

Locks for Objects:

modes:

a)

b)

c)

The objects in a block can be locked in one of the following

S-mode for concurrent read access

X-mode for exclusive access for read or write purposes.

although the A-mode could be allowed, it seems hardly worthwhile and is

omitted here.

Locks for Partition Blocks: The partition blocks can be locked in any of the modes

S,A,X,IS,!X, SIX. Locking at the block level really serves two rather different

purposes:

i) to guard against phantoms

2) to avoid the overhead of setting many locks on objects, thereby potentially

accepting a decrease in concurrency.

To perform the actual update of a block after an analysis, t can follow two

courses:

97

!) Convert A to X as described before, then update.

2) Convert A to SIX and individually X-lock those objects in the block which

must be updated.

We can now expand the compatibility matrix of Fig. i by adding the lock modes

IS, IX, and SIX. From the meaning of those modes described before it should be

clear that IS must be incompatible with X only, but can be compatible with S, A,

IS. An IX-lock is used to indicate that X-locks are set at the object level to

perform updates and possibly to create phantoms. Therefore IX must be incompatible

with S, A, X, it can be compatible with IS and IX only. An SIX lock is used to

guard against phantoms and to set X-locks on objects for updates. Thus SIX must

be incompatible with S, A, X, IX, and SIX, it is only compatible with IS. Since

compatibility is symmetric, we obtain the complete compatibility matrix of Fig. 2.

S

X

A

IS

IX

SIX

Fig. 2:

S X A IS IX SIX

+ - + + - _

+ - _ + - _

+ - + + + +

_ _ _ + + -

The Compatibility Matrix for the Modes

S, X, A, IS, IX, SIX.

The following combinations of locks are then obviously meaningful and constitute

allowed lock protocols:

98

lock held on meaningful locks
partition block: for objects:

S

X

A

IS

IX

SIX

S

S,X

X

Generalization to Hierarchy:

use a sequence of partitions ~i,~2,...,~% such that ~i+l

i.e., ~i+l splits the blocks of ~i into smaller blocks.

which for locking purposes is hierarchically organized.

In a next step one can now iterate the scheme and

is a refinement of ~i~

This leads to a database,

The hierarchy describes

which blocks are subsets of other blocks. To prevent phantoms and gain read access

within a partition block one of the locks 8, A, X, and SIX can be used. SIX, IX,

and IS are used to indicate what locks may be set at the next level of refinement.

It is now prudent to also add the additional lock modes IA and SIA with the

following extensions of the compatiblity matrix:

IA

SIA

Fig.

S X A IS IX SIX IA SIA

+ - _ + + - + -

+ - _ +

: The Compatibility of the Modes IA and SIA

Before t converts an A-lock on a block B i to an X-lock it must convert all

IA-locks and SIA-locks it holds on ancestors of B. to IX- or SIX-locks,
l

respectively. To avoid potential deadlocks due to conversions this conversion

should be performed top-down in the hierarchy, obviously the conversions of A to

X, of IA to IX, and of SIA to SIX cannot be granted until any coexisting S-locks

have been released.

99

Note: The two lock-modes A and SIA have the same compatibilities, but they

differ in the way they should be converted. Thus SIA could be omitted allowing

the conversion of A to both SIX or X after finding out which conversion is

preferable.

The following table describes the generalized lock protocols, assuming locks

are set top-down in the hierarchy:

locks for
partition
blocks

IS

IX

SIX

IA

SIA

allowable
on next
level

S, IS

all modes

X,A, IX,IA

S,A, IS,IA, SIA

A, IA

allowable
on object
level

S

S,X,A

X,A

S,A

A

Note: There would be no difficulty to allow S, IS, SIX, SIA locks on sons of a

block with an SIX-lock, or to allow S, IS, SIA locks on the sons of a block with

an SIA-lock.

The locking techniques described in this section offer a means to handle the

phantom problem. The issue has been investigated in more detail, but without using

the A, IA, and SIA modes in [GLP 75] and [GLPT 75]. In a partitioned database

transactions can choose to lock at a coarse or a fine level depending on the desired

tradeoff between low locking overhead and high concurrency.

The issue of potential deadlock still prevails, unless additional restrictions

100

on locking protocols are imposed [Ram 74]. The techniques described in sections

5, 6, 7 can be used to handle the deadlock issue.

i0. RECOVERY

Backup of a database to an earlier state of integrity should be planned for

and may become necessary for many reasons: hardware failure, system fail~rre due

to program errors, deadlock and deadlock resolution, prevention of indefinite delay,

violation of integrity constraints discovered during or at the end of a transaction,

attempt to perform unauthorized operations.

We will present the basic design principles, ignoring many technical details,

for a revocery scheme. It is assumed that a safe pseudo-random-access store, e.g.,

a disk containing the database is available and that recovery of a previous state

of integrity must be possible from the contents of the backup store alone, if one

of the above failures including failure of the central processor or main memory

occurs.

We assume that such a failure has precisely the same effect as halting the

operation of the whole system at an arbitrary moment resulting in an undefined

state of the central processor and main memory. Any read or write operations in

progress on the backup store shall also halt, without having any destructive side

effects on the state of the backup-store. Only the contents of the backup-store

shall be useable to determine, how far such operations might have progressed at

the moment of the system halt.

The recovery problem to be solved then can be summarized as follows: The effect

of incomplete transactions, i.e., transactions which had started but not yet

completed at the moment of failure, on the contents of the database must be undone.

To describe the update of a single partition block, let us assume that the

whole block will he rewritten. In a technical implementation the unit of

101

information for read and write operations on the backup-store will often be a page.

The basic recovery principle can be adopted to this case.

The key of the recovery scheme is the notion of a shadow block [Lot 76]. When

a transaction updates a block, the old block - called the shadow - will be kept

for the contingency that a failure occurs before the transaction completes and that

the shadow is needed for recovery. The shadow will be released only after the new

updated block has been properly constructed on the backup store. The main

difficulty of such a scheme is the design of the update-commitment operation which

performs the switchover from the shadow to the new block. This operation itself

may fail and recovery must still be possible.

After a new block has been constructed by an updating transaction two versions

of a block reside on the backup store, each representing part of a state of

integrity of the database. To perform the update-commitment, the transaction must

first assure, that the shadow is no longer used by other transactions. This can

be done by either performing updates under an X-lock on the block or by performing

updates with an A-lock and converting the A-lock to an X-lock as part of the

commitment. After obtaining an X-lock on the block, the new block can then be

validated and the shadow can be freed.

Since at any time we may have two versions of a block, we need two address maps

defining for each block the physical locations of the shadow and the new block on

the backup store. These maps must themselves reside on the backup-store. Let us

assume that each map entry is time-stamped, e.g., with the system-time of the moment

of creation of the entry. Also associated with each map entry shall be a separately

writeable Boolean validation variable. A value true shall mean that the

corresponding physical block represents part of a state of integrity of the

database. The timestamp of the map entry can be used to identify that state.

With these preliminaries we can now introduce the data objects of the co~itment

algorithm to be performed by a transaction t. to update a block B. :
3 l

! 02

FL:

VO,VI:

GO,GI:

Vc :

A list of free storage areas to place new blocks. The details of FL are

irrelevant here. FL can be in main or backup store, FL is not needed for

recovery purposes°

These are two arrays located on the backup store to represent the two

address maps and the timestamps for the physical blocks. VO[i] and Vl[i]

contain the addresses and timestamps of the shadow and the new block of B., m

Two Boolean arrays located on the backup store to represent the two

validation variables for each block.

An address map located in main or backup store. Ve[i] contains the address

of the currently valid version of block B. which is made available for
i

read access to other transactions while B i may be updated by t.. Vc is
J

not needed for recovery.

To read the block Boa transaction requests an S-lock on B i and holds this lock
l

for as long as repeatable reads and the prevention of phantoms in B. are desired.
l

To update B. a transaction can request an X-lock on B i before starting to construct
i

the update. Alternatively, since the shadow of B i is available until the update

is committed, the shadow can be left available for read access while the update is

being constructed by requesting an A-lock on B i first. To commit the update the

A-lock is then converted to X.

protocol in detail=

i)

2)

3)

4)

5)

6)

7)

g)

9)

i0)

Fig. 4:

We present the second more complicated update

Place A-lock on Bi;

Get free slot for new B. via FL;
l

Prepare and write new block Bi;

Update and timestamp VO[i] or Vl[i];

Validate GO[i] or Gl[i];

Invalidate Gi[i] or GO[i];

Convert A-lock on B. to X-lock;
1

Update Vc[i] with address of new Bi;

Release X-lock on Bi;

Free shadow and update FL

Locking Protocol for an Updater

103

The main desirable properties of this update protocol are:

a) For most of the duration of the update block B. can still be read by other
I

transactions, or equivalently, an update can already be started while the

old version of B. is still locked for read access.
l

b) An exclusive lock must be held only in steps 7), 8), 9). These steps are

very fast, since no operations on backup store are involved.

c) Except for steps 2) and i0), parts of which may have to be programmed as

critical regions, updates of different blocks can be performed

concurrently, unless prevented by other locks in the hierarchy.

d) The technique of using the shadow blocks for recovery causes only a very

small disturbance of the overall operation. No quieseing of the system

for taking checkpoints is needed and no extra operations are needed on

the backup store beyond the maintenance of the structures VO, VI, GO, and

GI.

e) Backup of a single transaction, e.g., because of an integrity violation

or a deadlock, although not discussed here in detail, is easily possible

without stopping or affecting other transactions.

Recovery: Now let us consider the recovery problem assuming that the system can

fail, i.e., halt its operation with an undefined state of the processor and the

main memory, at any moment of the updateprotocol.

Case i: A failure occurs before step 5). Then exactly one of GO[i] or Gl[i] will

be true. The corresponding address map entry VO[i] or Vl[i] will point to a valid

version of block B i representing a state of integrity.

Case 2: If step 5) itself fails we will not know whether the validation took place

or not, and we have two cases:

Case 2a: The validation was not performed, i.e., only one of GO[i] or Gl[i] is

true and we continue the recovery as in Case i.

Case 2b: The validation was performed, i.e., both GO[i] and Gl[i] are true, we

104

have two valid versions of B. and can use the timestamps of VO[i] and Vl[i] to
l

determine the newest version to be used for recovery.

Since step 5) consists of writing only a single bit we can assume that only the

two cases 2a and 2b can arise.

Case 3: Step 6) fails: depending on how step 6) fails, there will be one or two

validated versions of B, and recovery is performed exactly as in Case 2.
i

Case 4: A failure occurs after step 6). There will be exactly one validated

version of B. on the backup store which is used for recovery,
i

To conclude we want to indicate some of the additional complications arising

in a viable implementation of the techniques presented.

I) The lock protocol presented in Fig. 4 must be generalized to handle

updating of several blocks within one transaction. This is easily

possible~

2) The hardware of some machines allows to combine the write operations of

steps 3) and 4) and the validation of step 5) in a single operation. The

update protocol can be modified to take advantage of this possibility [Lor

76].

3) When updating several blocks a generalized conversion operation is

desirable to convert a set of A-locks in a single operation rather than

converting A-locks one at a time. Such an operation can increase

concurrency considerably.

4) Instead of backing up a transaction completely for recovery it may be

desirable to introduce additional intermediate safe points and to use

partial backup for recovery. Additional bookkeeping is then necessary to

inform transactions, how far they have been backed up and how much work

must he repeated [Lor 76] [ABC 76].

5) An additional level of recovery is needed in reality to guard against

failures involving the backup store. The techniques presented here can

he generalized to serve that purpose [Lor 76].

105

REFERENCES

[ABC 76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.

Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,

G. R. Putzolu, I. L. Traiger, B. W. Wade and V. Watson, "System R: A

Relational Approach to Database Management" to appear in ACM Transactions

on Database Systems, ~, 2 (1976).

[Bay 74] Bayer, R., "Aggregates: A Software Design Method and its Application to

a Family of Transitive Closure Algorithms." TUM-Math. Report No. 7432,

Technische Universitat Munehen, September 1974.

[Bay 75] Bayer, R., "On the Integrity of Databases and Resource Locking." In: Data

Base Systems (ed. Hasselmeier, H. and Spruth, W. G.), Lecture Notes in

Computer Science, 39, Springer, 1976.

[Bjo 73] Bjork, L.A., "Recovery Semantics for a DB/DC System." Proceedings ACM

Nat'l. Conference 1973, 142-146.

[CBT 73] Chamberlin, D. D., Boyce, R. F., Traiger, I. L., "A Deadlock-free Scheme

for Resource Locking in a Database Environment." Information Processing

1974, 340-343.

[Cod 70] Codd, E. F., "A Relational Model for Large Shared Data Banks." Comm. ACM

13, 6 (June 1970), 377-387.

ICES 71] Coffman, E. G. Jr., Elphick, M. J., Shoshani, A., "System Deadlocks." ACM

Computing Surveys 3, 2 (June 1971), 67-78.

[Day 73] Davies, C. T., "Recovery Semantics for a DB/DC System." Proceedings ACM

Nat'l. Conference 1973, 136-141.

[EGLT74] Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, I. L., "On the Notions

of Consistency and Predicate Locks in a Database System." IBM Research

Report RJ 1487, December 1974.

[ESC 75] Eswaran, K. P., Chamberlin, D. D., "Functional Specifications of a

Subsystem for Database Integrity. "IBM Research Report RJ 1601, June

1975.

[Eve 74] Everest, G. C., "Concurrent Update Control and Database Integrity." In:

Database Management (ed. Kllmbie, J. W., and Koffeman, K. L.), North

Holland 1974, 241-270.

106

[Fos 74] Fossum, Bo M.~ ~'Data Base Integrity as Provided for by a Particular

Database Management System." In: Database Management (ed. Klimbie, J.

W., and Koffman, K. L.), North Holland 1974, 271-288.

[GLP 75] Gray, J. N., Lorie, R. Ao, Putzolu, G. R., "Granularity of Locks in a

Large Shared Database." IBM Research Report RJ 1606, June 1975.

[GLPT75] Gray, J. N., Lorie, R. A., Putzolu, G. R., Traiger, I. L., "Granularity

of Locks and Degrees of Consistency in a Shared Database." IBM Research

Report RJ 1654, September 1975.

[Hab 69] Habermann, A. N., "Prevention of System Deadlocks." Comm. ACM 12, 7 (July

1969), 373-377, 385.

[KiC 73] King, P. F., Collmeyer, A. J., "Database Sharing - an Efficient Mechanism

for Supporting Concurrent Processes." AFIPS Nat'l. Comp. Conf. Proceedings

1973, 271-275.

[LiZ 74] Liskov, B. H., Zilles, S. N., "Progrmaming with Abstract Data Types" ACM

Sigplan Notices, 9, 4 (April 1974), 50-59.

[Lor 76] Lorie, R~ A., "Physical Integrity in a Large Segmented Database." IBM

Research Report RJ 1767, April 1976.

[011 74] Olle, T. W., "Current and Future Trends in Database Management Systems."

Information Processing 1974, 998-1006.

[Pur 70] Purdom, P., Jr., "A Transitive Closure Algorithm." Bit iO (1970), 76-94.

[Ram 74] Ramsperger, N., "Verringerung von Proze~behinderungen in Rechensystemen."

Dissertation, Technische Universitat Munchen, 1974.

[Sch 74] Schroff, R., "Vermeidung von totalen Verklemmungen in bewerteten

Petrinetzen." Dissertation, Teehnische Universitat Munchen, 1974.

[War 62] Warshall, S., "A Theorem on Boolean Matrices." Journal ACM 9, i (January

1976), 11-12.

