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INTRODUCTION 

Using a computer for the solution of problems - either by programming 

some algorithm oH by performing retrieval operations in a data bank 

system usually involves at each level of abstraction data items as 

well as structured data, i.e. collections of data items which are some- 

how related to each other. If we group data items together into a set 

and endow this set with certain operations we get the concept of the 

elementary data type. If we now group structured data together and want 

to endow this set with certain operations, we can destinguish between 

three kinds of operations: those which consider structured data as a 

whole (without referring to their structure or to their components 

explicitly), those which deal only with the structure between the data 

items ("structural operations") and those which concern a data item 

itself. In this paper we want to restrict ourselves to structured data 

and structural operations. 

At this point ! should like to motivate the need of a formalization of 

structured data and structural operations, The arguments can be summar- 

ized as follows: 

(1) Structured data are used at each level of abstraction. The desrip- 

tion of these data varies considerably from one level to the other. 

Even at the same level, e.g. in high level programming languages, 

it is seldom uniform. The question, e.g.~ as to whether the oper- 

ations which can be applied to the data should be part of the de- 

scription has no uniform answer. Thus communication is difficult. 

(2) The design and efficiency of an algorithm depend strongly on the 

choice of the data structure which represents the objects to be 

manipulated. In certain areas this dependency has been early rec- 

ognized (e.g. for sorting and searching problems) and led to the 

development of specific structured data (e.g. different kind of 
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trees~ binary trees~ balanced trees, B-trees, etc.) These struc- 

tured data have been formally described and analysed. Until now, 

however, there exist very few approaches to the definition of 

general data structures. 

(3) A rigorous definition of the notion "realization" presupposes the 

formalization of the concept "data structure". 

(4) For proofs of correctness of programs the involved data structures 

must be formally describable. 

Our formalism is chosen such that it is independent of a speclflc pro- 

gramming language and a specific computer model• 

I. FORMAL MODEL 

When we speak of structured data we usually think of a composite en- 

tity consisting of "simpler" constituents which are related somehow. 

The nature of the relation may differ considerably in the different 

levels of abstraction. It may be e.g. an order relation in a set, a 

relation describing a family tree, a relation describing the access 

mechanism in a computer memory etc. In general, the relation is the 

appropriate mathematical concept for handling composite data. As 

usually more than one relation is involved in describing structured 

data we choose the extended directed graph for our purposes• Our claim 

is that there is an extended directed graph corresponding to any struc- 

tured data. 

DEFINITION i. 

An extended directed graph is a pair (N,P) consisting of a nonempty 

set N of nodes which is at most countable and a finite set P of partial 

mappings from N to N. 

If p is a partial mapping from N to N which is defined for some noN 

then np denotes the value of p at n• 

DEFINITION 2. 

By H(P) we denote the semigroup with identity generated by P under 

functional composition. 

There is a simple way to represent an extended directed graph graphi- 
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eally. If pap and n~N and m = n p  we display the nodes by circles and 

express the fact that m =np by an arrow from n to m with designation 

p. 

n 

O~m 

We want now to give some examples of extended directed graphs. 

I. Let N = (nij)i = I...8 

j = i...8 

P = {PI' P2' P3' P4 } 

where 

nij Pl = nij+1 

nij P2 = nij-i 

nij P3 = ni+lj 

nij P4 = ni-lj 

j = 1...7; Vi 

j = 2...8; Vi 

i = I...7; Vj 

i = 2...8; Vj 

(N,P) is represented in the plane as follows 

v( v~____~¢ v( ~v( v( ~ v~ v 
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JoL JJ=, .... IjjJ_TJ 

• ~ld T~ Jl I~ TJ, T1__++1 



(N,P) can be thought of as one possible representation of a chessboard. 

2. Let N = (ni)i~ ~ and 

P = {pl,P2 ) where 

niP 1 = n2i i = 1,2,... 

nip 2 = n2i+1 i = 1,2,... 

Hence 

N I 

0 0 0 0 

(N,P) is an infinite binary tree. 

3. Consider the following mode declaration in Algol 68 

mode employee = (string name, real salary, ref employee boss, 

ref employee next) 

An object of this mode can be described by 

0 

0 0 

We consider now three employees in alphabetic order, who have the 

same boss 
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If we are only interested in the relations between the four employee 

we get 

0 ~0 )0 
nc n c  

Extended directed graphs can be investigated similarly as directed 

graphs. Typical results are: decomposition of an extended directed 

graph into disjoint constituents, determination of generating sets, 

maximal constituents and so on. For these questions the reader is re- 

ferred to [i]. 

II. DATA STRUCTURES 

We have now introduced our basic concept, the extended directed graph. 

We have seen how structured data can be described using these graphs. 

Until now, the relations between the data items - these are repre- 

sented by the nodes in the graph - were supposed to be given a priori 

and fixed. Note that we never mentioned something like an "operation" 

on the data. We are now interested in the dynamic behaviour of struc- 

tured data. Before going into detail in the discussion of operations 

let us first consider three well-known examples of data structures: 
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a list, a pushdown-list, a queue. With each of these data structures 

we have basically associated an ordered set of elements into which we 

can insert or from which we can delete an element according to speci- 

fic rules. The distinction between these data structures stems from 

the different kinds of rules: in the first case, any element of the 

ordered set can be removed and an insertion of an element is allowed 

between (with respect to the given order) any two elements. In the 

second case both, insertion and deletion, can only affect the last 

element of the set. In the third case insertion affects only the last 

element~ whereas deletion affects only the first one. 

Thus, informally we can say that a data structure - as opposed to 

structured data - is not only determined by the relations between its 

data items but also by the operations which can be performed on the 

structured data. We are going to suggest a definition of the notion 

data structure based on our previous model in which the above con- 

siderations have been taken into account. In order to do so we need 

a series of auxiliary definitions. 

DEFINITION 3. 

Let F : (N,P) be an extended directed graph, ~{N. A pair (F,m), where 

msNU{~}, is called a configuration of (N,P). 

DEFINITION 4. 

Let G be a set of finite extended directed graphs and ~ a set of con- 

figurations of elements of G. A partial mapping 

o : ~---~Z 

is called an elementary 

i) ~ccess ,  opera t io ,n~  i f  

(r,m)o : (r'~ m') 

implies F = F' and either 

i) there are no edges starting from m and m' = 

or 

ii) there exists a mapping q which is defined at m, such that 

m' : mq 

In this case we say that we access m' along a p~th named 

q starting from m. 

2) no de-in, ser t qperation~ if 

(r,m)o : (r',m') 
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implies 

i) m'~ 

ii) card (N) = card(N')-i 

iii) the subgraph of F' which is defined by N'~{m'} is - up 

to renaming - a partial graph of F such that nlp = n 2 

nieN p~P implies ~I~ = ~2' where ni(resp, p) corresponds 

to ~i (resp. ~) according to the renaming. 

iv) m = ~ or ~ (i.e. the element corresponding to m) is con- 

nected to m' by a single edge. 

In the same way we can define node-deletion, edge-insertion, and -de- 

letion. 

There are some interesting features of the above definitions. Looking 

e.g. at the definition of the access operation we see that we can per- 

mit or prohibit the access to some element by defining the mapping 0 

in the right way. Moreover, our definition guarantees that a node n 

can be accessed from a node m only if n and m are related in the graph. 

Having defined what an elementary operation should be we can now con- 

struct the data structures. 

DEFINITION 5. 

Let;;tbe a set of finite extended directed graphs. An extended directed 

graph 

= (~,T) 

consisting of 

i) a set of configurations of elements of~t, such that for each 

graph F~%there is at least one configuration of F in ~. 

ii) a finite set T of elementary operations on ~ 

is called a data structure class. The elements in H(T) are called 

~erations. 

A pair (F, ~), where r is an extended directed graph 

and ~ a data structure class is called a data structure, if 

there is a configuration of r which is a node of ~ . 

EXAMPLES. 

Let ~= ((N,P) : (N,P) is extended directed graph, P = (p} and 
t pi 

p = ~ is an order relation on N}. 
i=1 
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For each natural number k we choose exactly one graph F k with k nodes. 

Then we put 

(Here F k = (Nk~(Pk}) with N k ={nkt,...nkk} 

nkiP k = nki+l i = l...k-l) 

Based on this set of graphs we construct now the following data struc- 

ture classes~ 

1. Let Z L be the set of all possible configurations of all elements 

of~L . We choose the elementary operations as: 

~ L i = 1~2,3 ti : L --~ ~% 

m 
t I : (Fk~ nklP~ ) ~----~(Fk+l, nk+l,lPk+l) for k>o, k-l~m~o and 

k ~) ~__~ (rl, nll) (Fk,~) ~ (Fk+l~ nk+l~IPk+l)' (F o, 

t I is the operation ~'insert one element in front of the one at 

which you point now. 

m nklP~ +1) for k>o and t 2 : (Fk~ nklPk) ~--- ~ (Fk~ k-l~m~o 

(F k, nklP~ -1) ~---~(Fk~) 

t 2 is the operation "go to next element '' 

m ~ nk- m t3: (Fk, nklPk ) ~ (Fk_ 1 1,1Pk_l ) k>o k-l~m~o 

(Fk, k-l~ ,~) k>o nklP k J ~----~(£k_ 1 

t 3 is the operation "delete the element which is pointed at". 

The extended directed graph 

L (tl~t2~t3}) ~ :  ( ~  

is called list class. A pair 

(r n, .[) 

is called list of length n. 
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F 
n 

is graphically illustrated by 

nnl 
% 

Pn Pn 
0 )0 ~0 ......... 0 

'n node"s 

The graph ~ which describes the list class is illustrated by 

0 

t~l~t~ 

~q,,~ ~o --~o<~,~,~ ,$ TI 
cq,n~jp ~---~--+ 0 ,--c-~ 0 ~q 

_ t~ t t 

r, ,n, , , io ~ o ,, 

= (~,(tl,t2,t3}).,~ is an infinite extended directed graph with 

entry. Please note that a list can only be traversed in one direc- 

tion. 

2. Let 

K ((rk, nkl) k~l} U ((Fo,~)} 

we choose the following operations 

ki : ~K. ) ~ 

k I : (Fk, nkl) , ~ (Fk+l~ nk+l,l) k~o, (ro,~) J i(rl~n11) 
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k 2 : ~k+l~ nk+l,  1) ~---~(Fk, nkl) k¢o, ( P l , n l l )  ~.__~ (~o,¢) 

The extended d i r e c t e d  graph 

is a data structure class describing the cynamic behaviour of pushdown 

lists. The class is illustrated by 

k~ k~ 
(r,,,~) o ~ o ~ o  ~_ 

k t k t 
~O 

For more complicated examples we refer to [1] where a large number of 

interesting data structures has been described using our model of ex- 

tended directed graphs. Here we restrict ourselves to point at some 

of the benefits of our model: The fact that a configuration of an ex- 

tended directed graph can be a node in two different data structure 

classes enables one to construct a "connection" between these two 

classes. Let be 

~'1 ,,~1 ~T ) 
= ~rl~l 1 

~.2 = % :  ,'~ ) 2 2 

two data structure classes° We set 

u = u"r.. 22 ,T 1 u %) 

If a configuration occurs in .,151 '111"1"1 and in ~.~2 2 then in ~1 U 

which is also a data structure class according to our definition - the 

operations of both T I and T 2 can be applied to that configuration. 

Thus, starting from some given classes new datastructure classes can 

be created. 

Another point to be mentioned is that equivalence of data structures 
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as well as questions concerning the simulation of one data structure 

by another data structure can be treated within this model. 

Moreover, those data structure classes which can be defined by spe- 

cific methods, e.g. so-called definition only by operations, can be 

characterized with the help of our model. 

III. REALIZATIONS OF DATA STRUCTURES 

How can we formally define the realization of data structures? As a 

data structure is given by a pair 

( r , ~ )  

one part of our task will be to allocate storage to F. The other part 

of our task will then be to declare how the operations have to be 

treated. As time is lacking, we will here concentrate on the first 

project. 

DEFINITION 6. 

Let (N,P) be an extended directed graph an A a set, IAI b INf. A pair 

(r,p) consisting of an one-to-one mapping 

r : N~A 

and an one-to-one homomorphism of semigroups 

0 : H(P) ~ A (A) (A (A) is the set of partial mappings 

from A to A.) 

such that 

i) nps N ~ (nr)(p~) s Nr 

ii) (np)r = (Nr)(p0), if p is defined at n. 

REMARK. 

Restricted to strongly connected extended directed graphs this defini- 

tion coincides with the one given in [2]. 

We can interprete our definition as follows: Let A be a contiguous set 

of addresses, i.e. A = {x ~ N : agx~b} for some a,b ~ ~. If the ele- 

ments of N are considered as external names, the mapping r can be con- 

sidered as the addressbook for the structured data. It assigns a unique 
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address to each element of N. Pp is both a representation for the edges 

of (N,P) and a mechanism for calculating the address of np from the 

address of n according to 

(np)r : (nr)(pp). 

When using structured data we often do not refer explicitly to an ele- 

ment by an external name but we refer to by its relation to some other 

element. Imagine for example the use of binary trees, where in most 

cases a node is referred to as "son of node n", n being its father 

node. In this case we need not keep the whole addressbook r in memory. 

We just keep 

nor 

where n is the root of the tree. The address of some element in the 
o 

tree can be calculated with the help of 

pp p a P 

IV. DISPLACING OF REALIZATIONS 

As one can easily see, any extended directed graph (N,P) can be real- 

ized in any set A, IA I ~ INf. The question which interests us now is: 

What happens if such a realization has to be shifted within our memory 

A? In the worst case we must set up a completely new addressbook r and 

redefine p. For a big class of extended directed graphs, however, there 

exists a possibility to avoid this effort of complete redefinition. 

DEFINITION 7. 

A node n o of an extended directed graph is called entry, if for every 

nsN there exists a mapping p such that noP= n. 

DEFINITION 8. 

Let (N,P) be an extended directed graph with entry no. (N,P) is said 

to have a displacement mapping in A, IAI ~ INI, if there exists 

~* : N~A A 

with the following properties 

i) 6 ~ is one-to-one 
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ii) for any a c A there exists a realization (ra,Pa) such that 

a) nor a = a 

nr = a(n~ • ) a 
b) the mapping B a 

B a : {t c H(P)p a : at ~ Nr a} ~ A A 

which is defined by for all b e A 

b(ppa)~ a = (noP)r b 

is well defined and one-to-one onto N~ ~. 

If an extended directed graph with entry n o has such a displacement 

mapping 6 • we proceed in the following way: Instead of maintaining 

information about a specific realization which has to be updated all 

the time we keep ~ in memory. Then, if one specific value a ~ A is 

given, which is supposed to be the future address of n we can easily 
o 

calculate the position of n ~ N with respect to the realization (ra, Pa) 

nr = a(n~*). a 

Property ii,b constructs an intrinsic correspondence between the par- 

tial transformations in H(P)pa ~ A (A) which do not lead out of the 

realization r a of (N,P) and the total transformations in N~ • ~ A A. Via 

this correspondence all realizations are related in the following way: 

Let a,b a A and ~a,~b the corresponding mappings. Then we get for 

P ~ Fun(n o) 

PPb = (PPa)(6a 6b -1) 

and hence have built up a relation between Pa and Pb" 

EXAMPLES. 

i. The first three examples of section I have a displacement mapping. 

2. An extended directed graph with entry which has no displacement 

mapping is given by 

J % 
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We proceed now in the investigation of extended directed graph with 

displacement mappings and look for a simple criterion for determining 

whether an extended directed graph has such a mapping. 

PROPOSITION Io 

Let (N,P) be an extended directed graph with entry n o . IAI > INI; 

the following statements are equivalent 

i) (N,P) has a displacement mapping 6" : N ~ h A such that 

no6* = id A. 

ii) for all p,q defined at n o noP: noq implies p = q. 

Proof: 

i) implies ii). Let us assume that hop i =noP 2 and Pl # P2" 

Then for all b ~ A b(PlPa)B a = (noPl)r b = (noP2)rb = b(P2Pa)B a. 

Hence we get (plPa)B a = (p2Pa)~a • 

As ~a and ~a are one-to-one we get Pl = P2 ° 

ii) implies i). For any a s A let us choose a realization (ra,P a) 

with nor a = a. 

Let n c N be given. There is a unique p s H(P) such that 

n : noP. 

We put for all a ~ A a(n6*) := a(ppa). 

6" : N ~ A A is a displacement mapping. 

Proposition i gives us an useful criterion to decide if an extended 

directed graph has a displacement mapping. Moreover, if we once found 

out that n is an entry which satisfies ii) and choose for each a s A 
o 

a realization (ra,P a) with nor a = a we can construct a displacement 

mapping 6*. This is described in the following corollary. 

COROLLARY 1. 

Let n be an e n t r y  s a t i s f y i n g  i i ) .  L e t  f o r  e a c h  a ~ A a r e a l i z a t i o n  
o 

(ra,Pa) with nor a = a be given. We define 

a(n6*) := a(pp a) 

where n =noP. ~ is a well defined mapping from N to A A and satis- 

fies the conditions of a d i s p l a c e m e n t  m a p p i n g .  

In order to make the involved concepts clear to the reader we demon- 

strate our techniques for the case A = {0,1,2,...M}. 
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PROPOSITION 2. 

Let (N,P) be an extended directed graph with entry n o, 

A : {O,I,...M}, M ~ IN I. 

(roPo) = 0 Then there exists a dis- Let be any realization with nor o . 

placement mapping 6* : N ~ A A such that 

a(n6*) = a + nr O mod[A I 

(i.e. the total function 

n~* : A ~ A 

is additive). 

Proof: 

: O(pp o) :: k ~ A. We put Let n : hoP then nr ° n 

a(n6*) := a + k n modlA I . 

Then we get 

nr = k : O+k : O(n6*). 
o n n 

For each a s A we define now ra,Pa,~ a. First we make the following ob- 

servations. 

I. n~* : A~A 

n6* is a total mapping and a(n6*) s A for any a. Hence 

~* : N~A A 

2. 6" is one-to-one: Suppose that 

n~* : n'6*, 

then 

nr = 0(n6*) = O(n'6*) = n'r . Hence n = n' 
o o 

We put now for a ~ A 

nora :: a nra :: anS* : a+kn m°dIAI" 

Surely r is a one-to-one mapping from N to A. By defining 
a -i 

pp~ : r a P r a 

we complete the proof. 

COROLLARY 2. 

Let n o satisfy ii) in proposition I. We define 

: N~--~A (A) 
o 

(noP)~o := PPo' then for the mappings ~*~ ra,Pa which are given in 

proposition 2 the following equations hold: 
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n r a = a ÷ (0)(n6 o) modJAi 

(np)r a : a + (n re)(pp o) modIA ! 

: a + (O)(nP6o) ~ modlA I 

We can now make the following conclusions: 

i. It follows from corollary 2 that we can make use of the existence 

of a displacement mapping 6" without explicitly calculating it. 

Once we found a realization (ro,P o) of (N,P) with nor o : 0 for 

which moreover 

n ~o 

is easily determined and n 6 o is a "simple" function from A to A 

(e.g. additive) then for each a ~ A we get a nice realization 

..(ra,P a) if we use 

n r a = a + (O)(n6 o) modjAl 

(np)r a : a + (O)(np6 o) modjAj 

= a + (O)(n~o)(pp o) modlA I 

2. It is clear that the above propositions can also be stated if we 

choose a realization (rs,O s) with nor s = s as a starting point 

instead of (ro,Po). 

3. If we define for each a ¢ A 

(noP)6a :: PPa 

(where n o is a basic entry) 

6 : N ~ A (A) 
a 

and 

then 

h a : N6 a ~ N6 o 

ha / PPa ~ PPo 

~a = ha Bo° 

In this section we showed that there is an interesting technique for 

realizing structured data such that relocations can be easily per- 

formed. This technique works for extended directed graphs with basic 

entry. In [i] we demonstrate how these techniques can be easily 

adapted to the more general case. To give you an idea how this works: 

we introduce auxiliary "imaginary" edges and nodes which only appear 
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when addresses are determined. These auxiliary elements are n o t 

part of the structured data. 
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