
FAST ACCESS SEQUENTIAL STRUCTURES 

G. Martella F.A. Schreiber 

Istituto di Elettronica - Politecnico di Milano 

P. Leonardo da Vinci, 32 - 20133 Milano - Italy 

1. INTRODUCTION 

The minimization of the product (time x storage) is a very common goal 

to be achieved in many problems in the world of data management. Unfor- 

tunately very often the requirements for minimizing one of the two fac- 

tors are in contrast with those for minimizing the other one, so that 

a compromise must be looked for according to the peculiar problem or 

application in concern° This is the case of query-oriented information 

systems in which large amounts of data have to be searched for retrie- 

ving the records answering some particular questions, expressed in terms 

of the value taken by some attributes of those records, called keys. 

If the amount of data to be examined is very large and/or the storage 

medium is a slow one, the time to give the answer can be very ~ong if 

an appropriate storage organization is not chosen. One of the most wi- 

dely used techniques to solve this problem is the file inversion with 

respect to one or more of the relevant attributes, creating secondary 

indices which put in relation the key value with the storage locations 

[1 3 
This concept can be extended to obtain Query-inverted File Organizations 

in which the addresses of all the storage blocks containing the records 

answering a particular request are put in relation with the request it- 

self (fig. I). All the records are stored in contiguous storage loca- 

tions in order to reduce the access time to answer the query E2 3 • 

1 / 

Fig. 

This organization~ however, requires a lot of storage since records an- 

swering more than one query are to be stored in a redundant way. 

In EI,3 -I the consecutive retrieval property (CR) has been defined for 



179 

a query set as the peculiarity of keeping the storage consecutiveness 

of all records answering a query, while avoiding the duplication of 

any of them. Such an organization clearly minimizes both storage space 

and retrieval time, but it is not applicable to whatever set of que- 

ries on whatever set of records. So it becomes of interest the conside- 

ration of consecutive retrieval with redundancy (CRWR) while trying to 

keep the redundancy as low as possible. 

In [3 ] it has been investigated the possibility of organizing a file 

on a CR basis only by examining the set of queries and their structure, 

extending then this organization to dynamic files. 

In this paper we shall present a solution to the CRWR problem in dyna- 

mic files with fast access properties to be used in real-t~me systems 

and we shall give some comparison data with other data organizations. 

2. - THE QUERY GRAPH 

In this section we introduce some definitions about the notion of co- 

vering of two queris and a graph representation of the query set; a 

formal treatment of this subject can be found in E3 ] , from which 

paper we report some conclusions. 

Given a set {Q} ~(q1' .... q2 ) of queries, a set {A} ~ (a I ..... a N ) of 

attributes, a set {V} ~ (Vat1, ...., Val k, ..., VAN1, ..., vaN P) of va- 

lues which can be given to each attribute, a query ql is identified 

as a string of one value from {V} for each one of the attributes of 

the set {A} which uniquely specifies a set of records in a file (cha- 

racteristic values). A value Vaj i of an attribute aj may make another 

attribute a k meaningless; an indifference condition X is entered 

as value of an attribute a. whenever the value of a. is not essen- 
l l 

tial in answering a particular query ql (notice that no more than n-1 

indifference conditions can be specified in a query). 

The set {Q} of all allowable queries can then be built knowing the 

set of values of each attribute and their characteristics. We should 

give each attribute all its possible values, the indifference condition 

included; owing to the aforesaid uncompatibility among the values of 

some different attributes, the corresponding "theoric" queries must be 

deleted, thereby reducing the dimensions of the set {Q}. 

Let us consider now a query ql with only m attributes having some 

specified value, being the other n-m indifference conditions. Be {R} 

the set of records constituting the whole file; be p (ql) ~ {R} the 

set of records answering ql; the set p(ql ) then is constituted by all 

the records identified by the assigned values for the key attributes 



180 

and by any possible configuration of values for the remaining attri- 

butes. 

It is possible now to build a Covering Table C as a matrix the colunms 

of which correspond each to an attribute aj and the rows to a query 

qi " Entries cij represent the value taken by the attribute aj in 

the query qi o 

Def.: A query qi is said to oover a query qk (simbolically qi>qk ) if 

and only if, for each attribute a. lij<_n, 
3 

either: 

or 

cij = Ckj 

C ~ M  
13 

Obviously, whenever two distinct queries qi ~ qk are expressed with 

the same number of indifference conditions, no covering possibility 

exists between them° 

It is possible to demonstrate that the covering operation is transi- 

tive E 3~. If a subset {ql } of {Q} exists such that ql1>ql2 > ...>ql s 

it is called a coVery chain. 

A covering graph can be built from a covering table under the following rules : 

I. - to each query qie{Q}a node corresponds in the graph; 

2. - whenever qi>qk and there is no qj such that qi>qj>qk , there 

is an oriented edge from qi to qk" 

In E 33 it has been proved that whenever the covering graph, we call 

hereafter the "query-graph"s is a treee, a CR organization is possible; 

moreover, whenever {Q} can be subdivied in subsets such that the "root- 

-queries" of the various subsets are all disjoint and all the covering 

graphs for the subsets are trees, a CR organization is still possible. 

Let now C be a general covering table. The associated covering graph 

will have some source nodes corresponding to queries not covered by any 

other query (at least one of such nodes always exists) and some sink 

nodes corresponding to the lowest level queries. However it is possible 

to consider only covering graphs with a single source node without li- 

miting the generality of the related considerations. It is in fact pos- 

sible to add to the query set a "dummy" query covering all the others, 

this query being described by the intersection set of the characteris- 

tic values of attributes for all the source nodes. Would this set be 

empty, the dummy query could be represented as: "read the whole file". 



181 

We consider now in a general covering table two queries qi such 

that: 

qi / qj and qj / qi 

P (qi)~ P (qj) ~ 

The two following conditions must then be met 

a) if attribute a k has non indifferent values both for qi and qj it 

b) 

must be 

cij = Cjk (~ x) 

for at least two attributes 

= x ~ c=ij Cil 

al, a m it must be 

and Cjm = x ~ Cim 

and qj 

These conditions are expressed in the covering graph by the existence 

of a node, corresponding to the query consisting of all the specified 

values of qi and qj , with two incident edges; the covering graph 

then is no more a tree. 

Even if there are some instances of non-tree query-graphs still allo- 

wing a non-redundant CR organization, these graphs correspond to the 

existence of two one-dimension CR organization with conjunctive ends 

(see theorem 4 in E I~ and Fig. 2), this property is not generally 

true for any general query-graph. 

ql 
I, ,P ( q l )  ..... I 

! P(q~) I 

qz q3 I P(%) I 

I p(%) I 

q,+ 

Fig+ Z 

The problem then is to look for a CRWR organization which assures a 

fast access-time by multiplexing the records answering some subsets of 

queries. 



182 

3. - REDUNDANT CR ORGANIZATIONS 

We have already noticed that the query graph is always a cycle-free o- 

riented graph (acyclic digraph) in which all paths leave from a single 

"source" node to reach one or more "sink" nodes. For acyclic digraphs 

the possibility exists of ordering the nodes in several different levels 

on the base of their distance from the source node; for query-graphs, 

for which the condition 2 of section 2 holds, this fact corresponds to 

assigning to each level all the queries having the same number of indif- 

ference conditions in a decreasing order. Therefore the source will re- 

present the query with the maximum number of indifference conditions, 

while the sinks will represent queries with no indifference condition. 

In the following we propose two different approaches to the definition 

of a redundant CR organization by transforming general query-graphs in 

query-trees. 

The first approach can be called the "natural splitting" since the que- 

ry-tree is obtained by splitting and multiplexing all the nodes having 

more than one incoming edge as in the following algorithm. 

A I - The root of the query-tree is made to coincide with the source 

node of the query-graph; 

A 2 - At the next level, nodes having more than one incoming edge are 

multiplexed, together with all their outgoing edges to the lower 

level, as many times as the number of the input edges; 

A 3 - On the graph, modified as in step A2, step A 2 is repeated until 

the sink nodes are reached. 

Fig. 3 shows a graphical representation of the algorithm while in Fig. 

4 a complete example is carried out. 

For such an approach it is interesting to evaluate how many copies of 

each node are produced, since this value gives a first measure of the 

amount of redundancy which has been introduced. 

We can notice that the nddes belonging to levels I (the root) and 2 

are never multiplexed. At level 3, each node is multiplexed as many 

times as the number of its "fathers". At subsequent levels, each node 

is multiplexed as many times as the number of its fathers having a 

single "grandfather" plus the number of grandfathers of the fathers ha- 

ving more than one grandfather and so on. 

To formalize this "tongue twister" calculation let us call: 

Ps(ti) - the number of fathers of node t i having a single grand- 

father 

Pm(ti) - the number of fathers of node t i having multiple grand- 



183 

fathers 

1 - the level the node t. belongs to 
l 

pk(ti) - the father(s) on the k-th generation starting from (ti) 

~(t i) - the number of copies of node (t i) 

then 
1-I 

(ti) = ~ Ps (P~ (ti)) 
k o 

with the obvious conventions that: P°(ti)m-- = t i , 

P~(t i) = 0 if no father with multiple grandfathers exists, 

Ps(ti) = 0 if no father with single grandfather exists (i.e° the root), 

Ps (0) = O. 

I ! 

D 

Fig. 3 

A more exact definition for the redundancy of a data organization in 

query-oriented systems has been proposed by Ghosh [ 13 . Let us indicate 

by I p(qi) I the number of different records answering a query qi" by m 

the number of distinct records in the file, and by m I the number of 

records in a particular file organization. The redundancy is defined 



184 

to be 

N 

where m = I U P (qi) I 
i=I 

m I -m 
R - 

m 

In our case the value of m I 

ry-tree in the following way: 

can be recursively evaluated on the que- 

rot= IP(tl) I , iP(ti)l = iP(ti)~(UP (~t.)I + [IP(~t )I i=I ..... N 
1 1 

where ~t i denotes the sons of node t i and N is the number of nodes 

in the query-tree. 

In Fig. 4 a possible organization of the records on the storage medium 

is shown. To retrieve the records an index must be built giving the 

set of queries answered by each node of the tree, the nodes represen- 

ting the initial address of a subfile, and the number of blocks occu- 

pied on the storage, in answering a particular query~ a search must be 

made in the index for the node t. at which the query is at the highest 
l 

level, so that only the needed records are retrieved with a single ac- 

cess. But we can save a very large amount of time mainly in replying 

to a set of queries all belonging to the same subtree. In fact, choo- 

sing the node in the tree answering to the highest level query, we can 

retrieve the records also answering all the other queries with a single 

access. 

The index for this kind of organization can become a rather large table 

depending on the nature of the query set so that the research in it can 

become lenghty and cumbersome. So let us examine a second approach, 

based on the notion ol spanning tree, for transforming the general que- 

ry-graph in a set of trees {T}~(tl, ..., tq). 

B I - Take a spanning tree for the query-graph. This tree will have a 

root tl s ql and will leave a set of co-trees for the remaining 

part of the query-graph. 

The choose of the spanning tree must be made in such a way as to mini- 

mize the number of disjoint rooted co-trees. 

This condition corresponds to minimize the repetition of the already 

considered paths as imposed by step B 3. To build the other trees, the 

following steps are needed: 

B 2 - leaving from the root of the next cotree follow the path on the co- 

tree until the last node of the cotree itself is reached. 



185 

B 3 - if the node reached in step B 2 is a leaf, repeat step B 2. If it 

is not a leaf, move further on the spanning tree either until the 

leaves are reached or until the root of a new cotree is reached, 

then repeat step B 2. 

Query Attribute vatues 
. , , , .  , 

ql c~ I x x x x x 
q z 0.~x ~I x x x 
q3 (~I"yTx x x x 
q4 ~I x ~I 83x x 

q s ~ Y I ~ I  x x x 
qB °-1 YI x x ~I x 
q7 °'I YI ~I a3 ~I x 
qB ¢~y~ ~ I x  % ~1 
qg 0-1 YI 131 a3 el ~z 
qm 0-1 Y~ 131 a3 ~1 cl 

ql 

q ~ ~ , ~  h¢~" ~'%s ~q~6 q ~ ~q 1o q 

the query- graph 

tt3 t~ tls hB t~7 t~a t19 ~zo tzl 

the derived 
query-tree 

I i ,, 

I .... P (qz) 

,, P(%! P(%) 

: P(qT) ,, P(qT) I 

P%) Pcq,o  
the 

P(qO 
' I 

,, P(qi) 
: : I 

J P(qs) i P(%) ,,,, I 

i,P(qT)i ,~P(qT)! P(%) t 

PICqg)l , PI(%!I I 

P(qm) P(%o) P(%) 
physicat organization 

Fig. 



186 

An example of such a procedure is shown in fig. 5 for the same query- 

graph of fig. 4. 

t~ _= c 11 

~ t z ~ q 3  

q7 

qlo q~o 

Fig, 5 

For each one of the defined trees a CR organization is built on the 

storage medium. The redundancy is clearly increased because we must 

cons ider now n 

ml = ~ • ml i ' 
I l 

where m Ii is the lenght of the subfile corresponding to the i-th tree. 

However we have a remarkable gain in the search lengh on the index 

table as we shall see later on. 

4. - BUILDING THE FILE STRUCTURE 

Given a covering graph built from a covering table as we saw in section 

2 and the set {T} ~ ~I' ..., tj, ..., t 2} of the trees obtained by al- 

gorithm B in section 3, for every tree t i we can consider a characte- 

ristic string S i constituted by the union of all the characteristic 

values of the L i queries belonging to t i, i.e.: 

= U {Val ..... Yak j } 
Si j=1 ,L i j 



187 

As seen in section 3 for every t i it is possible to have a CR organi- 

zation constituting a subfile stored at address I.. 
1 

An index can be built in which the associations S i, Li, I i are listed 

for all the t i (Fig. 6). 

INDEX 

S1 , LI 11 

S~ , Li I i  

Sz , t ,  Iz 

SU~FILES 
I,~11 t/'! 

I 

I~ i.--I,-" It'l 
q / / I 

Fig. 6 

The first block of the subfile, at address Ii, contains only the poin- 

ters to the beginning of the p(qk ) (k=1, ..., Li), while data are 

stored beginning from the second block. 

5. - FILE MANIPULATION 

Let us now examine how some operations can be performed on the proposed 

structure. 

5.1. - SEARCHING 

Let qke{Q} be a query with characteristic string 

SqkS{Val K, . - - ,  vaN k} 

If there is an S. such that 
1 

Sq~ S i ~ 

the query can be answered. 

i=I, ..., z 



188 

Moreover, if 

n s~s ~® 
Sqk Si> qk J 

j=1 ..... z i~j 

the set p(qk ) belongs to the subfile stored at address Ii, associated 

in the index to the string S.. 
l 

If 

S i ~Sqk~ Sj ~ # j=1 ..... z i~j Sqk 
the set p(qk ) belongs to more than one subfile~ In this case the ac- 

cess will be made in the subfile for which L. is the smallest. 
l 

It must be noticed that the access is directly made to the address I i 

then the retrieval is sequential in the corresponding subfile. 

This method can be immediately extended to a set of queries {QX}. In 

this case a characteristic string must be considered built as the u ~ 

nion of the characteristic strings of each query of the set {QX}. 

5.2. -. UPDATING 

An updating operation can consist in: 

a - insertion of new records 

b - deletion of existing records 

c - modification of some values in existing records. 

These operations can be performed in the proposed organization in the 

following way: 

a - Insertion 

Let p~ be the record to be inserted, described by the characteristic 

string 

S x = {ValPx' "'"' VaNpX}' 
P 

The following cases can be considered: 

a.1. - S X~ S i = ~ i=I, ..., z 
P 

In this case the complete reorganization of the file structure 

seen in section 4 is necessary. Actually such a case is seldom 

encountered in very large files. 



189 

a.2. - s si:} 
p I !i <_k.zj ! z 

S M~Sj = 

P 

In this case pX must be inserted in all the k subfiles for 

which the intersection is not empty. It must be noticed that 

anyway the index is not affected by the operation. 

b - deletion 

A search operation must be triggered as in a.2, then the record is de- 

leted from the k subfiles in which it was stored. 

c - modification 

Let S = {valJ, P3 ..o, vaNJ} be the characteristic string of the record 

pj to be modified. 

In all the instances for which 

Spj~ S i ~ ~ i=I, .... z 

the modified value is substituted to the old one. 

Let now S M be the modified characteristic string. A search in the 

index mustP~e- made until 

S x ~ S ~ ~ i~I, z 
Pj J .... 

and an insertion operation of all the modified records must be perfor- 

med while deleting the old instances. 

6. - PERFORMANCE EVALUATION 

The proposed data organization is suitable for applications having the 

following features: 

- the structure of queries is unknown a-priori 

- the response time is a critical parameter 

- each query is answered by more than one record 

- batches of queries have often to be answered at the same time 

- mass storage occupation is not critical 

- sequential processing of the stored data is to be made 

A comparison can be made with other data structures on the base of some 

figures of merit such as access time, storage occupation, file manipula- 

tion and updating operation complexity, etc. 



190 

The proposed data structure belongs to the class of secondary index or- 

ganizations E 43, however, under certain conditions, it offers better 

efficiency than other structures of the same class. 

Since, among the structures of this class, that having characteristics 

the most similar to the proposed one is the inverted list structure, we 

are going to compare their performance with respect to access time and 

manipulation complexity. 

As to the access time for the inverted list structure we have: 

Tacc = Tin d + M x T D 

Where 

T = Access time 
acc 

Tin d = time spent in sequentially retrieving, in the index file, 

all the values of the characteristic string, in extracting 

for each value the list of the addresses at which the re- 

cords having the particular value are stored, then in inter- 

secting all these lists. 

T D = Direct access time 

MxT D = Access time to the M different addresses resulting from 

the intersection of the address lists. 

For the proposed organization 

T x - T M + 2 T D + (M M- I) T 
acc- ind s 

where 

T ~ = access time 
acc 

TXind= time spent in matching Sqk against all of the S i, as al- 

ready seen in section 5.1., for extracting the address of 

the required subfile. 

T D = Direct Access time for the first block of the subfile 

T s = Sequential Access time 

(MX-1)T~Sequential Access time for the part of the subfile concer- 

ning qk ~ 

We can notice that generally M < B, if B is the number of all the 

blocks in the subfile. 

Under certain conditions T M < T . In fact: T ~ 
acc acc ind < Tind always 

M x <M if the blocking factor >I. This is a frequently verified 

condition. 



191 

T s !TD always. The equal sign applies in the condition (statisti- 

cally seldom occuring) in which next direct address in the 

following in the sequential organization. 

The complexity of updating operations of the two structures is nearly 

equal. In fact in the inverted list structure every kind of updating 

operation requires an expensive updating of the index file. In the 

proposed CR organization the index file is never affected, but upda- 

ting operations can require the expensive task of inserting records 

in a sequential file. 

7. - CONCLUDING REMARKS 

We have proposed a sequential data structure with secondary index with 

fast access properties which can be fruitfully used in applications re- 

quiring: 

- a high dynamics of the data file 

- a-priori unknown query structures 

- multiple access keys 

- sequential data processing 

- low response time 

- batches of queries to be simultaneously processed, 

Under these requirements the performances of the proposed structure is 

better with respect to other structures of the same class. A comparison 

example has been given with inverted list structure. 

It must be noticed that the method for the analysis and the implementa- 

tion of the data bank structure can be completely automatized. This 

makes possible the use of the computer not only in the data management 

phase but also in the design and implementation of the data bank itself. 

REFERENCES 

I. - GOSH S.P. "Consecutive Storage of Relevant Records with Redundan- 

cy", Communications ACM - August 1975 pp. 464-471 

2. - WAKSMAN, A., and GREEN, M,W,: 

"On the consecutive retrieval property on file organi- 

zation" - I E E E Trans, on Computers - C-23 1974, 

pp. 173-174 



192 

3. - MARTELLA G.t and M.G. SAMI: 

~'On the problem of Query-Oriented File Organization" 

XXII Rassegna Internationale Elettronica Nucleare Aero- 

spaziale - Roma March 1975 

4. - BRACCHIt G.~ MARTELLA, G.: 

"Sis~emi Generalizzati per la Gestione de!le Informazio- 

ni: Le tecniche di organizzazione dei dati". Rivista 

di Informatica, Vol, II, n, 3, 1971, pp. 1-48. 


