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Abstract 

Correct programs cannot be obtained by attempts to test or to prove in- 

correct programs: the correctness of a program should be assured by the 

design procedure used to build it. 

A suggestion for such a design procedure is presented and discussed. 

The procedure has been developed for use in data processing, and can be 

effectively taught to most practising programmers. It is based on cor- 

respondence between data and program structures, leading to a decompos- 

ition of the program into distinct processes. The model of a process 

is very simple~ permitting use of simple techniques of communication, 

activation and suspension. Some wider implications and future possi- 

bilities are also mentioned. 
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i. Introduction 

In this paper I would like to present and discuss what I believe to be 

a more constructive method of program design. The phrase itself is im- 

portant; I am sure that no-one here will object if I use a LIFO discip- 

line in briefly elucidating its intended meaning. 

'Design' is prLT.arily concerned with structure; the designer must say 

what parts there are to be and how they are to be arranged. The cruc- 

ial importance of modular programming and structured programming (even 

in their narrowest and crudest manifestations) is that they provide some 

definition of what parts are permissible: a module is a separately com- 

piled, parameterised subroutine; a structure component is a sequence, an 

iteration or a selection. With such definitions, inadequate though they 

may be, we can at least begin to think about design: what modules should 

make up that program, and how should they be arranged? should this pro- 

gram be an iteration of selections or a sequence of iterations? Without 

such definitions, design is meaningless. At the top level of a problem 

there are pN possible designs, where P is the number of distinct types 

of permissible part and N is the number of parts needed to make up the 

whole. So, to preserve our sanity, both P and N must be small: modular 

programming, using tree or hierarchical structures, offers small values 

of N; structured programming offers, additionally, small values of P. 

'Program' or, rather, 'programming' I would use in a narrow sense. Mod- 

elling the problem is 'analysis'; 'programming' is putting the model on 

a computer. Thus, for example, if we are asked to find a prime number 

in the range 1050 to 1060 , we need a number theorist for the analysis; 

if we are asked to program discounted cash flow, the analysis calls for 

a financial expert. One of the major ills in data processing stems from 

uncertainty about this distinction. In mathematical circles the distin- 

ction is often ignored altogether, to the detriment, I believe, of our 

understanding of programming. Programming is about computer programs, 

not about number theory, or financial planning, or production control. 

'Method' is defined in the Shorter OED as a 'procedure for attaining an 

object'. The crucial word here is 'procedure'. The ultimate method, 

and the ultimate is doubtless unattainable, is a procedure embodying a 

precise and correct algorithm. To follow the method we need only exec- 

ute the algorithm faithfully, and we will be led infallibly to the de- 

sired result. To the extent that a putative method falls short of this 

ideal it is less of a method. 

To be 'constructive', a method must itself be decomposed into distinct 
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steps, and correct execution of each step must assure correct execution 

of the whole method and thus the correctness of its product. The key 

requirement here is that the correctness of the execution of ~a step 

should be largely verifiable without reference to steps not yet executed 

by the designer. This is the central difficulty in stepwise refinement: 

we can judge the correctness of a refinement step only by reference to 

what is yet to come, and hence only by exercising a degree of foresight 

to which few people can lay claim. 

Finally, we must recognise that design methods today are intended for 

use by human beings: in spite of what was said above about constructive 

methods, we need, now and for some time to come, a substantial ingred- 

ient of intuition and subjectivity. So what is presented below do~s not 

claim to be fully constructive - merely to be 'more constructive'. The 

reader must supply the other half of the comparison for himself, measur- 

ing the claim against the yardstick of his own favoured methods. 

2. Basis of the Method 

The basis of the method is described, in some detail, in (1). It is ap- 

propriate here only to illustrate it by a family of simple example pro- 

blems. 

Example 1 

A cardfile of punched cards is sorted into ascending sequence of values 

of a key which appears in each card. Within this sequence, the first 

card for each group of cards with a common key value is a header card, 

while the others are detail cards. Each detail card carries an integer 

amount. It is required to produce a report showing the totals of amount 

for all keys. 

Solution 1 

The first step in applying the method is to describe the structure of 

the data. We use a graphic notation to represent the structures as 

trees:- 
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t I,, 1 
I G~°UP* 1 I T~TLE IIREPORTBODYI] 

I o~TAIL* J 

The above representations are equivalent to the following (in BNF with 

iteration instead of recursion) : 

<cardfile> ::= {<group> "~°0 Io 
<group> : := <header><groupbody> 

<groupbody> ::= {<detail>}~ 

<report> : := <title><reportbody> 

<reportbody> ::= [<totalline>}~ 

The second step is to compose these data structures into a program 

structure : - 

I CONSUME CARDFILE ( 
PRODUCE REPORT 

P~ODUCE I IPRODUCE RE- I 
~,E I POR~ BODY 

I 
ICONSU ME GROUP * 
RODUCE TOTALLINE I 

TOTALLINE I 
I CONSUME 
GROUP BODY 

i [ - CONSUME 
DETAIL 

This structure has the following properties: 

- It is related quite formally to each of the data structures. 

We may recover any one data structure from the program, struc- 

ture by first marking the leaves corresponding to leaves of 

the data structure, and then marking all nodes lying in a path 

from a marked node to the root. 
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- The correspondences (cardfile : report) and (group : totalline) 

are determined by the problem statement. One report is deriv- 

able from one cardfile; one totalline is derivable from one 

group, and the totallines are in the same order as the groups. 

- The structure is vacuous, in the sense that it contains no ex- 

ecutable statements: it is a program which does nothing; it is 

a tree without real leaves. 

The third step in applying the method is to list the executable operat- 

ions required and to allocate each to its right place in the program 

structure. The operations are elementary executable statements of the 

programming language, possibly after enhancement of the language by a 

bout of bottom-up design; they are enumerated, essentially, by working 

back from. output to input along the obvious data-flow paths. Assuming a 

reasonably conventional machine and a line printer (rather than a char- 

acter printer), we may obtain the list: 

i. write title 

2. write totalline (groupkey, total) 

3. total := total + detail.amount 

4. total := 0 

5. groupkey I= header.key 

6. open cardfile 

7. read cardfile 

8. close cardfile 

Note that every operation, or almost every operation, must have operands 

which are data objects. Allocation to a program structure is therefore 

a trivial task if the program structure is correctly based on the data 

structures. This triviality is a vital criterion of the success of the 

first two steps. The resulting program, in an obvious notation; is: 

CARDFILE-REPORT se_~auence 

open cardfile; read cardfile; write title; 

REPORT-BODY iteration until cardfile.eof 

total := O; groupkey := header.key; 

read cardfile; 

GROUP-BODY iteration until cardfile.eof or 

detail.key ~ groupkey 

total := total + detail.amount; 

read cardfile; 

GROUP-BODY end 

write totalline (groupkey, total); 
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REPORT-BODY end 

close cardfile; 

CARDFILE-REPORT end 

Clearly~ this program may be transcribed without difficulty into any pro- 

cedural programming language. 

Comment 

The solution has proceeded in three steps: first, we defined the data 

structures; second, we formed them into a program structure; third, we 

listed and allocated the executable operations. At each step we have 

criteria for the correctness of the step itself and an implicit check on 

the correctness of the steps already taken. For example, if at the first 

step we had wrongly described the structure of cardfile as 

CARDFILE I 

i 

1 CARD* 1 

I HEADER° 1 1 DETAIL° i 
(that is: <cardfile> ::= {<card>}~ 

<card> ::= <header>~<detail> ), we should have been able to 

see at the first step that we had failed to represent everything we knew 

about the cardfile. If nonetheless we had persisted in error, we would 

have discovered it at the second step, when we would have been unable to 

form a program structure in the absence of a cardfile component corres- 

ponding to totalline in report. 

The design has throughout concentrated on what we may think of as a stat- 

ic rather than a dynamic view of the problem: on maps , not on itinerar- 

ies, on structures, not on logic flow. The logic flow of the finished 

program is a by-product of the data structures and the correct allocat- 

ion of the 'read' operation. There is an obvious connection between what 

we have done and the design of a very simple syntax analysis phase in a 

compiler: the grammar of the input file determines the structure of the 

program which parses it. We may observe that the 'true' grammar of the 

cardfile is not context-free: within one group, the header and detail 

cards must all carry the same key value, it is because the explicit 

grammar cannot show this that we are forced to introduce the variable 

groupkey to deal with this stipulation. 

Note that there is no error-checking. If we wish to check for errors in 

the input we must elaborate the structure of the input file to accommod- 



242 

ate those errors explicitly. By defining a structure for an input file 

we define the domain of the program: if we wish to extend the domain, we 

must extend the input file structure accordingly. In a practical data 

processing system, we would always define the structure of primary input 

(such as decks of cards, keyboard messages, etc) to encompass all phys- 

ically possible files: it would be absurd to construct a program whose 

operation is unspecified (and therefore, in principle, unpredictable) in 

the event of a card deck being dropped or a wrong key depressed. 

E__xample 2 

The cardfile of example 1 is modified so that each card contains a card- 

type indicator with possible values 'header', 'detail' and other. The 

program should take account of possible errors in the composition of a 

group: there may be no header card and/or there may be cards other than 

detail cards in the group body. Groups containing errors should be list- 

ed on an errorlist, but not totalled. 

Solution 2 

The structure of the report remains unchanged. The structure of the er- 

rorlist and of the new version of the cardfile are: 

ERRORLIST i 

~ARDIMAGE *I 

CARDF ILE 

I 

.... I ERRORGROUP° 

....... I [ 0ARD* ] 
I 

The structure of cardfile demands attention. Firstly, it is ambiguous: 

anything which is a goodgroup is also. an errorgroup. We are forced into 

this ambiguity because it would be intolerably difficult - and quite un- 

necessary - to spell out all of the ways in which a group may be in er- 

ror. The ambiguity is simply resolved by the conventions we use: the 

parts of a selection are considered to be ordered, and the first applic- 

able part encountered in a left-to-right scan is chosen. So a group can 

be parsed as an errorgroup only if it has already been rejected as a 

goodgroup. Secondly, a goodgroup cannot be recognised by a left-to-right 

parse of the input file with any predetermined degree of lookahead. If 

we choose to read ahead R records, we may yet encounter a group contain- 
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ing an error only in the R+!'th card. 

Recognition problems of this kind occur in many guises. Their essence 

is that we are forced to a choice during program execution at a time when 

we lack the evidence on which the choice must be based. Note that the 

difficulty is not structural but is confined to achieving a workable flow 

of control. We will call such problems 'backtracking' problemsr and tac- 

kle them in three stages:- 

a Ignore the recognition difficulty, imagining that a friendly 

demon will tell us infallibly which choice to make. In the pre- 

sent problem, he will tell us whether a group is a goodgroup or 

an errorgroup. Complete the design procedure in this blissful 

state of confidence, producing the full program text. 

b Replace our belief in the demon's infallibility by a sceptical 

determination to verify each 'landmark' in the data which might 

prove him wrong. Whenever he is proved wrong we will execute a 

'quit' statement which branches to the second part of the sel- 

ection. These 'quit' statements are introduced into the program 

text created in stage a. 

c Modify the program text resulting from stage b to ensure that 

side-effects are repealed where necessary. 

Theoresult of stage a, in accordance with the design procedure used for 

example i, is: 

CFILE-REPT-ERR sequence 

open cardfile; read cardfile; write title; 

REPORT-BODY iteration until cardfile.eof 

groupkey := card.key; 

GROUP,QUTG select goodgroup 

total := O; 

read cardfile; 

GOOD-GROUP iteration until cardfile.eof or 

detail.key ~ groupkey 

total := total + detail.~nount; 

read cardfi!e; 

GOOD-GROUP end 

write totaliine (groupkey, total); 

GROUP-OUTG or errorgroup 

ERROR-GROUP iteration until cardfile.eof or 

card.key ~ groupkey 

write errorline (card); 
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read cardfile; 

ERROR-GROUP end 

GROUP-OUTG end 

REPORT-BODY end 

close cardfile; 

CFILE-REPT-ERR end 

Note that we cannot completely transcribe this program into any program- 

ming language, because we cannot code an evaluable expression for the 

predicate goodgroup. However~ we can readily verify the correctness of 

the program (assuming the infallibility of the demon). Indeed, if we 

are prepared to exert ourselves to punch an identifying character into 

the header card of each goodgroup - thus acting as our own demon - we 

can code and run the program as an informal demonstration of its accept- 

ability. 

We are now ready to proceed to stage b, in which we insert 'quit ~ state- 

ments into the first part of the selection GROUP-OUTG. Also, since quit 

statements are not present in a normal selectionr we will replace the 

words 'select' and 'or' by 'posit' and 'admit' respectively, thus indic- 

ating the tentative nature of the initial choice. Clearly, the land- 

marks to be checked are the card-type indicators in the header and det- 

ail cards. We thus obtain the following program: 

CFILE-REPT-ERR sequence 

open cardfile; read cardfile; write title; 

REPORT-BODY iteration until cardfile.eof 

groupkey := card.key; 

GROUP-OUTG posit goodgroup 

total := O; 

~uit GROUP-OUTG if card.type # header; 

read cardfile; 

GOOD-GROUP iteration until cardfile.eof or 

card.key ~ groupkey 

quit GROUP-OUTG if card.type ~ detail; 

total := total + detail.amount; 

read cardfile; 

GOOD-GROUP end 

write totalline (groupkey, total); 

GROUP-OUTG admit errorgroup 

ERROR-GROUP iteration until cardfile.eof or 

card.key ~ groupkey; 

write errorline (card); 



245 

read cardfile; 

ERROR-GROUP end 

GROUP-OUTG end 

REPORT-BODY end 

close cardfile; 

CFILE-REPT-ERR end 

The third stage, stage c, deals with the side-effects of partial exec- 

ution of the first part of the selection. In this trivial example, the 

only significant side-effect is the reading of cardfile. In general, it 

will be found that the only troublesome side-effects are the reading and 

writing of serial files; the best and easiest way to handle them is to 

equip ourselves with input and output procedures capable of 'noting' and 

'restoring' the state of the file and its associated buffers. Given the 

availability of such procedures, stage c can be completed by inserting a 

'note' statement immediately following the 'posit' statement and a 're- 

store' statement immediately following the 'admit'. Sometimes side-ef- 

fects will demand a more ad hoc treatment: when 'note' and 'restore' are 

unavailable there is no alternative to such cumbersome expedients as 

explicitly storing each record on disk or in main storage. 

Comment 

By breaking our treatment of the backtracking difficulty into three dis- 

tinct stages, we are able to isolate distinct aspects of the problem. 

In stage a we ignore the backtracking difficulty entirely, and concen- 

trate our efforts on obtaining a correct solution to the reduced problem. 

This solution is carried through the three main design steps, producing 

a completely specific program text: we are able to satisfy ourselves of 

the correctness of that text before going on to modify it in the second 

and third stages. In the second stage we deal only with the recognition 

difficulty: the difficulty is one of logic flow, and we handle it, ap- 

propriately, by modifying the logic flow of the program with quit state- 

ments. Each quit statement says, in effect, 'It is supposed (posited) 

that this is a goodgroup; but if, in fact, this card is not what it ought 

to be then this is not, after all, a goodgroup'. The required quit 

statements can be easily seen from the data structure definition, and 

their place is readily found in the program text because the program 

structure perfectly matches the data structure. The side-effects arise 

to be dealt with in stage 3 because of the quit statements inserted in 

stage b: the quit statements are truly 'go to' statements, producing 

discontinuities in the context of the computation and hence side-effects. 

The side-effects are readily identified from the program text resulting 
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from stage b. 

Note that it would be quite wrong to distort the data structures and the 

program structure in an attempt to avoid the dreaded four-letter word 

'goto' The data structures shown, and hence the program structuref are 

self-evidently the correct structures for the problem as stated: they 

must not be abandoned because of difficulties with the logic flow. 

3. Simple Programs_and Complex Programs 

The design method, as described abovet is severely constrained: it ap- 

plies to a narrow class of serial file-processing programs. We may go 

furtherr and say that it defines such a class - the class of 'simple pro- 

grams'. A 'simple program' has the following attributes:- 

- The program has a fixed initial state; nothing is remembered 

from one execution to the next. 

- Program inputs and outputs are serial files, which we may con- 

veniently suppose to be held on magnetic tapes. There may be 

more than one input and more than one output file. 

- Associated with the program is an explicit definition of the 

structure of each input and output file. These structures are 

tree structures, defined in the grammar used above. This gram- 

mar permits recursion in addition to the features shown above; 

it is not very different from a grammar of regular expressions. 

- The input data structures define the domain of the program, the 

output data structures its range. Nothing is introduced into 

the program text which is not associated with the defined data 

structures. 

- The data structures are compatible, in the sense that they can 

be combined into a program structure in the manner shown above. 

- The program structure thus derived from the data structures is 

sufficient for a workable program. Elementary operations of 

the program language (possibly supplemented by more powerful 

or suitable operations resulting from bottom-up design) are al- 

located to components of the program structure without intro- 

ducing any further 'program logic' 

A simple program may be designed and constructed with the minimum of dif- 

ficulty, provided that we adhere rigorously to the design principles ad- 

umbrated here and eschew any temptation to pursue efficiency at the cost 

of distorting the structure. In fact, we should usually discount the 
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benefits of efficiency, reminding ourselves of the mass of error-ridden 

programs which attest to its dangers. 

Evidently, not all programs are simple programs. Sometimes we are pre- 

sented with the task of constructing a program which operates on direct- 

access rather than on serial files, or which processes a single record 

at each execution, starting from a varying internal state. As we shall 

see later, a simple program may be clothed in various disguises which 

give it a misleading appearance without affecting its underlying nature. 

More significantly, we may find that the design procedure suggested can- 

not be applied to the problem given because the data structures are not 

compatible: that is, we are unable at the second step of the design pro- 

cedure to form the program structure from the data structures. 

Example 3 

The input cardfile of example 1 is presented to the program in the form 

of a blocked file. Each block of this file contains a card count and a 

number of card images. 

Solution 3 

The structure of blockedfile is: 

B~OC~EDFI~E I 
I 

I BLOCK* I ..... 

I J J I 
I CARDI~GE! I 

This structure does not, of course, show the arrangement of the cards in 

groups. It is impossible to show, in a single structurel both the arran- 

gement in groups and the arrangement in blocks. But the structure of the 

report is still: 

I 

i REPORT I 

I 

We cannot fit together the structures of report and blockedfile to form 
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a program structure; nor would we be in better case if we were to ignore 

the arrangement in blocks. The essence of our difficulty is this: the 

program must contain operations to be executed once per block, and these 

must be allocated to a 'process block' component; it must also contain 

operations to be executed once per group, and these must be allocated to 

a 'process group' component; but it is impossible to form a single pro- 

gram structure containing both a 'process block' and a 'process group' 

component. We will call this difficulty a 'structure clash'. 

The solution to the structure clash in the present example is obvious: 

more so because of the order in which the examples have been taken and 

because everyone knows about blocking and deblocking. But the solution 

can be derived more formally from the data structures. The clash is of 

a type we will call 'boundary clash': the boundaries of the blocks are 

not synchronised with the boundaries of the groups. The standard solut- 

ion for a structure clash is to abandon the attempt to form a single 

program structure and instead decompose the problem into two or more 

simple programs. For a boundary clash the required decomposition is al- 

ways of the form: 

The intermediate file, file X~ must be composed of records each of which 

is a cardimage, because cardimage is the highest co~on factor of the 

structures blockedfile and cardfile. The program PB is the program pro- 

duced as a solution to example i; the program PA is: 

PA sequen~ 

open blockedfi!e; open fileX; read blockedfile; 

PABODY iteration until blockedfile.eof 

cardpointer := i; 

PBLOCK iteration until cardpointer > block.cardcount 

write cardimage (cardpointer); 

cardpointer := cardpointer + i; 

PBLOCK end 

read blockedfile; 

PABODY end 

close fil~; close blockedfile; 

PA end 

The program PB sees file X as having the structure of cardfile in example 
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i, while program PA sees its structure as: 

I FILEX I 

l 

Comment 

The decomposition into two simple programs achieves a perfect solution. 

Only the program PA is cognisant of the arrangement of cardimages in 

blocks; only the program PB of their arrangement in groups. The tape 

containing file X acts as a cordon sanitaire between the two; ensuring 

that no undesired interactions can occur: we need not concern ourselves 

at all with such questions as 'what if the header record of a group is 

the first cardimage in a block with only one cardimage?', or 'what if a 

group has no detail records and its header is the last cardimage in a 

block?'2 in this respect our design is known to be correct. 

There is an obvious inefficiency in our solution. By introducing the in- 

termediate magnetic tape file we have, to a first approximation, doubled 

the elapsed time for program execution and increased the program's demand 

for backing store devices. 

Example 4 

The input cardfile of example 1 is incompletely sorted. The cards are 

partially ordered so that the header card of each group precedes any de- 

tail cards of that group, but no other ordering is imposed. The report 

has no title, and the totals may be produced in any order. 

Solution 4 

The best we can do for the structure of cardfile is: 

I CARDFILE 1 

l 
I CARD* 1 

I H DER°  D TAI ° ! 

which is clearly incompatihle with the structure of the report, since 

there is no component of cardfile corresponding to totalline in the re- 

port. Once again we have a structure clash, but this time of a differ- 

ent type. The cardfile consists of a number of groupfiles, each one of 
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which has the form: 

] 

The cardfile is an arbitrary interleaving of these groupfiles. To re- 

solve the clash (an 'interleaving clash') we must resolve cardfile into 

its constituent groupfiles: 

Allowing, for purposes of exposition, that a single report may be pro- 

duced by the n programs PGI, ... PGn (each contributing one totalline), 

we have decomposed the problem into n+l simple programs; of these, n are 

identical programs processing the n distinct groupfiles groupfilel, ... 

groupfilen; while the other, PC, resolves cardfile into its constituents. 

Two possible versions of PC are: 

PC1 s__equence 

open cardfile; read cardfile; 

open all possible groupfiles; 

PCIBODY iteration until cardfile.eof 

write record to groupfile (record.key); 

read cardfile; 

PCIBODY end 

close all possible groupfiles; 

close cardfile; 

end PCl 

and 

PC2 sequence 

open cardfile; read cardfile; 
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PC2BODY iteration until cardfile.eof 

REC-INIT select new groupfile 

open groupfile (record.key); 

REC-INIT end 

write record to groupfile (record.key); 

read cardfile; 

PC2BOD¥ end 

close all opened groupfiles; 

close cardfile; 

PC2 end 

Both PC1 and PC2 present difficulties. In PC1 we must provide a group- 

file for every possible key value, whether or not cardfile contains rec- 

ords for that key. Also, the programs PGI, ... PGn must be elaborated 

to handle the null groupfile: 

I GROUPFILE I 

i I 1 

I 

In PC2 we must provide a means of determining whether a groupfile already 

exists for a given key value. Note that it would be quite wrong to base 

the dete~ination on the fact that a header must be the first record for 

a group: such a solution takes impermissible advantage of the structure 

of groupfile which, in principle, is unknown in the progr~ PC; we would 

then have to make a drastic change to PC if, for ex~ple, the header card 

were made optional: 

[ GROUPFILE I <-. 
I 1 

Further, in PC2 we must be able to run through all the actual key values 

in order to close all the groupfiles actually opened. This would still 
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be necessary e~en if each group had a recognisable trailer record, for 

reasons similar to those given above concerning the header records. 

Comment 

The inefficiency of our solution to example 4 far outstrips the ineffici- 

ency of our solution to example 3. Indeed, our solution to example 4 is 

entirely impractical. Practical implementation of the designs will be 

considered below in the next section. For the moment, we may observe 

that the use of magnetic tapes for communication between simple programs 

enforces a very healthy discipline. We are led to use a very simple pro- 

tocol: every serial file must be opened and closed. The physical medium 

encourages a complete decoupling of the programs: it is easy to imagine 

one program being run today, the tapes held overnight in a library, and 

a subsequent program being run tomorrow; the whole of the communication 

is visible in the defined structure of the files. Finally, we are stren- 

gthened in our resolve to think in terms of static structures, avoiding 

the notoriously error-prone activity of thinking about dynamic flow and 

execution-time events. 

Taking a more global view of the design procedure, we may say that the 

simple program is a satisfactory high level component. It is a larger 

object than a sequence, iteration or selection; it has a more precise 

definition than a module; it is subject to restrictions which reveal to 

us clearly when we are trying to make a single program out of what should 

be two or more. 

4. Programs, Procedures and Processes 

Although from the design point of view we regard magnetic tapes as the 

canonical medium of communication between simple programs, they will not 

usually provide a practical implementation. 

An obvious possibility for implementation in some environments is to re- 

place each magnetic tape by a limited number of buffers in main storage, 

with a suitable regime for ensuring that the consumer program does not 

run ahead of the producer. Each simple program can then be treated as a 

distinct task or process, using whatever facilities are provided for the 

management of multiple concurrent tasks. 

However, something more like coroutines seems more attractive (2). The 

standard procedure call mechanism offers a simple implementation of great 

flexibility and power. Consider the program PA, in our solution to exam- 

ple 3, which writes the intermediate file X. We can readily convert this 

program into a procedure PAX which has the characteristics of an input 
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procedure for file X. That is, invocations of the procedure PAX will 

satisfactorily implement the operations 'open file X for reading', 'read 

file X' and 'close file X after reading'. 

We will call this conversion of PA into PAX 'inversion of PA with respect 

to file X'. (Note that the situation in solution 3 is symmetrical: we 

could equally well decide to invert PB with respect to file X, obtaining 

an output procedure for file X.) The mechanics of inversion are a mere 

matter of generating the appropriate object coding from the text of the 

simple program: there is no need for any modification to that text. PA 

and PAX are the same program, not two different programs. Most practis- 

ing programmers seem to be unaware of this identity of PA and PAX, and 

even those who are familiar with coroutines often program as if they sup- 

posed that PA and PAX were distinct things. This is partly due to the 

baleful influence of the stack as a storage allocation device: we cannot 

jump out of an inner block of PAX, return to the invoking procedure, and 

subsequently resume where we left off when we are next invoked. So we 

must either modify our compiler or modify our coding style, adopting the 

use of labels and go to statements as a standard in place of the now 

conventional compound statement of structured programming. It is common 

to find PAX, or an analogous program, designed as a selection or case 

statement: the mistake is on all fours with that of the kindergarten 

child who has been led to believe that the question 'what is 5 multiplied 

by 3?' is quite different from the question 'what is 3 multiplied by 5?'. 

At a stroke the poor child has doubled the difficulty of learning the 

multiplication tables. 

The procedure PAX is, of course, a variable state procedure. The value 

of its state is held in a 'state vector' (or activation record), of which 

a vital part is the text pointer; the values of special significance are 

those associated with the suspension of PAX for operations on file X - 

open, write and close. The state vector is an 'own variable' par excel- 

lence, and should be clearly seen as such. 

The minimum interface needed between PB and PAX is two parameters: a rec- 

ord of file X, and an additional bit to indicate whether the record is or 

is not the eof marker. This minimum interface suffices for example 3: 

there is no need for PB to pass an operation code to PAX (open read or 

close). It is important to understand that this minimum interface will 

not suffice for the general case. It is sufficient for example 3 only 

because the operation code is implicit in the ordering of operations. 

From the point of view of PAX, the first invocation must be 'open', and 

subsequent invocations must be 'read' until PAX has returned the eof mar- 
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ker to PB, after which the final invocation must be 'close'. This feli- 

citous harmony is destroyed if, for example, PB is permitted to stop 

reading and close file X before reaching the eof marker. In such a case 

the interface must be elaborated with an operation code. Worse, the seq- 

uence of values of this operation code now constitutes a file in its own 

right: the solution becomes: 

The design of PA is, potentially, considerably more complicated. The 

benefit we will obtain from treating this complication conscientiously is 

well worth the price: by making explicit the structure of the opcode file 

we define the problem exactly and simplify its solution. Failure to re- 

cognise the existence of the opcode file, or, just as culpable, failure 

to make its structure explicit, lies at the root of the errors and ob- 

scurities for which manufacturers' input-output software is deservedly 

infamous. 

In solution 4 we created an intolerable multiplicity of files - group- 

filel, ... groupfilen. We can rid ourselves of these by inverting the 

programs PGIt ... PGn with respect to their respective groupfiles: that 

is, we convert each of the programs PGi to an output procedure PGFi, 

which can be invoked by PC to execute operations on groupfilei. But we 

still have an intolerable multiplicity of output procedures, so a fur- 

ther step is required. The procedures are identical except for their 

names and the current values of their state vectors. So we separate out 

the pure procedure part - PGF - of which we need keep only one copy, and 

the named state vectors SVPGFI, ... SVPGFn. We must now provide a mech- 

anism for storing and retrieving these state vectors and for associating 

the appropriate state vector with each invocation of PGF; many mechanisms 

are possible, from a fully-fledged direct-access file with serial read 

facilities to a simple arrangement of the state vectors in an array in 

main storage. 

5. Design and Implementation 

The model of a simple program and the decomposition of a problem into 

simple programs provides some unity of viewpoint. In particular, we may 
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be able to see what is common to programs with widely different implemen- 

tations. Some illustrations follow. 

a A conversational program is a simple program of the form: 

 CO ERSA=ON I 
PROGRAM I 

The user provides a serial input file of messages, ordered in 

time; the conversation program produces a serial file of res- 

ponses. Inversion of the program with respect to the user in- 

put file gives an output procedure 'dispose of one message in 

a conversation'. The state vector of the inverted program 

must be preserved for the duration of the conversation: IBM's 

IMS provides the SPA (Scratchpad Area) for precisely this pur- 

pose. The conversation program must, of course, be designed 

and written as a single program: ~plementation restrictions 

may dictate segmentation of the object code. 

b A 'sort-exit' allows the user of a generaiised sorting program 

to introduce his own procedure at the point where each record 

is about to be written to the final output file. An interface 

is provided which permits 'insertion' and 'deletion' of rec- 

ords as well as 'updating'. 

We should view the sort-exit procedure as a simple program: 

PROCEDURE 

To fit it in with the sorting program we must invert it with 

respect to both the sortedfile and the finaloutput. The in- 

terface must provide an implementation of the basic operat- 

ions: open sortedfile for reading; read sortedfile (distin- 

guishing the eof marker); close sortedfile after reading; open 

finaloutput for writing; write finaloutput record; close final- 

output file after writing (including writing the eof marker). 

Such concepts as 'insertion' and 'deletion' of records are 

pointless: at best, they serve the cause of efficiency~ trad- 

ucing clarity; at worst, they create difficulty and confusion 

where none need exist. 

c Our solution to example 1 can be seen as an optimisation of 

the solution to the more general ex~ple 4. By sorting the 
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cardfile we ensure that the groups do not overlap in time: the 

state vectors of the inverted programs PGFI, ... PGFn can 

therefore share a single area in main storage. The state vec- 

tor consists only of the variable total; the variable groupkey 

is the name of the currently active group and hence of the 

current state vector. Because the records of a group are con- 

tiguous, the end of a group is recognisable at cardfile.eof or 

at the start of another group. The individual groupfile may 

therefore be closed, and the total!ine written, at the earli- 

est possible moment. 

We may, perhaps, generalise so far as to say that an identifi- 

er is stored by a program only in order to give a unique name 

to the state vector of some process. 

A data processing system may be viewed as consisting of many 

simple programs, one for each independent entity in the real 

world model. By arranging the entities in sets we arrange the 

corresponding simple programs in equivalence classes. The 

'master record' corresponding to an entity is the state vector 

of the simple program modelling that entity. 

The serial files of the system are files of transactions or- 

dered in time: some are primary transactions, communicating 

with the real world, some are secondary, passing between sim- 

ple programs of the system. In general, the real world must 

be modelled as a network of entities or of entity sets; the 

data processing system is therefore a network of simple pro- 

grams and transaction files. 

Implementation of the system demands decisions in two major 

areas. First a scheduling algorithm must be decided; second, 

the representation and handling of state vectors. The extreme 

cases of the first are 'real-time' and 'serial batch ~. In a 

pure 'real-time' system every primary transaction is dealt 

with as soon as it arrives, followed immediately by all of the 

secondary and consequent transactions, until the system as a 

whole becomes quiet. In a pure 'serial batch' system, each 

class (identifier set) of primary transactions is accumulated 

for a period (usually a day, week or month). Each simple pro- 

gram of that class is then activated (if there is a transaction 

present for it)~ giving rise to secondary transactions of var- 

ious classes. These are then treated similarly, and so on un- 

til no more transactions remain to be processed. 
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Choosing a good implementation for a data processing system is 

difficult, because the network is usually large and many pos- 

sible choices present themselves. This difficulty is compoun- 

ded by the long-term nature of the simple programs: a typical 

entity, and hence a typical program, has a lifetime measured 

in years or even decades. During such a lifetime the system 

will inevitably undergo change: in effect, the programs are 

being rewritten while they are in course of execution. 

An interrupt handler is a program which processes a serial 

file of interrupts, ordered in time: 

J 
q HANDLER 

Inversion of the interrupt handler with respect to the inter- 

rupt file gives the required procedure 'dispose of one inter- 

rupt'. In general, the interrupt file will be composed of in- 

terleaved files for individual processes, devices, etc. Im- 

plementation is further complicated by the special nature of 

the invocation mechanism, by the fact that the records of the 

interrupt file are distributed in main storage, special regis- 

ters and other places, and by the essentially recursive struc- 

ture of the main interrupt file (unless the interrupt handler 

is permitted to mask off secondary interrupts). 

An input-output procedure (what IBM literature calls an 'access 

method') is a simple program which processes an input file of 

access requests and produces an output file of access responses. 

An access request consists of an operation code and, sometimes, 

a data record; an access response consists of a result code andf 

For example, a direct-access method 

0 CCESS 
FILE 

sometimes, a data record. 

has the form: 
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By inverting this simple program with respect to both the file 

of access requests and the file of access responses we obtain 

the desired procedure. This double inversion is always possi- 

ble without difficulty, because each request must produce a re- 

sponse and that response must be calculable before the next re- 

quest is presented. 

The chief crime of access method designers is to conceal from 

their customers (and, doubtless, from themselves) the structure 

of the file of access requests. The user of the method is thus 

unable to determine what sequences of operations are pe~itted 

by the access method, and what their effect will be. 

Some aspects of a context-sensitive grammar may be regarded as 

interleaved context-free grammars. For example, in a grossly 

simplified version of the COBOL language we may wish to stipu- 

late that any variable may appear as an operand of a MOVE state- 

mentu while only a variable declared as nameric may appear as 

an operand of an arit~etic (ADD, SUBT~CT, MULTIPLY or DIVIDE) 

statement. We may represent this stipulation as follows: 

I ~ I NUMERIC 

IERIC DEC- 1 ~ON-NUM- 
im TioN1 >RIC REF'S 

NUMERIC SET OF 
DECLAR- NUMERIC 
ATION REF ' CES 

[ . 

I MOVE i 
STMT 

The syntax-checking part of the compiler consists, partly, of 

a simple program for each declared variable. The symbol table 

is the set of state vectors for these simple programs. The al- 

gorithm for activating and suspending these and other programs 

will determine the way in which one error interacts with another 

both for diagnosis and correction. 
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6. A Modest Proposal 

It is one thing to propose a model to illuminate what has already been 

done, to clarify the sources of existing success or failure. It is 

quite another to show that the model is of practical valuer and that it 

leads to the construction of acceptable programs. An excessive zeal in 

decomposition produces cumbersome interfaces and pointlessly redundant 

code. The "Shanley Principle" in civil engineering (3) requires that 

several functions be implemented in a single part; this is necessary for 

economy both in manufacturing and in operating the products of engineer- 

ing design. It appears that a design approach which depends on decom- 

position runs counter to this principle: its main impetus is the separ- 

ation of functions for implementation in distinct parts of the program. 

But programs do not have the intractable nature of the physical objects 

which civil, mechanical or electrical engineers produce. They can be 

manipulated and transformed (for example, by compilers) in ways which 

preserve their vital qualities of correctness and modifiability while 

improving their efficiency both generally and in the specialised envir- 

onment of a prticular machine. The extent to which a program can be 

manipulated and transformed is critically affected by two factors: the 

variety of forms it can take, and the semantic clarity of the text. 

Programs written using today's conventional techniques score poorly on 

both factors. There is a distressingly large variety of forms, and in- 

telligibility is compromised or even destroyed by the introduction of 

implementation-orientated features. The justification for these tech- 

niques is, of course, efficiency. But in pursuing efficiency in this 

way we become caught in a vicious circle: because our languages are rich 

the compilers cannot understand, and hence cannot optimise, our programs; 

so we need rich languages to allow us to obtain the efficiency which the 

compilers do not offer. 

Decomposition into simple programs, as discussed above, seems to offer 

some hope of separating the considerations of correctness and modifiabi- 

lity from the considerations of efficiency. Ultimately, the objective 

is that the first should become largely trivial and the second largely 

automatic. 

The first phase of design would produce the following documents:- 

- a definition of each serial file structure for each simple pro- 

gram (including files of operation codes~); 

- the text of each simple program; 

- a statement of the communication between simple programs, per- 
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haps in the form of identities such as 

output (Pi' fr ) ~ input (pj, fs ). 

It may then be possible to carry out some automatic checking of self- 

consistency in the design - for instance, to check that the inputs to a 

program are within its domain. We may observe, incidentally, that the 

'inner' feature of Simula 67 (4) is a way of enforcing consistency of a 

file of operation codes between the consumer and producer processes in 

a very limited case. More ambitiously, it may be possible, if file-hand- 

ling protocol is exactly observed, and read and write operations are al- 

located with a scrupulous regard to principle, to check the correctness 

of the simple programs in relation to the defined data structures. 

in greater or In the second phase of design, the designer would specify, 

lesser detail:- 

the synchronisation of the simple programs; 

the handling of state vectors; 

the dissection and recombining of programs and state vectors to 

reduce interface overheads. 

Synchronisation is already loosely constrained by the statements of pro- 

gram communication made in the first phase: the consumer can never run 

ahead of the producer. Within this constraint the designer may choose 

to impose additional constraints at compile time and/or at execution 

time. The weakest local constraint is to provide unlimited dynamic buf- 

fering at execution time, the consumer being allowed to lag behind the 

producer by anything from a single record to the whole file, depending 

on resource allocation elsewhere in the system. The strongest local con- 

straints are use of coroutines or program inversion (enforcing a single 

record lag) and use of a physical magnetic tape (enforcing a whole file 

lag). 

Dissection and recombining of programs becomes possible with coroutines 

or program inversion; its purpose is to reduce interface overheads by 

moving code between the invoking and invoked programs, thus avoiding some 

of the time and space costs of procedure calls and also, under certain 

circumstancest avoiding replication of program structure and hence of 

coding for sequencing control. It depehds on being able to associate 

code in one program with code in another through the medium of the com- 

municating data structure. 

A trivial illustration is provided by solution 3, in which we chose to 

invert PA with respect to file X, giving an input procedure PAX for 
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the file of cardimages. We may decide that the procedure call overhead 

is intolerable, and that we wish to dissect PAX and combine it with PB. 

This is achieved by taking the invocations of PAX in PB (that is, the 

statements 'open fileX', 'read fileX' and 'close fileX') and replacing 

those invocations by the code which PAX would execute in response to 

them. For example, in response to 'open fileX', PAX would execute the 

code 'open blockedfile'; therefore the 'open fileX' statement in PB can 

be replaced by the statement 'open blockedfile'. 

A more substantial illustration is provided by the common practice of 

designers of 'real-time' data processing systems. Suppose that a prim- 

ary transaction for a product gives rise to a secondary transaction for 

each open order item for that product, and that each of those in turn 

gives rise to a transaction for the open order of which it is a part, 

which then gives rise to a transaction for the customer who placed the 

order. Instead of having separate simple programs for the product, or- 

der item, order and customer, the designer will usually specify a 'tran- 

saction processing module': this consists of coding from each of those 

simple programs, the coding being that required to handle the relevant 

primary or secondary transaction. 

Some interesting program transformations of a possibly relevant kind are 

discussed in a paper by Burstall and Darlington (5). I cannot end this 

paper better than by quoting from them: 

"The overall aim of our investigation has been to help people to 

write correct programs which are easy to alter. To produce such 

programs it seems advisable to adopt a lucid, mathematical and 

abstract programming style. If one takes this really seriously, 

attempting to free one's mind from considerations of computational 

efficiency, there may be a heavy penalty in program running time; 

in practice it is often necessary to adopt a more intricate ver- 

sion of the program, sacrificing comprehensibility for speed. 

The question then arises as to how a lucid program can be trans- 

formed into a more intricate but efficient one in a systematic 

way, or indeed in a way which could be mechanised. 

" ... We are interested in starting with programs having an ex- 

tremely simple structure and only later introducing the complic- 

ations which we usually take for granted even in high level lang- 

uage programs. These complications arise by introducing useful 

interactions between what were originally separate parts of the 

program, benefiting by what might be called 'economies of inter- 

action'." 
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