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SVAZEK 23 (1978) APLI K ACE M ATE M ATI KY ČÍSLO 1 

ON THE LOWER BOUND FOR MINIMUM 
COMPARISON SELECTION 

PETER R U Z I C K A , JURAJ WlEDERMANN 

(Received June 3, 1976) 

1. INTRODUCTION 

Given a set X of n distinct objects and an integer k, 0 < k :_ n, the selection 
problem is to determine the minimum number Vk(n) of pairwise comparisons needed 
to select the k-th largest element of X (shortly kOX). 

This problem has received considerable interest in the past few years [1, 2, 4]. 
The number Vk(n) has been determined exactly for k = 1 and 2. Furthermore, 
Vk(n) ^ n — k + (k — 1) . [log2 (n — k + 2)] is known by Hadian and Sobel to be 
an upper bound for the general case, i.e. for all n and k. The search for progressively 
faster general methods for this problem has culminated in the linear time worst-case 
algorithm by Blum, Floyd, Pratt, Rivest and Tarjan. They proved an upper bound 
for Vk(n) to be 5-4305/7. Recently a paper by Schonhage, Paterson and Pippenger [5] 
appeared in which they got an upper bound of 3n comparisons for the median 
asymptotically. 

Although this is the most efficient general algorithm known, there is an intuitive 
feeling that the constant of proportionality can be considerably improved. In order 
to make it possible to determine how close is the given algorithm to the optimality, 
lower bounds on the complexity have been examined. Actually, at present there is 
hardly any mathematical technique available for proving the optimality or even 
establishing any non-trivial lower bounds of the complexity of some of the most 
common combinatorial problems and thus ad hoc techniques have been devised 
for special problems. 

Among the few general methods for specifying non-trivial lower bounds for the 
selection problem, a significant position is occupied by an adversary approach 
ascribed to Blum et al. and improved by Yao. 

The best previously known lower bound up to the quaternian was published 
by Hyafil [2] who generalized Knuth's intriguing idea of proving the optimality 
V2(n) by means of the adversary strategy. In this paper a definition and some basic 
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characteristics are given to handle the general adversary model based on the so 
called basic strategy and ruled by a certain sequence of constants. This approach 
yields a general framework for proving correctness of the whole class of adversaries 
and it allows us to specify a lower bound for this general class considering the sequen
ce of constant cu c2, . .., ck_t to be Vk(n) ^ n — 1 + ]T kZ\ [log2 cvJ. Further, an 
optimal adversary for the underlying class is discussed and also a lower bound for the 
optimal constants is indicated. This new lower bound surpasses the best known lower 
bounds up to the quaternian for infinitely many values of k and n. 

2. GENERAL LOWER BOUND 

We consider selection algorithms determining kOX which use only binary com
parisons in X. The whole selection process can be formulated as a game between the 
selection algorithm, the aim of which is to select kOX in as few comparisons as 
possible, and its adversary, which tries to force the selection algorithm to make as 
many comparisons as possible. At each step of this game, the selection algorithm 
poses a comparison request between any two elements of X, say a : b, and the ad
versary responses either a < b or a > b. The answer to the request can be completely 
arbitrary unless it contradicts previous responses to the comparison request. When 
enough information is extracted from the adversary responses to determine kOX, 
the game is over. 

Various adversary strategies are known from literature. For our purposes a parti
cular adversary strategy is described, the so called basic strategy, in which the relation 
between two elements is determined by means of weights of those elements. 

Definition 1. Given a selection algorithm determining kOX, the basic strategy 
(BS) adversary s/(k, n) is a deterministic device <X, C> where 

X is a set of n elements, 

C denotes a nondecreasing sequence of positive integer constants cl9 c2, . . . , ck„t 

satisfying £*I{ cs < n. 
The state of an adversary before the t-th comparison ot the selection algorithm, 
t _ 1, is described by two disjoint sets Land N, w h e r e I = L u N, and by the weights 
ft-i(d) of all elements d e X. Initially (i.e. for t = 1) Lis empty and for any d e l , 
fo(d) = 1. At the t-th comparison of the selection algorithm, the input of the adver
sary s#(k, n) is a pair of compared elements a : b, a =# b, a, b e X. The output 
of stf(k, n) is the relation between a, b and the next state defined according to the 
following rules: 

1. If a, beN, then either ft-i(a) > / * - i ( b ) and then the relation is a > b or 
ft_t(a) = / f_ 1 (b ) and then the relation is arbitrary, but compatible with transitivity. 
In both cases, if 



a) / _ , ( « ) + / , _ i ( b ) > c |L | + 1, then ft(d)=ft^(d) for all d e X, N = N - [a], 
L= Lu {a}, and a becomes the minimal element in the set L; 

b ) / f - i ( f l ) + / f - i ( 6 ) ^ C | L | + 1, then ft(a)= / f_,(a) + / r - , ( b ) , /-(&) = 0, and 
fr(d) = / ,_ , (d) for all d 4= a, d * b, deX. 

2. If a e L , beN, then a > b and ft(d) = /,_,(</) for all d e X. 

3. If a, b G L, then a : b is known (the adversary maintains a total ordering in L 
after la) and/ (d ) = f.-^d) for all deX. 

To recapitulate briefly the above definition, as long as the adversary deals with 
elements from N, it enlarges the weigth of the greater element until the sum of weights 
of the compared elements is greater than C|Lj + j . Then the adversary removes the 
greater element from the set N and places it in the set Land then it continues in the 
same manner. 

It is apparent that in the case ft-i(a) + ft-i(b) > 0 of the above definition, the 
relation between a, b cannot contradict transitivity. Responses not compatible with 
transitivity in the case/ f_,(a) = f _ , ( b ) = 0 are excluded. Therefore the adversary 
gradually constructs a partial ordering on X. 

Further we prove the BS adversary to be correct — i.e. it never terminates before 
determining k — 1 elements greater than kOX and kOX is not found before the ad
versary ceases. 

Proposition 1. / / £ J._i cs < n and |L | < k - 1, then £ / f ( a ) > Z ^ | L | + i cs-
aeN 

Proof. For every t _ 0 it obviously holds £/*(b) = £ }t\cs, and thus 
beL 

n= £/.(-) + !,/&) _!/.(«) + I }t[cs. 
aeN beL aeN 

Exploiting the assumption ]T ^Z{ cs < n we get 

I/f(«) = «-S^k>Zt:r^Vi+,-
aeN 

Proposition 2. / / £ kZ{cs < n, |L | < k — 1, cs = cs+1 for s = 1, . . . , k - 2, 
rhen |L | + |P | > fe - 1 where P = {a eN;ft(a) > 0}. 

Proof. Proposition 1 and the assumption imply 

_ f ( a ) = Z f ( a ) > £ k.Zl-Mcw+t > (k - I - |L |) . c|L1 + 1 . 
aeN aeP 

Since for all a e P it holds / ( a ) ^ c|L| + ,, for the left-hand side we have £ / , ( # ) _i 
fleP 

= |^| • c |L | + i- Combining both sides of the relations we get (k — 1 - |L | ) . c|Lj+, < 
< |P | . C|L| + t which implies the assertion. 



Proof Of the correctnes of the BS adversary. 

Fact 1. We have to prove that as long as |L | < k — 1 the elements in N together 
have enough weight to make such responses possible which promote elements into 
the set L. 

But this is exactly what Proposition 1 claims. 

Fact 2. We have to prove that as long as |L | < k — \, kOX cannot be determined 
by the selection algorithm. 

Let the selection algorithm find kOX = a and let |L | < k — 1. Then 

— if a e L, then the construction of the adversary implies that a is greater than at 
least |N| = n — |L | other elements. By the assumption n — |L | > n — k + 1 
which yields a + kOX, a contradiction; 

— if a e N and f(a) = 0, then by Proposition 2 there exist more than k — 1 elements 
greater than a, a contradiction; 

— if a e P, then since |P | + |L | > k — 1 and |L | ^ k — 2 we have |P | > 1 which 
means that there exists also an element b e P, b + a, uncompared with the ele
ment a, and thus the selection algorithm cannot know a = kOX. 

Furthermore, our goal is to determine a general lower bound for BS ruled adversa
ries. Here an important role is played by the notion of the crucial comparison. 

Definition 2. The crucial comparison for an element a e X, a 4= kOX, is the first 
comparison a : b such that b = kOX or a < b < kOX or kOX < b < a. 

In general, the decision whether a comparison is crucial or not can be made only 
after performing all comparisons and selecting kOX. However, for an arbitrary 
a G X, a + kOX, each algorithm selecting kOX must determine whether a > kOX 
or a < kOX. This proves 

Proposition 3. A selection algorithm has to make precisely n — 1 crucial com
parisons to select kOX, where \X\ = n. 

In establishing the lower bound, we start from the basic estimate Vk(n) ^ n — 1 + 
+ YJ p o ^ / O ^ ) ] following from the fact that n — 1 crucial comparisons as well as 

aeL 

at least p o g 2 / ( a ) ] noncrucial comparisons for each element a > kOX are necessary 
(pog2f r(a)] is the minimal number of comparisons performed with a whose weight 
is ft(a)). 

First of all we show how the number of comparisons for a given element can be 
estimated. 

Proposition 4. If ft(a) ^ ft(b), ft(a) + ft(b) > 2J + s, 0 ^ s < 2J, j > 0, then 
pog2/ r(a)]^f 

Proof. Note first that the assumptions yield 

pog2 / (O) ]>log2(2^1 +e/2). 



Consider either e = 0, and then obviously [log2 ft(a)\ = j , or 0 < £ < 2j, and 
in that case we obtain 

pog2f(O)] > log2 2'"- ,(i + E\V) = j - 1 + £j 

where 0 < sx < 1; so [log2 ft(a)\ = j . 

Assuming a e L w e know that there exists a comparison a : b say, the t-th one, 
such that ft(a) = f(b) as well as ft(a) + f(b) > C|L| + i = cf. The constant c,- can 
be written in the form ct = 2Llog2C/J + s, where 0 = e < 2L,og2C,J. In virtue of Propo
sition 4 it is apparent that the following assertion holds. 

Consequence!. If a e L, then [log2f(O)] = [log2 c,j for an appropriate con
stant ch 1 :_ i S. \L\. 

This consequence enables us to formulate the following important theorem. 

Theorem 1. (general lower bound). For any BS adversary s4(k, n) = 
= <X,{cu . . . , cfc.JX it holds 

Vk(n) = n - 1 + X s l i L]og2 c j • 

3. OPTIMAL LOWER BOUND 

Adversaries constructed by Blum and Hyafil form special cases of our approach' 
Considering sequences of constants cs = 2 or cs = 2riog2"/(2(fc~~r,)1 for s = 1, 2, . . . 
. . . , k - 1, the estimate Vk(n) = n + k - 2 or Ffc(n) = n - k + (k - 1) . 
. [log2 n/(k — 1)] can be reached respectively. 

Now we raise the following question: Which sequence of constants maximizes 
the lower bound estimate? In order to answer this question, the notion of the optimal 
BS adversary is introduced. 

Definition 3. BS adversary s4(k, n) = <X, {cu . . ., ^_ i}> is optimal (with respect 
to the basic strategy) iff 

E £ i U°g2 f j = max { Xs=i LlQg2 <*s\ I Z I - i ^ < w» fl. > °} • (A) 

The following proposition gives a general characterization of the sequence of 
constants for an optimal BS adversary. Our aim is to construct the optimal constants 
in as simple a manner as possible; so a special case where all constants are balanced 
(meaning that the difference of their logarithms does not exceed one) is shown. 

Proposition 5. For any n and k there exists a nondecreasing sequence of positive 
constants cx,c2, . . . . c'/>-i, each of them being a power of two, such that the condi
tion (A) holds iff 

Yk
sZ{ cs = max { YJlZl as ; ^ I 1 as < n , |log2 at - log2 a ; | ^ 1,1 = ij £ k - 1}. 

(B) 



Proof. 

1. From the left to the right we use an indirect argument. It is sufficient to prove 
that there exists no sequence of constants c I? . . . , ck^i satisfying both the assump
tions of the property and the condition (A), but not the condition (B). Three cases 
when (B) is not fulfilled can be distinguished: 

i. £s=i cs < max { Y^=l as I Zs=i as < n} anc~ a ^ constants are balanced, 

ii. Y!s=x cs ~ m a x { Zs=i as \ Z«=i as < n} anc* t n e constants are not balanced, 

iii. Xs=i cs < m'dx { 2 = 1 as ; Z*=l as < n} a n d t n e constants are not balanced. 

Let C = C(, . . ., cfc_t denote a nondecreasing sequence of powers of two satisfying 
the condition (A). 

i. The inequality in (i) guarantees the existence of a constant ct = 2 . ct such that 
the sequence C = ci9 . . . , ci9 ..., cfc_t is nondecreasing and balanced and satis
fies £ c < n. Obviously log2 ct > log2 ct which means that the sum of logarithms 

ceC 

in (A) was not maximal. This leads to a contradiction if we realize that while keeping 
the constants balanced it is impossible to adapt the sum of logarithms to its previous 
value by means of decreasing the values of some constants in C (excluding the case 
when we get the original sequence, of course). 

ii. Suppose there exists no balanced sequence of constants satisfying both the 
assumptions and the condition (A). We prove now that using the sequence C it is 
possible to construct another sequence C which either satisfies the condition (A), 
and thus contradicts the nonexistence of such a sequence, or does not satisfy the 
condition (A) which contradicts the proposition. Denote by s _• 2 the maximal 
integer such that log2 ct- — log2 Cj = s for some indices 1 ^ j < i :g k — 1. It 
follows log2 c'ijcf = s, and thus ct- = 2s . cj9 s = 2. 

The case s = 2: 
There exist i, j such that choosing c{ = ct/2, Cj === 2 . cj9 the sequence C = cl9 . . . 

. . .9cj9 . . . , ci9 . .., cfc_! is nondecreasing. Because of log2 ct + log2 c} = log2 ct- + 
+ log2 Cj9 such choice of constants does not violate the maximality condition for 
the sum of logarithms and, moreover, this pair of constants is balanced, log2 ct — 
— log2 Cj ^ 1. By iterating this step a balanced sequence of constants satisfying (A) 
can be constructed, a contradiction. 

The case s > 2: 
Let ct- = C//2, Cj = 4 . c} and let C ~ cl9 ..., cj9 ..., ci9 . . . , ck^t be a sequence 

rearranged into the nondecreasing order. Now it holds ct- + Cj = c£ + cy + c} . 
. ( 2 s - 1 — 3) > c{ + Cj, s > 2 and log2 ct- + log2 c} < log2 cf + log2 cj9 which con
tradicts (A). 

iii. Balancing the sequence of constants as in the case s = 2 of Hi, the proof 
can be transformed to that of li. 



2. The converse assertion is proved similarly as li by an indirect argument. 

In order to determine constants of an optimal BS adversary it is sufficient to 
consider only those which are balanced and are powers of two; hence log2 ctjcj _ 1, 
and thus 1 _ c^Cj _ 2 for j _ i. Starting from the Hyafil constants we get 

Consequence 2. For any n and k, k _ n, the sequence of constants cl9 . . ., ck__{ 

for an optimal BS adversary is given by 

ct = 2d~{ i = 1, 2, . . . , 2 . (k - 1) + \n . 2~d + 1] = r , 

C; = 2J j = r + 1, . . . , k - 1 , 

where J = [log2 n/(k — l)] . 

Theorem 2. The minimal number of comparisons necessary to compute the k-th 
largest element from a linearly ordered set of n elements is bounded from below 
by the function 

Bk(n) = n - 2k + d(k - 1) + \n 2 " J + 1 ] 

k _ 2, M ĥere d = [log2 nj(k — l)]. 

4. ANALYSIS OF THE LOWER BOUND 

Denote the upper bound for Vk(n) due to Hadian and Sobel by HSk(n), and let 
Qk(n) = HSk(n) — Bk(n). In the case of the second element, B2(n) is optimal, i.e. 
Q2(n) = 0 for n _ 2. In the case of the third element our general lower bound is 
equal to the result in [4] where the case k = 3 was specially analyzed: 

f 0 n = 2s + 1 , 
£23v>0 = { 2 2s + 1 < /i _ 3-2s~1 s „ 1, 

[ 1 3-25"1 < n _ 2V+I . 

By Theorem 2 we get for the case k = 4: 

( 3 3-2*-1 < /z < 2 s + \ 

0 / x 2 2 S + 1 < n < 2S + 1 + 2, 
° 4 ( « ) = 5 2 - + 2 < n < 5 . 2 - , s - »' 

(4 5-2*-1 _ n < 3-2s. 

The best general lower bound previously known for 3 < k < w/4 is due to Hyafil [2]: 

Hk(n) = n - k + (k - 1). [log2 n/(k - 1)] . 

Proposition 6. Within the interval nj2s+l + 1 < k _ rc/2s, s = 2, 3, . . . it holds 

1 _ JJ4(n) - Hfc(n) < k - 1 

where the right-hand side of the inequality cannot be improved. 

Thus, the new lower bound Bk(n) is strictly greater than the best lower bounds 
previously known for an infinite number of values of n and k. 
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S ú h r n 

O DOLNOM ODHADE POČTU POROVNANÍ 
PRE ALGORITMUS VYBERU 

PETER RŮŽIČKA, JURAJ WIEDERMANN 

Minirnálny počet porovnaní nutný na výpočet fc-teho najváčšieho z n prvkovej 
množiny je zdola ohraničený funkciou 

n - 2 . k + d.(k - 1) + [/i .2~ d + I ] 

fc ^ 2, kde d = [log2 nj(k — 1)]. Nový dolný odhad je na intervale 3 < fc < n/4 
lepší ako najlepšie známe odhady, a to pre nekonečné mnoho hodnot fc a n. 
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