
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

46
I I I I I

F. L. Bauer, P. Brinch-Hansen, E. W. Dijkstra,
A. Ershov, D. Gries, M. Griffiths, C. A. R. Hoa
G. Seegm~Jller, W. A. Wulf

Language Hierarchies
and Interfaces
International Summer School

Edited by F. L. Bauer and K. Samelson

Springer-Verlag
Berlin. Heidelberg-New York 1976

Editorial Board
P. Br inch Hansen • D. Gr ies • C. Mo le r . G. SeegmiJ l ler . J. Stoer
N. Wir th

Editors
Prof. Dr. Dr. h. c. Dr. Friedrich L Bauer

Prof. Dr. Klaus Samelson
Institut fLir Informatik
der Technischen Universit&'t

Arcisstra6e 21
8000 M~nchen 2 /BRD

Library of Congress Cataloging in Publication Data
Main entry trader t~le:

Language hierarchies and interfaces.

(Lecture notes in computer science ; 46)
"The international summer school took place from

Jbly 23 to August 2, 1975, in Marktoberdorf ... and was
sponsored by the NAT<) Scientific Affairs Division under
the 1975 Advanced Study Institutes programme."

InCludes bibliographical references snd index.
1, Electronic digital computers--Programming--Con-

gresses. 2. Progra~_ languages (Electronic computers)
--Congresses. I. Bauer~ Priedmich Ludwig, 1924-
II. Samelson~ Kians~ 1918- III. North Atlantic
Treaty Organization. Division of Scientific Affairs,

IV. Series.
QA76.6. L335 OO1.6'42 76-54339

AMS Subject Classifications (1970): 68-02, 68A05
CR Subject Classifications (1974): 4.12, 4.20, 4.22, 4.30, 4.31, 4.32, 4.34,
5.24

ISBN 3-540-07994-7 Springer-Verlag Berlin ' Heidelberg • New York
ISBN 0-387-07994-7 Springer-Verlag New York • Heidelberg. Berlin

This work Js subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to
be determined by agreement with the publisher.

© by Springer-Vertag Berlin • Heidelberg 1976
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

P R E F A C E

The International Summer School took place from July 23 to August 2, 1975, in Markt-

oberdorf. This Summer School was organized under the auspices of the Technical Uni-

vers i t y Munich, and was sponsored by the NATO Sc ien t i f i c Af fa i rs Division under the

1975 Advanced Study Inst i tu tes Programme. Part ia l support for this conference was

provided by the European Research Office and the National Science Foundation.

C o n t e n t s

INTRODUCTION

E. W. Di jkstra ON THE TEACHING OF PROGRAMMING,
I .E. ON THE TEACHING OF THINKING

CHAPTER 1.: CONCURRENCY

C.A.R. Hoare

E. W. Di jkstra

D. Gries

PARALLEL PROGRAMMING: AN AXIOMATIC APPROACH 11

1. Introduction 12
2. Cor~epts and Notations 12
3. Disjoint Processes 14
4. Competing Processes 17
5. Cooperating Processes 20
6. Communicating Programs 24
7. Colluding Processes 29
8. Machine Traps 34
9. Conclusion 36

References 38
Appendix 40

ON-THE-FLY GARBAGE COLLECTION:
AN EXERCISE IN COOPERATION 43

Introduction 44
Preliminary Investigations 46
A Coarse-grained Solution 48
A Solution with a Fir~-grained Collector 52
A Solution with a Fine-grained Mutator as well 53
In Retrospect 54
History and Acknowledgements 55
References 55
Appendix 55

4.
4.
4.
4.

AN EXERCISE IN PROVING PARALLEL PROGRAMS CORRECT 57

1. Introduction 58
2. Definition and Use of the Language 59
3. On-the-f~y Garbage Collection 63
4. Proof of Correctness of the ~tator-

Collector System 69
1. Proof Outline for the Main Program 71
2. Proof Outline for the Marking Phase 71
3. Proof Outline for the Collecting Phase 73
4. Proof of Properties of the Mutator 73

Vl

P. Brinch Hansen

4.5. Showing Non-interference
5. Concluding Remarks

References

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL

75
78
81

82

I. The Purpose of Concurrent Pascal 84
1.I. Background 84
1.2. Processes 84
1.3. Monitors 85
1.4. System Design 88
1.5. Scope Rules 93
1.6. Final Remarks 95

2. The Use of C once.trent Pascal 96
2.1. Introduction 96
2.2. Processes 96
2.3. Idonitors I O0
2.4. Queues 103
2.5. Classes 104
2. G. Input~Output 105
2.7. Multiprocess Scheduling 106
2.8. Initial Process 108

Acknowledgements 110
References 110

CHAPTER 2.: PROGRAM DEVELOPMENT

E. W. Di jkstra

M. Gr i f f i t hs

GUARDED COMMANDS, NON-DETERMINACY AND
A CALCULUS FOR THE DERIVATION OF PROGRAMS 111

PROGRAM PRODUCTION BY SUCCESSIVE TRANSFORMATION 125

i. Introduction 126
2. Successive Transformation 127

2. I. The Problem 127
2.2. Solution by Invariants 128
2.3. Solution by Successive Transformation 129
2.4. Discussion 13 1

3. Transformation Methods 13 3
3.1. Recursion and Iteration 133
3.2. Introduction of a Variable 13 4
3.3. Function Inversion and Counting 13 6
3.4. Changes in Data Structure 13 8
3.5. Program Schemes and Automatic Transformation 13 9

I. Introduction 111
2. Two Statements made from Guarded Co,ands 112
3. Formal Definition of the Semantics 114

3.1. Notational Prelude 114
3.2. The Alternative Construct 116
3.3. The Repetitive Construct 118

4. Formal Derivation of Programs 119
5. Concluding Remarks 122

Acknowledgements 123
References 124

VII

F. L. Bauer

C. A. R. Hoare

F. L. Bauer

3.6. Oiscussion 140
4. Some Implications 142

4.1. Language Design 142
4.2. System Structure 143
4.3. The Multi-Language Problem 144
4.4. Efficiency 145
4.5. Use of Static Information 146

5. Conclusion 147
5.1. Associated Research 147
5.2. Final Remarks 148

References 149
Acknowledgements 1 52

PROGRAMMING AS AN EVOLUTIONARY PROCESS 153

First Lecture: METAMORPHOSES 155
Styles of Programming 155
Properties Defining Recursion and their
Derivation 158
Seco~ Lecture: TECHNIQUES 1 62
Transition between Recursion and Iterative
Notation 162
The COOPER Transformation as an Example
for the Recursion Removal 165
Function InVersion 167
Third Lecture: DANGEROUS CORNERS 172
Sequentializat~on and the Danger of Destruction 172
Sharing of Variables 174
The Method of Invariants 176
Conclusion: PROGRAMMING AS A PROCESS 179
References 181

PROOF OF CORRECTNESS OF DATA REPRESENTATION 183

1. Introduction 183
2. Concepts and Notations 183
3. Example 184
4. Semantics and Implementation 186
5. Criterion of Correctness 186
6. Proof Method 187
7. Proof of Smallintset 188

7.1. Initialisation 188
7.2. Has 188
7.3. Insert 189
7.4. Remove 1 89

8. Formalities 190
9. Extensions 191

9.1. Class Parameters 191
9.2. Dynamic Object Generation 192
9.3. Remote Identification 192
9.4. Class Concater~tion 192
9.5. Recursive Class Declaration 192

References I 93

APPENDIX: A PHILOSOPHY OF PROGRAMMING

First Lecture:
A Unified, Conceptual, Basis of Programming

194

196

VIII

Second Lecture:
The Role of Structuring in Programming
Third Lecture:
System Uniformity of Software and Hardware
Final:
Our Responsibility
Literature
Appendix:
Variables Considered Harmful
Procedures and their Parameters
Building Procedures from Primitives
Result Parameters
Variables

204,

215

227
229

230
231
233
235
237

CHAPTER 3.: OPERATING SYSTEMS STRUCTURE

C.A.R. Hoare

G. SeegmU]ler

THE STRUCTURE OF AN OPERATING SYSTEM

1. Introduction
2. A Class with Inner
3. A Nested Class Declaration
4. Compile Time Checking
5. Multilevel Structuring
6. A Third Level
7. Error Control
8. Accounting
9o The Top Level

10. Protection
Conclusion
Acknowledgements
References

LANGUAGE ASPECTS IN OPERATING SYSTEMS

1. The Role of Language in Operating Systems
1.1. Language und Function
1.2, Language and People
1.3. Language and Computing Systems
1.4. Language and System Construction

2. Are there Special Requirements for
Systems Programming

3. A Remark on Current Systems Programming
Languages

4. How Does the Successful Systems Programmer
Survive

5. Design Criteria for an Operating System
Programming Language

6. Language Mechanisms Assisting in the Con-
str~ction of Structured Systems

7. Example: The Language System ASTRA
8. Concluding Remarks
9. Acknowledgements

10. Literature

242

243
244
246
247
248
24q
250
252
253
254
256
256
265

266

268
268
269
270
274

277

279

280

287

282
285
289
290
290

IX

W, A. Wulf STRUCTURED PROGRAMMING IN THE BASIC LAYERS
OF AN OPERATING SYSTEM 293

Introduction 294
A Personal View of Structure, Programs, and
Programming 295
Comments on "Hierarchy" 3oi
Layers of Operating Systems 304
The r~asic" Layers - Some Assumptions 311
A High Level Model of a Hydry-like System 314
The Lowest Level of Hydra -- Machine Jssu~tions 318
A Bottom-Up-Presentation 320
Some Concluding Remarks and Caveats 342

E. W. Di jkstra A TIME-WISE HIERARCHY IMPOSED UPON THE
USE OF A TWO-LEVEL STORE 345

Introduction 346
The Role of the Replacement Algorithm in a
Mu l t iprogramming Enviromnent 348
About the Ideal Window Size 350
About the Degree of Y~ltiprogralmning 351
About the Adjustment of Window Size 352
Monotonic Replacement Algorithms 353
The Time-wise Hierarchy 354
Efficiency and Flexibility 355
Temptations to be Resisted 356
Analyzing the Mismatch between Configuration
and Workload 357
Acknowledgements 357

CHAPTER 4.: PROGRAMMING SYSTEMS STRUCTURE

A. P. Ershov PROBLEMS IN MANY-LANGUAGE SYSTEMS 358

Lecture I :
1. introduction and Preview of the BETA System 361

I. 1. Introduction 361
1.2. Brief Overview of the System 363
1.3. Plan of the Course 366
1.4. Example 366

Lecture 2:
2. Internal Language of the BETA System 368

2.1. Design Concepts 368
2.2. INTEL Program Scheme 369
2.3. INTEL Objects 370
2.4. INTEL Statements 373
2.5. Transput 376
2.6. Parallelism 376
2.7. Discussion 377

Lecture 3:
3. Decomposition and Synthesis in the BETA System 380

3.1. Introduction 380
3.2. Lexical Analysis. Executive Procedures 382
3.3, Syntactic Analysis and Parsing 384
3, 4. Semantic Analysis and Synthesis 384
3.5. Lexical Information 385
3.6. Syntactic Information 385
3, 7. Semantic Information 386
3.8. Information for Synthesis and Code Generation 387
3.9. Discussion 388

Lecture 4:
4. Optimization and Code Generation in the

BETA System 391
4.1. Collection of the Optimising Transformations 391
4.2. Analysis 393
4.3. Factorization 394
4.4. Preliminary Code Generation 394
4.5. Memory Allocation 395
4.6. The Coding of Subroutines and Procedures 396
4.7. Final Code Generation 397

Lecture 5:
5. Compiler Writing Systems as a Factor in Uni-

fication and Comparison of Progran~ning Languages 398
5.1. Introduction 39
5.2. Universal Executive Procedures for Synthesis 390
5.3. Criteria for Evaluation of Progr~ing Languages 402
5.4. Data Types 403
5.5. Name Declarations 405
5.6. Resume of the Comparison 407
5.7. Conclusion 407

Acknowledgements 409
References 410
Incex of Terms 411

