PARSING AND SYNTACTIC ERROR RECOVERY FOR
CONTEXT~-FREE GRAMMARS BY MEANS OF COARSE STRUCTURES

Ernst-Wolfgang Dieterich
Institut flr Informatik der TU Mlnchen, & Minchen 2, Arcisstr, 21

Introduction

In all high level programming languages there are some patterns of tokens often
called delimiters by which a program is coarsely structured, i.,e. which characterize
certain substructures of a program. Such patterns determine a "coarse structure" (cs)
of a grammar. For example, begin...end will be characteristic brackets for <block>
and if...then...else...fi a characteristic pattern for <if statement> in an Algol-
1ike language. In addition, the string occurring between if and then in a correct
program is known to be reducible to the nonterminal <Boolean expression> using only
a certain subgrammar. A programmer, too, tries to understand a possibly incorrect
program by first looking for the syntactic structure of cs tokens.

In this paper we describe two applications of coarse structures: simplifying the
parsing process and analysing and correcting syntax errors where global rather than
local context is used. In section 1 we introduce a restricted type of coarse struc-
tures. For a general definition of coarse structure we refer to [3]. In section 2
we state the theoretical results for the simplification of the parsing process
achieved by means of coarse structures which is the topic of section 3. The last
section 4 deals with the application of coarse structures to error recovery.

1. Definitions and notation

Let 6 = (V,T,P,Z) be a context-free grammar, where V¥ is the vocabulary of G, T< V
the set of terminals, N := V - T the nonempty set of nonterminals, P a finite set

of productions and Z € N the axjom. v* denotes the set of all words over V and

Vv := v® - &} where ¢ is the empty word. For x € v* 1g(x) is the length of the

word x, i.e. the number of symbols in x. -g=> is the usual relation dirvectly derived

with respect to G and == (s§a>) the transitive (transitive and reflexive)
closure of “g>- A rightmost derivation is represented by the relations —£—> R =§:> .
and 5i5> - S(6) = X /L= g s the set of sentential forms of G.

Xif Xe K

For any K< V we define the homomorphism h, as he(X) == {s otherwise.

181

A set K =V is called kernel alphabet of G iff for all productions N::=x € P where
N € K we have hK(x) £ e,

The elements of a kernel alphabet are called kernel tokens. A kernel alphabet K deter-
mines the set of kernel productions PK ={ Aii=x € P/ hK(X) £ e},

let NK ={ X/ WH::1=x € PK} and N' :={X' / X ¢ NK} with N' n ¥ = . The set P!
of productions is defined by the following algorithm:

{1} P' =P - PK 3

{2) X::=x € P' with X € Ny is replaced by X':i:=x ;

(3) if X::=a¥b € P' with Y € Ny we add X::=a¥'h to P'.

The kernel—free subgrammar with axiom u € (V~K)x is defined as
Ge(Kou) = (VUN'UIZ3,T.,Pe.Z) where Te = TU N and Pgo:=P' ufZ::=u}, Z ¢ V.

Let Sf(u) be the set of all sentential forms of Gf(K,u), then we have Sf(u) c {V—K)*.
The X-coarse structure CS(G,K) of G is a system of rules
R := {(onlxl...Anxn <== Mand xy € Se(uy), psvsn) /
- + e
M"‘“oAlul"‘Anun € P> Al"‘An e K, Uges el € (V=K)™1
U {(8x% <-- 7' and x € Sf(Z))} with 8,2' ¢ V.

A rule of CS(G,K) is applicable only if x € Sf(uv) holds for all v, Al...An is called
kernel pattern.

Example 1: Consider the following extract of an AlgoT-like grammar G with axiom
<block>:

1, <block> ::= begin <decl> . <stmt Tist> end | begin <stmt list> end
2. <decl> ::= <decl part> | <decl> ; <decl part>
3. <decl part>::= type id [type id = <sexpr>
4. <stmt list>::= <stmt> |<stmt> ; <stmt Tist>
5. <stmt> 1= id = <expr> | <blocks |
<if clause> <stmt Tist> fi |
<if clause> <stmt Tist> else <stmt Tist> fi
6. <if clause>::= if <expr> then
7. <expr> D= <sexpr> | <sexpr> = <sexpr>
8. <sexpr> 1= id | <sexpr> + id

If we choose the kernel alphabet K ={ begin, . , end, if, then, <if clause>, else, fi}
the rules of the K-coarse structure CS(G,K) are

{ begin x , ¥y end <-- <block> and x € Sf(<dec1>), Y€ Sf(<stmt Tists)),
{ begin x end <=~ <block> and x € Sf(<stmt Tist>)),
{ <if clause> x fi <-- <stmt> and x € Sf(<stmt Tists)),

182

{ <if clause> x glse y fi <-- <stmt> and x,y € Sf(<stmt Tist>)),
{ if x then <—- <if clause> and x € Sf(<expr>) ¥,
(B X8 <«<-17' and x E'Sf(<b1ock>) = {<block>1}.

The kernel token of the third alternative of production 5. is «if clause> fi. The
kernel-free subgrammar Gf(K,<stmt 1ist>) consists of the following productions:

<stmt Tist>
<stmt> | <stmt> ; <stmt list> | <stmt'> | <stmt's> ; <stmt Tist>

Lestmt 1ists ©i7
<stmt Tist>

<stmt'> pi= 9d = <expr> | <block>

<exprs <SexXpr> | <sexpr> = <sexprs

id | <sexpr> + id o

<sexpr>

It can be shown that the set of all strings reducible tc Z' by CS(G,K) is exactly
the set of sentential forms of G enclosed by 3.

According to the intuitive idea of coarse structures the syntactic structure of the
kernel tokens should be recognized in & very simple way. This can be achieved by
the following restrictions:

A K-coarse structure is called

- simple iff it does not contain two rules with kernel patterns a and b such that
(i) a = 1br with 1,r € K" or
(ii)a=1lc, b=crwithe,l,r e K and c # ¢, Tr # ¢;

- deterministic iff
(i) for each rule (onlxl...Anxn<~- M and x € Sf(uv), o<¥<n) we have
Uy = Uy = &
(i1} there are not two different rules in R with the same kernel pattern.

The K-coarse structure of example 1 is simple and deterministic.

Replacing the conditions Xy € Sf(uv) contained in the rules of a simple deterministic
K-coarse structure by the weaker conditions xy € (V—K)X we get the K-structure
St(G,K) of G. There is a one-to-one mapping from the rules of CS(G,K) to those of
St(G,K).

The cs phrases are recognized by means of the rules of a K-structure, and the corres-
ponding rules of the K-coarse structure contain all the information about how to

parse the remaining "fine structure".
Note that kernel-free subgrammars may possess further K'-coarse structures.

183

2. Properties of kernel-free subgrammars

The substrings of a program occurring between two tokens of a kernel pattern of a
K-structure have to be parsed by uniquely determined kernel-free subgrammars. In

this section we study how difficult it is to parse these strings in comparison to

the total grammar. From our definition of kernel-free subgrammars we could expect that
there are less local ambiguities than in the total grammar. In that case the parsing
algorithm for each subgrammar becomes simpler (or at least not more difficult) than
that for the total grammar. Note that the axioms of kernel-free subgrammars are always
substrings of right hand sides of productions.

In this section we present the solution for the class of LR, LL, BRC, and precedence
grammars. For definitions we refer to [11.

Let G = (V,T,P,Z) be a context-free grammar, CS(G,K) a K-coarse structure and u a
nonempty substring of a right hand side of a production of G.

Theorem 1: If G is LR(k), then Gf(K,u) is LR(k') for some k' < k.

Proof: In the following we use the ndex f instead of Gf. Suppose Gf(K,u) 1= Ge =
(Vf,Tf,Pf,Zu) is not LR(k). Then there are two rightmost derivations in Gf

(1) Zu “F~> U s%a> aAw -¥-> abw, w € T; and
_—- L= L X
(2) Z, ~g>u _F~> cBx F> aby, x € Tf

with Firstk(w) = Firstk(y) and ahy # cBx, f.e. aZcorA£Bory#x.

Because u is a substring of a right hand side of a production, there is a rightmost
derivation in G

(3) 7 =E=>dut with t e T%.
G

The terminal alphabet of Gf consists of some terminals and some nonterminals of 6.
Therefore we can write Firstk(w) = Firstk(y) = onlxl"'mem with m20, Xu € T,
osps<m, and Ny_e Nn Tf, 1<usm. Replacing the first m nonterminals Nl""’Nm of

w and v by terminal strings tl""’tm with N, =t=> te,we get

g
(4) w E(%a wh eT andy L=y e TR,
G

It can be shown that each H? # &. Therefore we have

(5) Firstk(w') = Firstk(y') = Firstk(xotlxl...tmxm).

184
Combining (1) up to (5) we have

(6) Z =te> dut =k=> daAw't -E-> dabw't
G

L8
G

(7) Z sfes dut L= deBx't -g—> daby't
G G

(8) Firstk(w't) = Firstk(y't).

If y # X, then we have y't # x't. Otherwise we have da # dc or A # B, i.e.
daAy't # dcBx't, a contradiction to the LR property of G. ©

Because of the symmetry beiween the definition of LR and LL grammars as well as
between rightmost and leftmost derivations an analogous statement holds for LL
grammars .

Theorem 2: If G is (m,n)~BRC, then Gf(K,u) is (m',n')~BRC for some m' <m, n' < n.

Proof: Suppose Gf(K,u) is not (m,n)~BRC. Then there are two rightmost derivations
in Gf

(1) 4"7,8" - gMug" =L alapue" -E> gMabus" , we T
f

i

&ma'by&n , YV E ™

(2) &z &M o5 g™ =L 8MeBx" -L-s> 8Mcdxs™
u £ f f

with (3} Tg{x) < 1g9(y)
(4) Lastm(a') = Lastm(a) and Firstn(w) = Firstn(y)

such that a'Ay # cBx, i.e. a' #c or A # B or x # y. Furthermore there is a right-
most derivation in G

(5) &Mz8" L= euf with f e TR,
G

Substituting each nonterminal in Firstn(w) = Firstn(y) by an appropriate terminal
string and the other nonterminals in w and y by some others we get w' and y' and
analogously to the previous proof Firstn(w‘} = Firstn(y'}. Combining (1) and (2)
with {5) we get two rightmost derivations in G with the same n symbols to the right
and the same m symbols to the Teft of a possible right hand side but not with the
same parsing action, a contradiction to the {m,n)-BRC property of G. o

Theorem 3: If G is an operator precedence or a simple precedence grammar, then
Gf(K,u) is of the same type.

185

Proof: Let u = A1 A and § be an endmarker not in ¥, we have § < X and Y->f 8
for all X € erstG (Al) and all Y € Last (A } where Gf : Gf(K u). If we have

A $¢ B then A § B holds where 5 and ¢ is one of the precedence relations of Gf{K,u}
and G, respectively. If A' . B, A p. B' or A’ g. B holds then we also have A §. B
Since u is & substring of a right hand side of a production of G, we have Ay = A¢+1
as well as A, &f Avwl for 1<V¥<n-1. Therefore if Gf(K,u) has two or more different
relations between two symbols then the same is valid in G, which contradicts the
assumption. o

One could think u to be any substring of a sentential form occurring in a rightmost
or a leftmost derivation, respectively. The following examples show that in such a
case we can get kernel-free subgrammars which are more complicated than the total
grammar.

Example 2: We consider the following grammar G:
Z::=3 E 8 E:c=E+T 1! T Te:=T = F | F Fre=(E) 14

G is known to be LR(1). There are sentential forms of rightmost derivations a sub-
string of which is £ {+ i}n, n2o, It can easily be shown that for each n 2
Ge(18, E {+ 11") s LR(2n+1) but not LR(2n). ©

Example 3: The grammar with the productions
Z::=%3 L § L:z=NAC N::=M B M::i=K A K::=B

is an operator and a simple precedence grammar. The string MBA is a substring of the
rightmost sentential form gMBACZ. Because of the axiom production ZMBA::=MBA of

Gf 1= Gf({S},MBA) we get the relation B éf A in addition to the relation B->. A

such that Gf is neither a simple nor an operator precedence grammar. ©

.F

3. Simplification of parsing

The results of section 2 suggest that the use of coarse structures simplifies parsing
of context-free grammars. In order to demonstrate the power of this strategy we
consider the following grammar:

Example 4: o. Z::=A 3, Lii=l+] 8. Bi:=B+C
1. A::={L then Bl 4. L::=I 9. B::=C
2. Anz=[B if L1 5. L::=A lo. B::=A
6. I::=1 11, Ci:=i

7. Li:=(L) 12, C::=(B)

186

Since the sublanguages for L and B are identical the grammar is neither LR nor LL.

We choose the kernel alphabet K = {[,], if, then} which determines a simple deter-

ministic K-coarse structure. The only two kernel-free subgrammars are Gf(K,L) and
G.(K,B) both of which are (1,0)-BRC. o

Simplifying the syntactic analysis in this way we arrive at the following problem:
Given a unique context-free grammar G we wish to parse it by means of a simple
deterministic K~coarse structure such that all kernel-free subgrammars are of a
given "simple" grammar class X. Because parsing of coarse structures is oriented
bottom-up on principal we will choose only bottom-up classes, e.g.

X € {LR(k), (m,n)~BRC / m,n,kz0} .

In order to find an appropriate kernel alphabet K we proceed as follows:

(1) We construct an X-parser for G,

(2) If G is an X-grammar we are done. Otherwise several ambiguous entries will
occur in the parsing table. These entries correspond to a set of eritical pairs
of productions. Now we may try to construct a simple deterministic K-coarse
structure such that none of its kernel-free subgrammars contains a critical pair
of productions, i.e. the K-coarse structure separates the critical pairs of
productions.

To that end we consider the augmented grammar G' derived from G [1]as a directed
graph Gr(G') as follows [6]:

Each production is a vertex in Gr(G'). Let p = N:i:=n, p' = M::i=m € P, then there is
an arc from p to p' iff n = aMb for some a,b € v, Note that for a reduced augmented
grammar G' the graph Gr{G') is connected where a vertex corresponding to the axiom
production Z'::=Z is an ancestor of each other vertex. A K-coarse structure divides
the grammar G' into several kernel-free subgrammars. This is represented in Gr(G') as
follows: (i) Each vertex corresponding to a kernel production is deleted from Gr(G')
together with each arc starting or ending in this vertex; Gr(G') is divided into a
set of connected subgraphs. (ii) For each kernel-free subgrammar with axiom u deter-
mined by the K-coarse structure we have to insert a vertex corresponding to the axiom
production ZG::=u and all arcs according to the above definition. Thus in general
some connected subgraphs are recombined into one connected subgraph. Changing some
nonterminals N into N' and introducing some new productions according to the defi-
nition of kernel-free subgrammars does not change the subgraphs essentially. Now a
kernel-free subgrammar with axjom u consists of all productions corresponding to
vertices which are descendants of the vertex corresponding to Zu::=u.

In constructing an appropriate K-coarse structure we have to determine for each
critical pair (p,p') of productions sets of vertices such that in the subgraph of
Gr(G') without these vertices there is no common ancester of p and p'. Such sets
of vertices are called separating sets. Because we are interested only in simple

187

deterministic K-coarse structures some of the separating sets for a critical pair

of productions are rejected from the beginning. Now we have to construct a kernel
alphabet K such that CS(G',K) is simple and deterministic and the set of the kernel
productions contains the productions corresponding to a separating set for each
critical pair of productions. For details c¢f. [31. In the last step we have to
guarantee that no axiom production will recombine two productions of a critical pair.

Example 5: From example 4 we derive the following graph Gr(G'):

3.4 ke

For each X € {(m,k)-BRC,LR(k) / m=l,k>0} we have the two c¢critical pairs of
productions: (5.,10.) and (6.,11.). A separating set for both is{1.,2.} .

Looking for a simpie deterministic K-coarse structure with 1. and 2. as kernel
productions we get the one given in example 4. The vertices corresponding to the two
axiom productions ZL::=L and ZB::=B are ancestors of only the left and right framed
part of the graph, respectively. n

4, Syntactic Error Recovery

In the philosophy of top-down programming a programmer chooses a certain construct
such as a block or a Joop which has to do something, and in a second step he develops
this construct. In general such constructs are characterized by special delimiters,
i.e. in our terminology by special kernel patterns. This way of program development
in mind we suppose that kernel tokens are syntactically more important than other
symbols. Using a simple deterministic K-coarse structure for syntactic error reco-

188

very in connection with bottom-up parsing yields the following advantages:

(i) syntactic errors are separated on two levels: errors in the coarse structure
where we have to repair the hK-image of the program, and errors in certain sub-
grammars where error recovery is often much simpler than in the total grammar;

(i1) if efficiency doesn't matter, e.g. in a separate syntax check, we can first build
up and eventually repair the syntactic structure of the kernel tokens. If a reason-
able repair is impossible we can stop the parse of that particular part of the pro-
gram asking the programmer for correction of this error. Thus in the case of serious
errors 1ike missing ends we avoid the usual 1isting of senseless error messages

Tike "identifier not declared" etc.;

(ii1) looking for a kernel pattern enclosing the error position we use, in contrast
to most of the other error recovery methods, global rather than local context for
repairing the error.

In order to find a kernel pattern as close to the error position as possible we
favour Targe kernel alphabets.

If a bottom-up parser detects some syntax error it has to search in the stack for

the longest string An"’Al of kernel tokens which is a prefix of a kernel pattern.
Three cases are possible:

(a) it finds kernel tokens Bl""’Bm in the input such that Av"'AlBl"‘Bm (Y=n) is a
kernel pattern. The error position is between A1 and By

{b) some of the kernel tokens of the input form a kernel pattern which has to be
reduced before the pattern prefix in the stack can be completed;

{c) no kernel pattern enclosing the error position can be found because there is no
prefix of a kernel pattern or this prefix cannot be completed, i.e. an error in the
coarse structure is detected.

In the first case the kernel~free subgrammar in which the error occurs is uniquely
determined and an appropriate repairing algorithm can be used.

Example 6: We consider the following erroneous sentences of the grammar of example 1.

(1) begin id = id + id; type id = id. id := id + id end
4

(2) begin id = id + id; id := id + id end
4

In both cases the error position is between the second and the third symbol of the
program. We use the K-coarse structure given in example 1. Then in program {1} we
find the enclosing kernel pattern begin . end indicating that the error has to
be corrected in the kernel-free subgrammar Gf(K,<dec1>). Correcting this error a
type will be inserted after the begin symbol. In program (2) the enclosing kernel
pattern is begin end and the correction has to take place in the kernel-free

189

subgrammar Gf(K,<stmt 1ist>) where the minimum distance correction will be changing
the "=" to a ":=". Thus we can distinguish the two locally identical error situations
by means of kernel context. A third type of such an error is given in example 7. ©

After having reduced some kernel patterns case{b) will lead to case(a) or case(c).

If there is an error in the coarse structure (case(c)) we have to repair the syntac-
tic structure of the kernel tokens. This can be done using a local correction method
for kernel tokens similar to that introduced in [2] or a modification of the algorithm
of [5] generalized from pairs of brackets to patterns. As another possibility we
present the application of a generalized precedence method in parsing the kernel
tokens together with an appropriate error recovery method.

Let K< V be a kernel alphabet of the context-free grammar G = (V,T,P,Z) and
A,B € V. Then we define the following relations on V [4]:

A olKl B 3¢ Fue (V-K*® 3vev® such that B:i=uhv € P

A oK} B 3 FueVv® ave (- K)X such that B::=uAv € P

A ~[KI B :=x 3u€ (V-K* av,weV® 3C €N such that C::=vAuBw € P

We denote the transitive {transitive and reflexive) closure of alkl and wlKl by
@Kl and o[kl (&[(KI and &IK]). Using products of relations and the inverse

()'1 of a relation we define the generalized precedence relations for kernel tokens
as follows:

HK] = ~IKD N (K % K)
<[K] = ~IKI@IKD) L 0 (K x K)
SIK] := BIKI ~IK] (BIK1) 7L a (K x K)

Now we can parse the hK—image of a program according to a usual precedence method

with the only modification that a reduction will cause pushing the left hand side

L onto the stack only if L is a kernel token. In addition an error recovery method
for precedence parsers {e.g. [7]) may be applied.

It should be noted that we have only to require disjointness between =[K] and
2[K] U <[K] (weak precedence), since in a simple K-coarse structure no kernel pattern
can be a postfix of another kernel pattern.

A1l blank entries in our precedence matrix correspond to the empty relation © of
[7]. As correcting actions we admit deletion or insertion of a kernel token. IF in
one situation both corrections are possible the decision about the right correction
can sometimes be made by Jooking for special symbols in the kernel-free environment.

The following example will i1lustrate the proposed method for error recovery of

190

kernel tokens:

Example 7: First we give the table of the generalized precedence relations for the
grammar and the kernel alphabet given in example 1. For brevity we omit the [KI.

begin . end <if clause> if | then| else | fi

begin < & = <= <
< =

end > > > > > | >
<if clauses < < < 2 =
if z
then e B S D R
else 2
i > > > > > >

Consider the following erroneous program:

begin id = id + id then begin if id = id + id; type id .
4

if id = id 1id := id + id else id := id fi; id := id end fi end

The first error again occurs between the second and third symbol of the program.

Looking for an enclosing kernel pattern we detect an error in the coarse structure.
According to our precedence algorithm the first begin 1is pushed onto the stack.

The empty relation holds between begin and then. There are two equally expensive
corrections: deleting then or inserting if in front of then. In the first case
the kernel-free string preceeding then must yield a statement in which a "
has to occur, Because this is not the case we choose the second alternative.If in

some situation no appropriate correction can be done we stack the element and try

to make a minimum distance correction when an erroneous right hand side is to be
reduced. (Cf. the correction of the first if 1in our example.) We get the following
structure for our example:

F 4
if l delete ‘ then

<if clause> <if clause

begin ® then begin if . if @ else fi end fi end
+

191
The completely corrected program will be given in example 8. o

The only information we get from an algorithm correcting the kernel tokens is the
correction point within the hK-image of the program. No problem arises when the
algorithm decides to delete a kernel token., But if we have to insert a token Achin
order to yield the pattern Al...%m we do not know its exact position in the program.
Let N::=A1u1A2...um_lAm be the corresponding kernel production. If the density of
further errors in the fine structure is not too large we have some criteria to
determine the exact position where Ag, is to be inserted.

For l<gp<m we parse a prefix of the substring s occuring between A -1 and A
using the kernel-free subgrammar Gl := Gf(K,u&_l). If we reach the str1ng U1 we
have to test the next k dinput symbols b = BI"‘Bk {k=1}. There are three cases:

(1) b GFOHOWGI(uv_l) and b £ ﬁrstﬁz(u) where

Gl() Gl

Follow ={z/1, EZ§E> aux and z € First,"(u)} and 62 := Gf(K,u@).

Then parsing in Gl is continued.

(2) b ¢ Followdl(u 1) and bE FirsteZ(u o)+ A is to be inserted and the
remainder of s 15 to be parsed occord1ng to G2.

(3) be FoHowk (u -) n Firstk (ue). There is no exact criterium where A(.
should be 1nserted.

For p=m Firstiz(uv) must be replaced by Fo?]owﬁ3(N) with 63 := Gf(K,Z).

Because we have not a parser for Gf(K,ul) working from right to left we use for

g#= 1 a stronger condition, for example: the terminal alphabet of Gf(K,ul} does not
contain & symbol preceeding the left hand side N in any sentential form of G. Note
that this set as well as Follow and First can easily be constructed form the
given (sub-)grammars [1].

If we consider the production <blocks::= begin <stmt Tist> end of the example
grammar we get a formal criterium why it is impossible to determine the exact place
where to insert a missing end :

For a1l k=1 we have Fo1lowﬁl(<stmt Tist>) = Fo11ow§2(<b1ock>)
with G1 := Gf(K,<stmt Tist>) and G2 := Gf(K,<b1ock>).

Exampie 8: During the parse of the fine structure we get the following corrections
for the program of example 7:

1. The missing if s to be inserted after the begin.
2. In Gf(K,<dec1>J a type will be inserted at the place of the deleted if.
3. The missing then 1is to be inserted after "id = id", since

192

id
Gl :

il

4 Fol?owgl(<expﬁ>) and id := € Fo1low22(<if clause>) with

n

Gf(K,<expr>) and G2 := Gf(K,<b10ck>).
Thus we get the following corrected program:

begin if id = id + id then begin type id = id + id; type id .
if id = 1d then id := id + id else 1d := id fi; id := id end i end o

Conclusion

Using the term "coarse structure of a context-free grammar" in accordance with a
natural understanding and parsing of programs we have treated two of its main appli-
cations: we showed that two-level parsing by means of coarse structures can simplify
the parsing process and that the concept of coarse structures can advantageously be
used for syntax ervor recovery using global rather than local context of the error
position.

Acknowledgement
The author is grateful to J. Ciesinger and W. Lahner for helpful discussions.

References

[1] AHO,A.V., ULLMAN,J.D.: The Theory of Parsing, Translation, and Compiling,
Vol. I, Prentice Hall, Inc., Englewood Cliffs, N.J., 1972

[2] CIESINGER,J.: Generating error recovery in a compiler generating system,
Informatik Fachberichte 1, 4. GI-Fachtagung liber Programmier-
sprachen, 1976, 185-193

{31 DIETERICH,E.-W.: Grobstrukturen kontextfreier Grammatiken, Fachbereich
Mathematik der TU Minchen, Dissertation, 1976

[4] EICKEL,J.: Methoden der syntaktischen Analyse bei formalen Sprachen, Lecture
Notes in Economics and Mathematical Systems, Vol. 78, 1972, 37-53

[5] MEERTENS,L.G.TH., VAN VLIET,J.C.: Repairing the paranthesis skeleton of
Algol 68 programs, Stichting mathematisch centrum, Amsterdam,
IW 2/73, 1973

[6] VOLLMERHAUS,W.: Die Zerlegung von kontextfrejen Semi-Thue-Systemen mit Anwen-
dung auf das Analyseproblem kontextfreier Sprachen, Beitrége zur
Linguistik und Informationsverarbeitung, 12, 1967, 23-35

[7] WIRTH,N.: PL360, A Programming Language for the 360 Computers, JACM 15.1,
1968, 37-74

