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i. Introduction 

We consider and ccnpare macro granv~urs, L mystems, stack automata and topdown 

tree transducers: extensions of context-free gran~ars which allow certain kinds of 

copying. Macro grammars are context-free gr~s in which the non-terminals have 

parameters; in particular in 'basic' macro grammars the actual parameters of a non- 

terminal are terminal strings (i.e. nonterminals are not nested). We also consider 

'extended' macro grammars in which the actual parameters may be finite sets of terminal 

strings. ETOL systems are like context-free grammars, but the rewriting is done in p~- 

rallel and several independent sets of productions are allowed. Stack automata are 

pushdown autcmata that may also read in the stack. Topdown tree transducers transform 

the set of derivation trees of a context-free gr~. The language of yields of the 

resulting set of trees is called a tree transformation language. 

Several relationships between these devices are known: in both macro granmars and 

L-syst~ns the operation of iterated substitution plays a role, macro languages can 

be recognized by 'nested stack autamata', nonerasing stack languages are special EIOL 

languages, ETOL languages are beth special tree transformation languages and special 

macro languages, and finally macro graumars generate the yields of context-free tree 

languages. 

In this paper we continue the cc~ison of these devices. We show that the addi- 

tional facilities present in the basic macro gr~s, the ETOL syst~ns and the stack 

autcmata are independent in the sense that the corresponding classes of languages are 

incomparable. In particular we present a language which is both in Basic and Stack but 

is not even a tree transformation language (this also shows that the context-free tree 

grarsaars are independent frc~ the topdown tree transducers as string language genera- 

ting systems). We then prove that Basic, ETOL and Stack are contained in the class EB 

of extended basic macro languages. Results analogous to those for Stack are given on 

the operation of substitution in EB. It follows that EB is a full AFL which is not 

substitution closed. We finally show that the ~uallest full hyper-AFL (i.e. full AFL 

closed under iterated substitution) containing EB lies properly between EB and the 

class of all (OI) macro languages. This shows that OI (= the class of indexed languages) 

cannot be reached from Basic or Stack by full hyper-AFL operations. 

Proofs of these results will only be sketched; full proofs will appear elsewhere. 

2. Te/wainolo~ and facts 

We assume the reader to be familiar with macro grammars [16], and more or less 
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with iterated substitution [26], stack autcraata [18, 19] and tree transducers [25]. 

What follows is meant to fix same notation and mention sane facts. 

The length of a string is denoted by lwl ; Ill = 0. 

An (Of or IO) macro grammar G consists of an alphabet Z of terminals, an alphabet 

N of nonterminals each of which has a specified rank (i.e. a nonnegative ntmtber of 

arguments), an initial nonterminal S of rank 0, and a finite set R of rules of the 

form A(Xl,...,Xn) ÷ t where A is a nonterminal of rank n, xl,...,x n are special symbols 

called variables and t is a term formed from {Xl,...,Xn} u Z u {I} by concatenation 

and the use of the nonterminals as formal operation symbols. The rules are applied in 

the obvious (outside-in or inside-out respectively)way and L(G) denotes the generated 

language. For formal definitions see [16]. In a basic macro granraar the terms in right- 

hand sides of rules do not have nested nonterminals and in a linear basic macro granmar 

they have at most one nonterminal. The classes of OI, IO, basic and linear basic macro 

languages are denoted by IO, OI, Basic and LB respectively. An extended macro 9ra~usx 

(cf. [9]) is a macro graranar in which the operation of union, denoted by +, and the 

empty set, denoted by 9, maY also used in terms. Thus, during derivation, (represen- 

tations of) finite sets of terms are stored in the arguments and, at the end of the 

derivation, (the representation of) a finite set of terminal strings is produced; the 

union of these sets is the language generated. The classes of extended basic and 

linear basic languages are denoted by EB and ELB respectively. Clearly each extended 

basic macro granmar can be simulated by an ordinary OI macro g r ~  which uses 

additional nonterminals + and @ (with rules +(x,y) ÷ x and +(x,y) ÷ y for +, and no 

rules for 9).Thus EB c OI. As an example, the EB (even ELB) granmsr G with rules 

S +A(@), A(x) + B(x,l), A(x) ÷x, B(x,y) ÷ aB(x,ya) for all a e Z , and 

B(x,y) ÷~A(x+y) generates L(G) = {Wl#~W2~...~Wn~W I n >_ I, w c {w I ..... Wn}}. 

For a finite set U of substitutions and a language L we define 

U*(L) = u{f n ... fl(L) I n -> 0, fi ~ U}. U* is called an iterated substitution. For 

a family K of languages we define H(K) = {U*(L) n I L e K, U is a finite set of 

K-substitutions and Z is an alphabet}, where a K-substitution is a substitution that 

maps symbols into languages of K. A construct (V,Z,U,L) with L c_ V* is called a K- 

iteration grammar: a generalization of ETOL system (see for instance [26]). A family 

K is called a full hyper-AFL if it is a full AFL closed under iterated substitution 

(i.e. H(K) c_ K). The families H(FIN) and H(ONE), where FIN and ONE are the finite and 

the singleton languages, are denoted by ETOL and EDTOL respectively. 

For the definition of (one-way nondeterministic) stack autc~aton, nonerasing 

stack automaton and checking stack autc~aton we refer to [18, 19]. The corresponding 

classes of languages will be denoted by Stack, NEStack and CStack respectively. 

For the definition of a topdown tree transducer we refer to [25, ii, 7]. The 

family of tree transformation languages (i.e. yields of images of the recognizable 

tree languages under topdown tree transducers)is denoted by yD 1 , and the subfamily 

of deterministic tree transformation languages by ydetD I. We note that ydetD 1 equals 
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the class of ranges of generalized syntax directed translations [3]. 

We now list a few facts taken from the literature, which establish sc~ne connec- 

tions between the above mentioned concepts. 

Known facts 

(i) ETOL and OI are full hyper-AFLs [8, 9, 263. 

(2) ETOL = ELB and ~ L  = LB [9], hence ETOL c OI. 

(3) Stack c OI [2, 16] and NEStack c ETOL [223. 

(4) ETOL c_ yD 1 and I~3TOL c ydetD 1 [12]. 

(5) All inclusions in (1)-(4) are proper [i0, 19, 15]. 

We finally refer to [153 for the properties P2 and P3 of a language L. Intuitively 

P2 says that in a string from L one cannot find two nonoverlapping substrings which 

may be changed into other substrings indQpendem~tly (without leaving L). P3 says that 

one cannot find two different nonoverlapping substrings that may be used in place of 

each other (whithout leaving L). Thus P2 implies P3. 

3. The language of cuts 

In this section we present a language L ° which is both in Basic and Stack but not 

in yD 1 (and hence not in ETOL, cf. section 2). It follows that OI and yD 1 are inccmpa- 

rable. At the end of the section we put several language families into an inclusion 

diagram. 

L O will represent the set of all cuts through the infinite binary tree 

1 °'" 

0 i ~  "'" 

A CUt is a finite nonanpty sequence of words over {0, i} defined recdrsively as 

follows: (i) <I> is a cut, (ii) if <v I ..... Vk> and <w I .... ,Wn> are cuts, then so is 

<0Vl,...,0v k, lWl,...,lWn>. The strings w i in a cut <Wl,...,Wn > are called nodes. An 

example of a cut, corresponding to the above picture, is <00, 010, 011, i0, ii>. A 

cut is also called a ccmplete binary code. 

Definition. Let a and b be symbols diffement frcm 0 and i. 

L 0 = {aWlO~711aw2Ob~21.-.awnObWn I ] <w I ..... Wn> is a cut}. 

Note that if <w I .... ,Wn> is a cut, then so is <Wl0,Wll,...,Wn0,Wnl>. 

L O is generated by the basic macro grarmmr with rules S ÷ A(1), A(x) ÷ A(x0)A(xl), 



224 

A(x) ÷ ax0bxl. 

L O can easily be recognized by a stack au~ton that stores the consecutive nodes 

of a cut corresponding to a word of L O in its stack (one at a time). 

L O has property P3 <to see this one needs, apart frc~ the special form of L o, 

-lwit 
that, for any cut <Wl,...,Wn>0 the nodes w i are all different and Z 2 = i; 

i=l 

moreover one needs that for given integers kl,...,k n there is at most one cut 

<w 1 ..... Wn> such that lwil = k i for I _< i -< n). Theore~n 5 of [15] says that any 

language in yD 1 with property P3 is in ydetD 1 . Thus it now suffices to show that 

L o ~ ydetD 1 . In [24] an intercalation lemma for tree transducer languages is proved 

that in a straightforward way gives rise to the following intercalation lerana for 

ydetD I- for each L in ydetD 1 there is an integer p such that every z in L longer than 

p can be written as z = zl.o.Z k and (i) Izil -< p for all 1 _< i _< k, and (ii) for 

every N there are strings v I .... ,v k such that Vl...v k £ L, IVl...Vkl > N and 

min(vi) = min(z i) for all 1 <_ i -< k (where, for a string w, min(w) denotes the set 

of symbols occuring in w). Thus, assuming that L ° is in ydetD 1 , every long string of 

L O can be divided into small substrings which can be pumped up keeping the same rain 

alphabet.Take z = aWl0bWll...aWn0h~nl in L O with lwil > p for all 1 _< i _< n. Then 

pumping up z I ,..., z k can only influence the O's and l's. This would give arbitrary 

long cuts with the same number (2n) of nodes. This is clearly a contradiction. Hence 

Lo ~1" 
We note that the reader interested only in ETOL can use Theorem 1 of [15] instead, 

and give the (easy) proof for the above intercalation len1~a for EDTOL. 

The existence of L O solves the problem left open in [15] whether OI c ~©i" Hence 

0I and yD 1 are incomparable (cf. [i0, 15]); in other words, the classes of context- 

free tree languages and ranges of topdown finite state tree transducers are incc~parabie 

even when yields are taken. We conjecture that L O is not in any yD n (i.e. cannot be 

obtained by the application of any sequence of tree transducers, cf. [7]). 

We can now draw the following inclusion diagram, in which Td(REG) denotes the 

class of images of the regular languages under de~nistic 2-way gsm's (see [21], 

where it is shown that T d (REG) _c CStack). 

IO OI 

EDTOL NEStack 

\ ' 
Cstack 

Td(REG) 
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The inclusions are clear apart from the inclusion T d (REG) c_ EDTOL which follows 

from the fact that Td(REG) is closed under copying [21] and a copying theorem for 

ETOL (Theorem 1 of [15]). Inccrmparabilities and proper inclusions follow frcm 

(i) L O ~ (Basic n Stack) - ETOL (proved above). 
2 

(2) {anb n c n [ n >- i} e I~ViOL - Stack (see [23]). 

(3) {w £ {a,b}* [ the number of b's in w is not prime} is in CStack [19], but not in 

IO; the latter follows by observing that the proof in [16] of the existence of a 

language in OI - IO proves in fact that if L c b* and h -I(L) ~ IO (where h(a) = l 

and h(b) = b), then L is regular. 

(4) the existence of a language in IO - OI [16]. 
2 

(5) {a n I n >- i} ~ NEStack - CStack [19]. 

4. Extended basic macro languages 

In this section we show several properties of EB, in particular the inclusion 

of Stack in EB and a result on substitution of EB languages. We first note that by 

the previous section the following diagram is correct (cf. section 2): 

When macro granmars are viewed as nondeterministic 

recursive program schemas (see [14]), the notion of 

"extendendness" corresponds to allowing choices (tests) 

in the parameters of a procedure call. Thus the diagram 

shows that for nonnested recursive program schemes this 

feature extends their ccm[outational power (independent 

of linearity). 

We extend EB granmars still more as follows. Let RB denote the class of languages 

generated by basic macro gr~s in which union, concatenation and moreover Klee~ne 

star are used as operations. Thus regular languages are stored in the ar~nts of a 

nonterminal rather than finite ones as in EB. 

We now list some facts about EB together with sketches of proof. 

(i) RB = EB. 

Proof. Any finite approximation of a regular language can be computed in some 

additional argl~ments of a nonte_mninai. 

(2) EB is a full AFL. 

Proof. u, •, * as for context-free gran~ars; regular substitution using (I) ; nR 

by a standard proof (cf [16]). 

(3) Stack c EB. 

Proof. By (i) and (2) it suffices to show that a full AFL-generator of Stack 

is in RB. The full generator of Stack given in [17, Example 5.3.2] is generated by 

the following RB granmmr which remembers the possible sequences of stack-reading in- 

structions in the ar~t of T: 

S + T(}~), T(x) + I, 
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(4) Let~ for languages L 1 and L 2 over disjoint alphabets, TL2 (L I) denote the 

result of substituting aL 2 for each symbol a in L I. If TL2(L I) c EB, then L 1 is context- 

free or L 2 ( ELB. 

Proof (cf. [19]). Consider the ELB grarmmr G' obtained by replacing each rule 

A(...) ÷ BI(...)B2(...)...Bn(...) of the EB grammar G generating r L (LI) by the n 

rules A(...) + Bi(...). Either L 2 can be obtained from L(G') by a 2 finite state 

transducer producing all words of L 2 occuring between symbols of L 1 (and ELB = ETOL 

is a full AFL); or G can be changed into a context-free granmmr generating L 1 , since 

it only has to remember a finite amount of information in its arguments. 

(5) EB is not substitution closed. 

Proof. Let L 1 = {a 2n [ n -> i} ~ EB - CF and L 2 = L o frc~/ section 2 which is in 

EB- ELB. Then (4) implies that T L (L I) / EB. 

(6) The converse of (4) also ~olds. In fact EB is closed under substitution into 

context-free languages and under substitution by ELB languages. 

Proof. By straightforward grammatical constructions. 

We note that results (4, 5, 6) are similar to those in [19] concerning Stack 

and CStack. 

5. A full hyper-AFL between EB and OI 

Consider the family H(EB). Since EB is a full AFL, H(EB) is the smallest full 

hype.r-AFL containing EB [4]. Since each full hyper-AFL is substitution closed, it 

follows that EB $ H(EB). We shall show that H(EB) $ OI. The main technique is that 

of copying as used in E27, i0, 15]. 

(i) If L has property P2 and L ~ H(EB), then L ~ LB. 

Proof. Property P2 forces each EB granmar the language of which is used in the 

substitutions whose iteration gives L, to be linear. Hence L ~ H(ELB). Since Ei~ is 

a full hyper-AFL (cf. section 2), L ~ ELB (= ETOL). Hence, by Theorem 1 of [15], 

L ~ EDTOL = LB. 

(2) If L ~ Basic, then {w~w R I w £ L} ~ OI n IO, where w R is the reverse of w. 

Proof. by a gran~atical construction in which the sentential form 

A 1 (Sl)A2(s 2) ...An(S n) of t/]e basic macro gran~nar, where s i is t/~e sequence of arguments 

of Ai, is represented as Al(Sl,S I' ,A2(s2,s2' ,A3(... ,An(Sn,Sn') ...) ) ) in the new grarmmr, 

where s.' contains the reverses of the elements of s.. 
1 1 

(3) H(EB) $ Of. 

Proof. Let L 1 = {w~kw R I w E L o} where L O { Basic - ETOL is the one of section 3. 

By (2), L 1 ~ OI. Since L 1 has property P2, L 1 e H(EB) would in,ply L 1 6 ETOL bv (i). 

We thus obtain the following diagram. 
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OI 

I 
H(EB) 

! 
EB 

Basic ETOL Stack 

This diagram solves the question in [16] whether OI is 

the smallest full AFL containing Basic, it shows the 

existence of a full hyper-AFL between the full h _yper-AFLs 

ETOL and OI, and it in, roves the result in [20] that 

OI cannot be reached from Stack by nested iterated sub- 

stitution (in fact the proof in [20] sh~s that the 

smallest super-AFL containing Stack is properly contai~led 

in H (EB)) . 

Remark i. An indexed granmar is restricted if after consumption of a flag no 

new flags can be created (see [i], last page, for a formal definition). It can be 

shown that the class of restricted indexed languages is equal to EB. The inclusion of 

Stack in this class was shown in [2]. The result of this section shows that not all 

indexed languages can be obtained from the restricted indexed languages by hyper-~=L 

operations. 

Remark 2. A reasoning similar to the one in this section shows that IO cannot 

be reached from Basic by iterated 'deterministic' substitution (cf. [5]; in the 

notation of that paper: ~ (CF) $ ~ (Basic) $ IO, where L ° and L 1 are the respective 

counterexamples. 

6. Future work 

(I) In [22] the cs-pd machine is defined which recognizes precisely ETOL (= ELB). 

It is a checking stack autcrnaton with a restricted facility of writing on its stack. 

A good machine for EB is the s-pd machine, which is a stack autmmaton with the same 

-writing facility (the machine may write on a second track of its stack in a pushdown 

fashion: the reading head points at the top of pushdown track whereas its bottctn is 

at the top of the stack). This explains the similarity of the results in [19] and 

those in section 4. The above s-pd machines are the subject of [13]. 

(2) For any family K of languages one can define Basic (K) -graranars similar to 

extended basic granrmmrs but with languages frcm K rather than finite ones. 

Thus EB = Basic (FIN) = RB = Basic(REG) . Similarly LB(K)-graranars can be defined. 

Generalizing the proof in [9] that ETOL = ELB, it follows that under weak restrictions 

on K, LB(K) = H(K). Let us call a full AFL K such that Basic(K) c K, a full basic-AFL 

(rather than hyphyper-AFL). It can be shown that the smallest full basic-AFL is properly 

contained in OI (L 1 of section 5 being the counterexample). It is conjectured that it 

is the union of a proper hierarchy of full h~per-AFLs. These "basic extensions" are 

the subject of [6]. 
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