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I .  introduction 

"One of the popular methods for retrieving information by its 'name' is 

to store the names in a binary tree. We are given n names BI,B2,...,B n 

and 2n+I frequencies B I , .... B n, a o,...,a n with ZI3.+Za.=I.I J Here B.1 is 

the frequency of encountering name B. and a. is the frequency of en- 
i j 

countering a name which lies between B.j and Bj+I, a ° and a n have ob- 

vious interpretations" [8]. 

A binary search tree T is a tree with n interior nodes (nodes having 

two sons), which we denote by circles, and n+1 leaves, which we denote 

by squares. The interior nodes are labelled by the B. in increasing 
I 

order from left to right and the leaves are labelled by the intervals 

(Bj,Bj+ I) in increasing order from left to right. Let b i be the dis- 

tance of interior node B. from the root and let a. be the distance of 
I l 

leaf (Bj,Bj+ I) from the root. To retrieve a name X,b.+1~ comparisons are 

needed if X=B and a. comparisons are required if B <X<Bj+ I. Therefore 
i , j 

we define the weighted path length of tree T as : 

n n 

P = :Z B i (b +I)+ Z: a.a. 
i=I i j=o J J 

A large number of papers was written on the subject of constructing 

optimal or nearly optimal binary search trees [1,2,3,4,5,6,7,8,1o,11, 

13,16]. We quote two results : 

Jt is possible to construct a tree T, even in time linear in the number 

of nodes, such that 

b. < log I/B. 
I ~ I 

and 

a. < log I/a. + 2 j -- j 
[2,12]. Furthermore these bounds are almost sharp for most nodes and 

leaves [5,17]. More precisely, for any d, I < d < ~ and h > o, let 

L h = 43; aj ~ (log(]/aj)-h)/d~ 



324 

a n d  

Then 

= _ - h + l o g ( 1 - 2 " 2 - d ) ) / d }  N h {i;b i < (log I/~ i 

E o~. + E B .  < 2 - h  
jEL J iEN i -- 

c c 

i.e. only a small percentage of the nodes can be considerably higher in 

the tree than stated in the upper bound. These results show that the 

best we can expect from binary search trees in "logarithmic" behaviour. 

In many app]ications the access frequencies are 

a) not known in advance 

b) changing over time 

and therefore (nearly) optimal binary search trees are not readily 

applicable. In this paper we introduce D-trees (dynamic-trees) in an 

attempt to resolve this difficulty and thus answer a challenge of 

Knuth [8] : "A harder problem, but perhaps solvable, is to devise an 

algorithm which keeps its frequency counts empirically, maintaining 

the tree in optimum form depending on the past history of the searches. 

Names occur most frequently gradually move towards the root, etc.". 

With every node B i and leaf(Bj,Bj+ I) we associate its frequency count 

Pi and qj respectively. Here Pi is the number of searches for X=B.j 

performed so far and qj is the number of searches for XE(Bj,Bj+I) per- 

formed so far. We use W=ZPi+Zqj for the total number of searches up to 

this point of time. Then Bi=Pi/W(aj=qj/W) is the relative access fre- 

quency of node B i (of leaf (Bj,Bj+I)) at this point of time. Our tree 

structure exhibits the following behaviour : 

I. The tree is always nearly optimal,1 i~e. a searchl for X=B., (XE(Bj,Bj+I)) 

can be carried out in time O(log /B i) (O(log /aj)). 

2. The time needed to update the tree structure is proportional to 

search time. This is archieved by restricting updating to the path 

from the root to the node (leaf) searched for. 

3. New names can be inserted in time O(min(n, }og W)). 

In section II we review some facts about weight-balanced trees [15]. 

In section III we introduce D-trees and show properties I) and 2) above. 

In section IV we sketch some extensions : average search time, compact 

D-trees and insertions of new names. 
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li. Preliminaries : Weight Balanced Trees. 

Nievergelt and Reingold introduced weight-balanced trees [15]. We re- 

view some of their definitions and adapt them for our purposes. In a 

binary tree every node has either two sons or no son at all. Nodes with 

no sons are called leaves. 

Definition : Let T be a b~nary tree. If T is a single leaf then the 

root-balance p(T) is I/2, otherwise we define p(T)=IT~I/ITI, where IT~I 

is the number of leaves in the left subtree of T and ITI is the number 

of leaves in tree T. 

Definition : A binary tree T is said to be of bounded balance ~, or in 

the set BB[a], for 0 < ~ < I/2, if and only if 

1 .  ~ < p(T) < 1-a 

2. T is a single leaf or both subtrees are of bounded balance ~. 

The depth of a tree T of bounded balance ~ is O(logITl). We add a leaf 

to a tree T by replacing a leaf by a tree consisting of one node and 

two leaves. "if upon the addition of a leaf to a tree in BB[~] the 

tree becomes unbalanced relative to ~, that is, some subtree of T has 

root~balance outside the range [~I-~] then that subtree can be rebalan- 

ced by a rotation or a double rotation. In Fig. I we have used squares 

to represent nodes, and triang]es to represent subtrees; the root-balan- 

ce is given beside each node". Symmetrical variants of the operations 

exist. 

Double 

Rotation f ~ 1 + (  I_B I)B2S3 

Fig. I 
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Fact (Nievergelt and Reingold) : If a < I-V2/2 and the insertion of a 

leaf in a tree in BB[a] causes a subtree T of that tree to have root- 

balance less than a, T can be rebalanced by performing one of the two 

transformations shown above. More precisely let B 2 denote the balance 

of the right subtree of T after the insertion has been done. If 

B 2 < (1-2a)/(l-a) then a rotation will rebalance T, otherwise a double 

rotation will rebalance T. 

The search time in weight-balanced trees is proportional to the loga- 

rithm of the number of leaves. Updating the structure upon insertion 

(or deletion) of a leaf can be done in time proportional to the search 

time. in the next section we adapt weight-balanced trees to binary 

search trees. 

III. D-Trees : The basic scheme 

In this chapter we restrict the discussion to the case that only sear- 

ches for the leaves of a binary search tree are performed~ Let qj be 

the number of searches for some XE(Bj,Bj+I), O~j~n, performed up to 

now and let W=~qj be the total number of searches performed so far. 

From now on a is fixed, O<a~1-V2/2. 

Let T be a tree in BB[a] with W leaves. The leaves Of T are labelled 

from left to right according to the following rule. The first qo leaves 

are labelled with (,BI) , the next ql leaves are labelled with (BI,B2),... 

The idea of dublicating leaves appears implicitely in [3,13] and ex- 

pl~citely in [Io]. 

Definition : 

a) A node v of T is a j-node, O~j~n, iff all leaves in the subtree with 

root v are labelled with (Bj,Bj+ I) and v's father does not have this 

property. 

b) A node v of T is the j-joint, if all leaves labelled with (Bj,Bj+ I) 

are descendants of v and neither of v's sons has this property. 

In general, the j-joint is not a j-node. If it is, then there is just 

one j-node. Fig. 2 shows the relative position of j-nodes and the 

j-joint. 
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j-joTnt 

O~ ~0 

~ I I 

J ~ P "  

j-nodes 

Fig. 2 : Dotted lines ... denote zero or more tree edges. 

Definition • 

of the leaves labelled with (Bj,Bj+I) a) Consider the j-joint v. qi 
II are left of v and q. are right of v. If q'.>q': then the j-node of 
J J-- J 

minimal depth to the left of v is active, otherwise the j-node of 

minimal depth to the right of v is active. 

b) The thickness th(v) of a node v is the number of leaves in the sub- 

tree with root v. 

Lemma I : 

Let a. be the depth of the active j-node in tree T. Then 
J 

aj~c I log I/aj+c2, where Cl=I/log(I/(l-a)), c2=1+c I and aj=qj/W. 

Proof : 

Let v be the active j-node, a. the depth of v and let w be the father 
J 

of v. We show th(w)~qj/2. If v is the j-joint then th(v)=qj and we are 

done. Otherwise v is a left or right descendant of the j-joint. Suppose 

v is a left descendant. Then ~ql/2~ of the leaves labelled with (Bj,Bj+ I) 

are in the left subtree of the j-joint. All of them are descendants of 

.-I. Since the tree T is of bounded w. Hence th(w)~qj/2, w has depth aj 

balance 
a.-1 

th(w) < (l-a) J • W 

and hence 
a.-1 

a. < 2 • (T-a) J j -- 
taking logarithms yields the result. 
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Exampi,,e : 

.<2 log 1/a .+3o Let ~ = I - V 2 / 2 .  Then ci=2~ c3=3 and hence aj_ J 

No analogue to lemma I exists if one takes height-balanced trees in- 

stead of weight-balanced trees as the underlying tree structure. 

Next we have to assign queries to the nodes of the tree T. The queries 

are of the form 

"if X < B. then go ]eft else go right" 
- -  j 

We assign queries in such a way as to direct a search for XE(Bj,Bj+ I) 

to the active j-node. Then lemma I assures us that search time is 

logarithmic and thus nearly optimal. 

Let v be any node of T. Let j be maximal with : the active j-node is 

left of v. Then we assign the query "i~f X < Bj+ I then left else right" 

to v. 

This rule assigns queries to all nodes of v. It is apparent that a 

search for XE(Bj,Bj+ I) is directed to the active j-node, Fig. 3 is 

Fig. 2 redrawn; this time the queries are shown. 

\ / 

j 

j 

\\ / \active 
\ / ~j-node / \ i / 

/ \  . ." 
r i~ .  3 

Before we describe searching in and updating of our tree structure we 

have to say more about the information stored in the nodes, 

I. All proper descendants of j-nodes are pruned. 

2. In each remaining node of the underlying tree of bounded balance 

we store 
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a) the type of the node : joint node or j-node or neither of above 

b) its thickness 

c) in the case of a joint node the number of j-leaves in its left and 

right subtree. 

Suppose now that we search for some XE(Bj,Bj+I). We descend the tree 

as directed by the queries and end up in the active j-node. As we des- 

cend the thickness of every node encountered during the descent is in- 

creased by one. Then we ascend and rebalance the trees as in the case 

of trees of bounded balance ~. Three new problems arise. Assume that 

we reach node w from its right son v. Then we searched below v. The 

thickness of w and v were both increased by I. If the root balance 

P(w) = (th(w)-th(v))/th(w) is less than ~ then we have to rebalance 

the tree. We treat the case of a rotation and leave the case of a 

double rotation for the reader 

Rotation 

Problem I : 

v is a j-node for some j. Then the trees 2 and 3 do not exist e~plicitely. 

We recreate them by splitting v into 2 j-nodes of thickness Lth(v)/2J 

and [th(v)/2] respectively. Then I/3~P(v) = Lth(v)/2J/th(v)~I/2 because 

of th(v)~2. A rotation will rebaiance the tree. 

Problem 2 : 

w is a j-node after the rotation. The~ we have to combine the two trees 

I and 2 ~nto a single node. 

Problem 3 : 

Queries have to be changed. This is only necessary if the position 

(left, right) of the active j-node relative to some other node changes. 

This is only the case if a different node is active after the rotation 

as was before. But this can only happen if we rotate about the j-joint. 

Furthermore, in this case only the query assigned to the j-joint has to 

be changed, This is easy. 
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We summarize the discussion. We use trees of bounded balance in order 

to implement search trees. The depth of the active j-node is always 

less than c I log I/aj+c 2 for some small constants c I and c 2, Here~ ~j 

is the relative frequency of leaf (Bj,Bj+ I) at the present time. Up- 

dating is restricted to the path from the root to the active j-node. 

In each node of the path a constant amount of work is necessary. Thus 

searching and updating the structure can be performed in time 

O( log  1 / a j )  . 

Theorem 1 : 

Let  qj be the  numbers o f  searche~ f o r  X E ( B j , B j + I ) ,  O~ j~n,  p e r f o r m e d  

up to  t i m e  t o and l e t  W=Zqj. Then a t  t i m e  t O a s e a r c h  f o r  X E ( B j , B j +  1) 

can be e x e c u t e d  in t i m e  O( l og  W / q j ) .  The t ime  needed to  u p d a t e  the  t r e e  

s t r u c t u r e  is p r o p o r t i o n a l  t o  the  s e a r c h  t i m e .  

IV. E x t e n s i o n  

In t h i s  s e c t i o n  we s k e t c h  some e x t e n s i o n s .  

IV. 1. Ave rage  Search Time 

Lemma 1 g i v e s  us a bound f o r  the  w o r s t  case s e a r c h  t ime  in D - t r e e s  : 

aj ~ e I o log I/aj + c 2 with c I = log (I/(l-a)) and c 2 = 1 + c I. From 

this one immediately derives a bound for the weighted path length 

(average search time) P = Zajaj, namely 

P ~ c I o H(ao,...~a n) + c 2 

n 

where H = - Z oj log a. is the entropy of the distribution. A much 
j=O J 

b e t t e r  bound f o r  P can be p roved  i f  we change t he  d e f i n i t i o n  o f  D - t r e e  

s ] i g h t i y .  

Definition : (alternate definition of active j-node). Exactly one of 

the j-nodes is active. The active j-node is a j-node of minimal depth. 

Lemma I and Theorem I are still true with this definition of active 

j-node. However, theorem I is much harder to prove. One has to keep all 

j-nodes and the j-joint in a doubly linked list. With each link one 

associates the distance of the j-node to the j-joint (if the j-node is 

of minimal depth) or to the father of the j-node above (otherwise). 

With this additional information it is again possible to change queries 

correctly after tree transformations. A complete proof will appear in 

the full paper. See also [12]. 
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Theorem 2 : 

(Average Search Time in D-trees with the alternate definition of active 

j -node) . 

P ~ ( i l H ( ~ , 1 - a ) ) o  [ H ( a  0 . . . . .  an)+C]  
where c = I + I/a. 

Example : Let a=I-~2/2. Then I/H(a,l-a)=l.o9 and c=3+V~4.41. Because 

of P~H(ao,...,a n) [1,3,9,14] always, average search time is at most 9% 

above the optimum. 

Proof : Suppose there are mo j-nodes Vl,...,v with thickness ] m. 
J 

respectively. Then qj  . . . . .  q jm .  and d e p t h  a ]  . . . . .  a j  
I j 1 mj 

qJ = qJl + "'" + qjmj 
and 

aj = min (aj ..... a. ). 
I jmj 

Thus m. ^ n j 
p < p = ~r ~ (qj /W) • a.. 

-- j=o i=I i J i 

An easy induction argument on the height of the D-tree shows 
A 

aO 1 (~02 'aOm 0 . . . .  ) P < d • H( . . . . . .  a t l  . . . .  , a ] m  1 

where d=I/H(a,l-a) and aJi:qji/W" By the grouping axiom 

H ( a 0 1 ~  a 0 2  . . . . .  a O m o ' a l l ' ' ' ' * a l m l  . . . .  ) 
a .  5 .  

n J1 j m j )  . 
= H(a 0 . . . . .  a n ) + ~i 5 .  . H ( ,  

j =o J a~ . . . . .  a j  

Choose k such t h a t  v I , . . .  ,v  K a r e  l e f t  o f  t h e  j - j o i n t  and VK+ I . . . . .  Vm. 
J 

a r e  r i g h t  o f  t h e  j - j o i n t .  L e t  a ! = a .  + . . . + o .  and a ' ; = a . - a ; .  A g a i n ,  by 
J J1 JK J J J 

t h e  g r o u p i n g  a x i o m  

a j m .  a !  a'; a'. aJl" , ,, j,) _ J l  JK 

JK+I  jm .  
--J'a. " H ( a,------T---. . . . . .  .a,; ,J ) . 

J J J 

C o n s i d e r  nodes  V l ,  . . . .  v K. Among t h e s e  v 1 

minimal depth (compare Fig. 2), We have 

th(Vl)+...+th(v~_1) < (l-a) o (th(Vl)+...+th(v%)) 

f o r  % = 2 , . . .  , k .  Hence 

o:. or. 
J1 JK 

H( a---T . . . . .  -~T. ) < I / ~  
J J 

has maximal depth and v K has 
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by repeated application of the grouping axiom. Thus 

~. o~. 
3m. 

J l  - J )  < 1 + l / o ~  H ' " " a . ' (  . . . .  a .  -- 
J J 

and 

P ~ ( I / H ( o c , l - c ~ ) )  • [ H ( a  0 . . . . .  a n ) + l + I / a ] .  

IV. 2. Compact D-Trees 

The tree structure of section III achieves one main goal : search time 

is logarithmically bounded and update time is proportional to search 

time. However, our solution uses an immense amount of storage space. 

D-tree may have up to log qo + log ql + "'' + log qn j-nodes. Fig. 4 

shows a D-tree for the distribution qo = 2, ql = 4, q2 = 2o with ~ = I/4. 

The weight of the j-nodes, j = o,I,2, is shown on the right lower corner 

of the j-nodes. 

~ 2-joint 

a c t ~  °de 15 
O-n~ i I I i ~  131 1-n°de ! {2-n°de 13 

Fig. 4. A D-tree for qo = 2, ql = 4, q2 = 2o with ~ = I/4. 

Most of the nodes are only present to make rebalancing and bookkeeping 

easy to explain. In this section we propose a compact version of the 

tree structure. It exhibits the same search time and update behaviour 

as the basic structure of section II I; in addition, it requires only 

O(n) storage cells and allows a linear time construction. 

We obtain the compact tree from the tree of section Ill by node deletion 

and path compression. The skeleton of the tree is formed by the internal 

nodes which contain active nodes in both subtrees and by the active j-nodes 
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All other n odes are deleted. Applying this process to the tree of figure 

4 yields : 

active 2-nodell 2 

I a~ti~e 0-n°del I active ] - n O d ,  l .. ~ 3 

Fig. 5 : A compact D-tree for the distribution of fig. 4. 

We have to remember the thickness of the active j-nodes and of the nodes 

deleted. We write the thickness of active j-nodes on the right lower 

corner of the corresponding boxes. We remember the deleted nodes by 

storing expressions of the form [number, number] along the compressed 

edges. For example, between the root B 2 of the tree and the node B 1 

we deleted right subtrees representing a total of one 1-]eaf and eight 

2-1eaves. The expression [1,8] on the right side of the edge from B 2 

to B I is used to store this fact. Note that expressions of the form 

In,m] suffice since the deleted right subtrees along a compressend path 

contain at most two kinds of leaves. 

We interpret compact trees as concise descriptions of the trees of 

section Ill. The operations on the compact trees are performed as if 

they were performed on the full tree. The details are worked out in the 

full paper. 

The compact tree for a set of n leaves consists of n leaves, n-] internal 

nodes and 2(n-l) edges. It can be stored in space O(n). 

Theorem 3 : 

(Performance of Compact Tree). Let qi be the number of searches for 

XE(BI,Bi+ I) up to time to, 0~i~n, and let W=Zqi. Then at time t o a search 

for XE(Bi'Bi+I) can be carried out in time O(log W/qi). Update time is 

proportional to search time. Furthermore, the compact tree needs storage 

space O(n). 

Next we talk about initialization. Assume we are given a distribution 

(qo .... 'qn ) and a balancing factor ~I-~2/2. A procedure similar to the 
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one presented in [13] constructs the compact version of a tree of 

bounded balance a for the distribution in linear time. 

Theorem 4 : 

Given a distribution (qo~...,qn) , a compact tree of bounded balance a 

can be constructed in time O(n). 

IV .  3. General Search Trees 

So far, we considered only searches for elements not in the name set, 

i.e. X~{BI,...~Bn}. We want to drop that restriction now and return to 

the model described in the introduction. Let Pi (qj) the number of 

searches conducted for X=B i ((XE(Bj,Bj+I)) up to now and let 

n n 

W = E Pi + E qj 
i=I i=o 

be the tota] number of searches conducted so far. Then Bi=Pi/W (aj=qj/W) 

is the relative access frequency of X=B i (XE(Bj,Bj+I)) at this point of 

time. 

' = ' = qj+pj for l<j<n, ', O~j~n, by qo qo and qj Define new frequencies qj _ _ 

i.e. we change the open intervals (Bj~Bj+ I) into the half-open intervals 

) , and construct the tree structure of section Ill (the compact [Bj,Bj+ 1 

tree of section IV.2) for the new set of frequencies. A search for a name 

X is carried out as above. With search argument XE[Bj,Bj+ I) we will reach 

the j-active node. (Note that we assigned queries of the form "i If X<B i 

then left else right"), in the j-active node we will distinguish between 

X=B.j and XE(Bj~Bj+ I) by one more comparison. A search for XE[Bj,Bj+ I) 

will take time O(Iog W/qj) =O(log W/pj) (=O(log W/qj)), i.e. we still 

have logarithmic behaviour. 

The trick used here to due to D.E. Knuth [Vol.3, section 6.2.2, exercise 

3 6 ]  • 

IV. 4. Insertions : 

Suppose we want to insert a new name B~{BI,...,B n} in the name set, say 

BE(Bj,Bj+I). A search for B will end in the active j-node representing 

the half open interval [Bj~Bj+I). We have to split the interval [Bj,Bj+ I) 

and the associated frequency pj+qj into two intervals [Bj,B) and 

[B,Bj+ I ) with frequencies pj+qj and 1+qj" respectively. (I is the 
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frequency of name B and qj-qj- '+qj"). The splitting of qj into qj' and qj" 

may be prescribed arbitrarily, it is easy to see that the necessary 

changes of the tree structure can be carried out in time proportional 

to the depth of the tree. The depth is bounded by 0(log W) in the case 

of the simple D-trees of section Ill and by O(min (n,logW)) in the case 

of compact D-trees. This insertions requires time O(log W) (0(min(n log W)) 

resp.). 

V. Conclusion : 

D-trees were introduced as a method to deal with unknown and time changing 

frequencies. Search time in D-trees is always nearly optimal and update 

time is proportional to search time. A reasonable efficient way of in- 

serting new names is also described. 

The same problem was attacked in a different way by Allan and Munro [o]. 

The two approaches are compared in [14]. 

V l .  References : 

[o] Allan, Munro : Self-Organizing Binary Search, Proc. 17 th Symposium 
on Foundations of Computer Science, 1976. 

[I] Bayer, P. : Improved Bounds on the Costs of Optimal and Ba]anced 
Binary Search Trees, HIT, 1975. 

[2] Fredman, M.L. : Two Applications of a Probalistic Search Technique : 
Sorting X Y and Building Balanced Search Trees, Proc. 7th Annual 
ACM Symp. on Theory of Computing, 1975. 

[3] Gilbert, E.N. and Moore~ E.F. : Variable length binary encodings, 
Bell Systems Techn. J. 38 (1959). 

[4] Gotlieb, CC. and Walker, W.A. : A Top-Down Algorithms for Constructing 
Nearly Optimal Lexicographical Trees, Graph Theory and Computing, 
Academic Press, 1972. 

[5] GUttler, Mehlhorn, Schneider, Wernet : Binary Search Trees : Average 
and Worst Case Behaviour, GI Jahrestagung 1976, lnformatik Fach- 
berichte Nr. 5, Springer-Verlag. 

[6] Hotz, G.: Schranken fur die mittlere Suchzeit bel ausgewogenen Ver- 
teilungen, Theoretical Computer Science, 1976. 

[7] Hu, T.C. and Tucker, A,C. : Optimal Computer Search Trees and Variable 
Length Alphabetic Codes, Siam J. Applied Math., 21, 1971. 

[8] Knuth, D.E. 71 : Optimum Binary Search Trees, Acta Informatica I, 1971. 

[9] Knuth, D.E. 73 : The Art of Computer Programming, Vol. Ill, Addison- 
Wesley, 1973. 

[Io] van Leeuwen, J.: On the construction of Wuffmann Trees, Proc. 3rd 
Coll. on Automata., Languages and Programming, 1976, Edinburgh, 
University Press, Ed. S. Michaelson. 



336 

[11] Mehlhorn, K.: Nearly Optimal Binary Search Trees, Acta Informatica, 
5, 1975. 

[12] Mehlhorn, K.: Dynamic Binary Search, Techn. Bericht, FB Io, Nr. 11, 
Universit~t des Saarlandes, 1976. 

[13] Mehlhorn, K.: Best Possible Bounds on the Weighted Path Length of 
Optimum Binary Search Trees, SIAM J. of Computing, 1977. 

[14] Mehlhorn, K.: Effiziente A1gorithmen, Teubner-Verlag, 1977. 

[15] Nievergelt, Reingold : Binary Search Trees of Bounded Balance, 
SiAM J. of Computing, Vol. 2, Nr. I, March, 1973. 

[16] Rissa~en, J.: Bounds for weighted balanced trees, IBM J. of Res. 
and Develop.~ March, 1973. 


