
SIMPLE CHAIN GRAMMARS

Anton Nijholt

Department of Mathematics

Vrije Universiteit, Amsterdam, The Netherlands.

ABSTRACT. A subclass of the LR(0)-grammars, the class of simple chain grammars is in-

troduced. Although there exist simple chain gr~ars which are not LL(k) for any k,

this new class of grammars is very close related to the class of LL(1) and simple

LL(1) grammars. In fact it can be proved (not in this paper) that each simple chain

grammar has an equivalent simple LL(1) grammar. A very simple (bottom-up) parsing

method is provided. This method follows directly from the definition of a simple chain

grammar and can easily be given in terms of the well-known LR(0) parsing method.

I. INTRODUCTION

In this paper we consider a subclass of the LR(O)- gr~ars which has some interes-

ting properties. This class of grammars, called the simple chain grcgzmar8, has a very

simple and natural bottom-up parsing method. Our definition of a simple chain grsmmar

was motivated by the parsing method for production prefix gr~are as introduced by

Geller, Graham and Harrison [4]. However, they start with a method to construct a

parsing graph for a context-free grammar and give conditions which should be satisfied

in order that the parsing method works.

In our approach we start with a grammatical definition and as can be shown we can use

a slightly adapted version of their parsing method. There is also a very strong and

clear correspondence with the LR(O) p~msing method [3].

This paper however is mainly concerned with properties of simple chain grammars and

languages.

For the time being we consider only simple chain gran~nars for which no look-ahead is

allowed. An extension with look-ahead seems to be straigtforward and is not considered

here.

Besides the research reported in [4], work which is related to the ideas in this paper

has been done by Lomet [14], Kr~l and Demner [13], and Conway [2].

Preliminaries.

We assume the reader is familiar with the basic concepts of formal languages and auto-

mata theory [I]. Some of them are reviewed below for notational reasons.

353

A context-free grammar (cfg) is denoted by G= (N,T,P,S), V= NuT; elements of N (non-

terminals) will be denoted by the Roman capitals A,...,T; elements of T (terminals)

by the Roman lower case letters a,b,c, ; elements of V by the Roman capitals U,...,

Z; in P are the (context-free) productions and S is the start symbol. Elements of T*

will be denoted by the Roman lower case letters u,v,w,x,y,z; elements of V * by the

Greek lower case letters ~,6,T~6 The length of a 6 V ~ is denoted by IGI, the

symbol s is reserved for the empty str~ng~ if a 6 V + then (I)~ denotes the first

s~mbol of ~. The notation G~==~ is used for a leftmost derivation of B from a;

• > B denotes a ridhtmost derivation.
r

DEFinITION 1.1. (cycle-free, s-free~ left-reeursive)

A efg G= (N,T,P,S) is said to be cycle-free if there is no derivation A +. > A, for

any A E N. Cfg G is said to be s-free if there are no productions of the form A ÷ s

in P. A nonterminal A is said to be left-recursive if A +=~> A6 for some ~ C V*. A

cfg is said to be left-recursive if G has at least one left-recursive nontermina!.

From now on we assume that all the context-free grammars in this paper are proper,

i.e. reduced, cycle-free and e-free.

DEFINITION 1.2. (LL, simple LL)

a. Let G= (NsT,P,S), ~ ~ V*, then

FIRST (6) = {a E T I 6 ~* > a@, for some ¢ E V*).

b. G is said to be an LL(1) grarmar if for every pair A ÷ ~ and A + ~ in P, if a # B

then FIRST (~) n FIRST (~)= ¢.

c. G is said to be a simple LL(1) grammar if

(i) every production is of the form A ÷ a¢ (a 6 T, ¢ 6 V*), and

(ii) if A ÷ a¢ and A ÷ b@ then a # b or a¢ = b@.

Our definltlon of an LL(1) grammar slightly differs from the usual one which is caused

by the fact that our grammars are proper. LL-grammars are not left-recursive; each

simple LL(1) grammar is LL(1).

2. SIMPLE CHAIN GRAMMARS

In this section we introduce the class of simple chain grammars and we discuss some

of their properties. First we need a few more definitions.

354

DEFINITION 2.1 , (prefix-free)

Let G= (N,T,P,S) be a cfg and let A ~ N. A is said to be prefix-free if A-->w I and

A-->WlW 2 implies w 2 = c. A cfg is said to be prefix-free if all nonterminals are

pre@ix-free. A language L is prefix-free if w I a L and WlW 2 ~ L implies W 2 = e.

V ÷ Extension of the definition of prefix-free for a string e e is straightforward.

DEFINITION 2.2. (chain)

Let G = (N,T,P,S) be a cfg, let X 0 ~ V. The set of chains of X0, denoted by CH(X0) ,

is defined by

CH(Xo) = { <Xo,X t Xn>IXoXI...Xn ~ N*T &

XoT>xI~I T>"'T>Xn~n ' ~i ~ v*, 1~i~n}.

If ~ = <Xo,X1, ,Xn> then l(w) = Xn, that is, l(w) denotes the last element of a

chain 7,

EXAMPLE 2.1. Consider a cfg G with only productions S+AF, A+Ba, B+Cd, C÷dF, F+Ga,

G+Cb C+dB', B'÷b, F÷a. For this cfg we have for example CH(C) = {<C,d>}, CH(a) = {<a>}

and CH(F) = (<F,a>,<F,G,C,d>}

DEFINITION 2.3. (chain-independent)

Let G = (N,T,P,S], X ~ V. X is said to be chain-indepe~nt if for each pair wl,v2,

Wl ~ w2' in CH(X), we have l(wl) ~ l(w2). If each element of V is chain-independent

then V is said to be chain-independent.

Let X, Y e V, X ~ Y. X and Y are said to be mutually chain-independent if for each

pair w I e CH(X) and 72 e CH(Y), z I ~ 72, we have l(w I) ~ l(w2). Notation: X ~ Y. This

notation is also used if X = Y and X is chain-independent.

Observe that a left-recursive nonterminal cannot be chain-independent and that each

terminal is chain-independent. Moreover, if X is chain-independent then X ~ X. For

each cfg in Greibach normal form V is chain-independent.

For the cfg of example 2.1. both A and F are chain-independent. However A and F are

not mutually chain-independent.

We are now sufficiently prepared to give our definition of a simple chain grammar.

355

DEFINITION 2.4. (simple chain-grammar)

A cfg G = (N,T,P,S) is said to be a simple chain gr~ar if it satisfies the following

three conditions:

(i) V is chain-independent.

(ii) if A~X¢ sad A+~Y~ are in P then X ~ Y.

(iii) if A+~ and A+a8 are in P then 8 = e.

One can easily verify that the cfg of example 2.1. is a simple chain grammar, We give

anothar example.

EXAMPLE 2.2. Consider the cfg with only productions S+aEc, S+aEd, E~aE and E+ab.

Clearly V is chain-independent since CH(S) = {<S,a>) and CH(E) = {<E,a>}. Moreover

condition (ii) is satisfied since E ~ E, c ~ d and E ~ b. Also condition (iii) is

satisfied. Notice however that this cfg is not LL(1), moreover, there is no k such

that it is LL(k).

THEOREM 2. I. EVERY LL(I) GRAMMAR IS A SI~£PLE CHAIN GR/hMMAB.

Proof. We consider the three conditions of the definition of a simple chain grammar.

Let G = (N,T,P,S) be a (proper) LL(1) grammar.

a. Let X 0 ~ V and suppose X 0 is not chain-~ndependent. Then there are at least two

chains z I = <X0,XI~...,Xn> and w 2 = <X0 'XI'I "'~Xlm>' Wl ~ w2' such that Xn = xlm' Hence

FIRST (Xl) n FIRST (X11) ~ #, which contradicts G being LL(1).

b. Let A-~X@I and A-~IY@2 in P and assume we do not have X ~ Y. Hence there are chains

w I in CH(X) and w 2 in CH(Y), l(w I) = l(z 2) and X ~ Y (since V is chain-independent).

Therefore eX@1 ~ mY@2 and ~ = ~ since otherwise FIRST(~X@I) 0 FIRST(GY@2) ~ @. However,

also FIRST(X$1) ~ FIRST(Y~2) ~ ¢ since l(wl) = l(z2).

c. Let A-~ and A-~B be in P. If ~ ~ e then ~ ~ ~8 and FIRST(~) n FiRST(~6) ~ ~,

hence G is not LL(1). Contradiction D.

The cfg of example 2.2. is a simple chain grammar and it is not LL(1). Therefore the

LL(1) grammars are properly included in the class of simple chain grammars. Another
example is the cfg with only productions A÷aBc, A+aCd, Bob and C+c. Before going to

some general properties of simple chain grammars and languages we take a closer look

at the set CH(X) for any X e V. If a cfg G is in GNF (Greibach normal form) then each

chain of the finite set CH(X) is of length I. If G is not left-recursive then CH(X)

is finite. In general CH(X) is a regular set, which can easily be verified by construc-

ting a regular grammar G for any X E N,
x

356

THEOREM 2.2. EVerY SIMPLE CHAIN GRA~/~kR IS PREFIX-FREE.

Proof. We have to prove that every nonterminal of a simple chain grammar is prefix-

free. Let G = (N,T,P,S) be a simple chain grammar. First notice that for all u,v c T*

such that A > u and A > uv this implies v = e iff for all ~,6 ~ V such that
r r

A 11 > G and A * > G8 this implies 6 = s. By induction on the length of derivations
r r

we prove that every finite string ~ £ V + is prefix-free.

Basis. If ~=~=>w I and ~ ==~=>WlW 2 then there exist C, z I and z 2 such that

> W'ZlW" = w'Cw" r = w1~ and

= z2w" = w'Cw" ~ > w' WlW 2.

Therefore W'ZlW" is a prefix of w z 2 and from this it follows that z I is a prefix

of z2, which contradicts condition (iii) of the definition of a simple chain grammar.

Hence w 2 = e.

* =~>wlw 2 with lengths Induction. Assl~me for all ~ £ V+~ and derivations ~ ~wl, and

less than n and m respectively, we have w 2 = e. Now consider derivations ~ ~>w I

and ~ =~=>wlw2, with lengths n and m respectively. There exist C, PI' X, Y, ~I' ~2' Vl

and v 2 such that C+pIX$ I and C+pIY~2 are in P, X ~ Y, and

W=7=> pCw' --~--> pplX¢Iw' =~=> pplXvlw' -~--> w I , and

~ > pCw' r > PPIY¢2 w' ~> PPIYV2 w' r > WlW2'

Since G is a simple chain grammar we have X ~ Y and hence pp~ ~ s. Moreover,,to obtain

both w I and WlW 2 there exist w ~ s and ~ ~ a such that Op I 7-->r ~ mud Op I ~> w,

both w and ww are prefixes of w I, and both derivations are of length less than n and

less than m. Since this contradicts the induction hypothesis we must conclude w 2 = e.

This concludes the proof that every D c V +, and hence every A e N is prefix-free.O

THEOREM 2.3. E\rERY SIMPLE CHAIN GRAMMAR IS UNAMBIGUOUS.

Proof. Let G = (N,T,P,S) be a simple chain grammar.

* ,> w by at least two different (rightmost) derivations. Then there are Suppose S r

productions, say A÷pX~ I and A÷PY~2 , where X ~ Y, such that there exists w' in

L(pX@I) n L(PY~2). Therefore there are two derivations

~*> w' and A => pX¢ I r

* > W T
A--> QY(~2 r '

G is a simple chain grammar, hence X ~ Y and we must conclude that p is not prefix-

357

free, which contradicts theorem 2.2. So the assumption that there are two such

derivations must be false.

A characteristic feature of simple chain grammars is mentioned in the following

theorem.

THEORF~4 2.4. LET O = (N,T,P,S) BE A SIMPLE CHAIN GRAI@IAR AI{D SUPPOSE THERE ARE DERI-

VATIONS

s ~> ~x% AND s-~> wY¢ 2, W~ERE X ~ ~, T~ x ~ ~.

Proof. The proof, which is omitted in this extended abstract, is by induction on the

lengths of the derivations.

DEFINITION 2.5. (LR(0) grammar)

The (proper) efg G = (N,T,P,S) is said to be I~R(O) iff:

for each w, w' * and A,A' • N, if , x • T ; y,~,a',~,~' c V*

(i) S--> ~Aw > ~Bw = yw, and
r r

(ii) S * > a'A'x > ~'~'x = yw'
r r

then A ÷ s = A' ÷ ~, and I~l = T~'~'I

An LR(0) grammar according to this definition does not necessarily- generate a prefix-

free language. For example, the cfg G with only productions S÷Sb and S+a is LR(0)

and L(G) is not prefix-free. G is not LR(0) according to the definition in ~ho and

Ullman []], see also [5] and especially [6] in which a lot of definitions for LR(k)

grammars are compared,

THEOREM 2.5. EVERY SIMPLE CHAIN GRAMMAR IS AN LR(O) GRAMMAR.

Proof. The proof~ which starts by assuming that a cfg is a simple chain grammar and

not LR(O), is omitted in this extended abstract. D

Observe that, since we are only concerned with g-free grammars, the combination of

theorems 2.1 and 2.5 does not load to the incorrect result that every LL(]) grammar

(not necessarily E-free) is an LR(O) grammar. Clearly every simple LL(1) grammar is

a simple chain grammar. The class of simple chain grammars is properly included in

the class of LR(0) grammars since the cfg with only productions S÷aBIeB , B÷cDIcF, D+b

and F÷b is LR(O) but it is not a simple chain grammar.

3. SIMPLE CHAIN LANGUAGES.

We list, without proofs, some properties of the languages generated by simple chain

grammars. A cfg is in Greibach normal form (GNF) if each production is of the form

A+a~, where a ~ T and ~ £ N*. If ~ • V* then we say that the cfg is in pseudo-GNF.

Clearly, if a cfg G is in (pseudo-) GNF then V is chain-independent. Our results on

simple chain languages are listed in the following corollary.

358

COROLLARY 3.1

a. Every simple chain grammar can be transformed to an equivalent simple chain gram-

mar in GNF.

b. Each simple chain grammar can he transformed to an equivalent simple LL(1)-grammar

(or s-grammar [12]),

c. The simple chain grammars generate exactly the class of simple deterministic langu-

ages.

d. It is decidable whether two simple chain grammars are equivalent.

In this paper we do not consider the question whether the transformation to a simple

LL(1)-gr/mmar can be given in such a way that the new grammar z~ght-eo~ers the ori-
ginal grammar (see for definitions [I, p.276] and [7]).

h. THE PARSING OF SIMPLE CHAIN GRAMMARS.

Intuitively we can introduce the parsing method by considering the following two si-

tuations. The first one is a start-situation, the second is an arbitrary situation

occuring later during the parsing process.

Let a ~ T in figure I. There is onSy one chain w in CH(S) with l(w) = a. Therefore

the pair (S,a) determines chain ~, and thus if z = <S,C I, ,Cn_1~a> then we know

that a is a prefix of a right-hand side of a production with left-hand side Cn_ I.

This information should be held on a stack and we can enter a new situation.

Figure 1. Situations during the parsing process.

S A A

w Z I Z 2
situation I. situation 2.

For example, if we leave situation I. then A = Cn_ I and ~ = a (if we assume that a

is not the complete right-hand side). After having recognized a we want to recognize

the remainder of the right-hand side 0~X~ I or oX# 2. If X = Y then, by condition (ii)

of the definition of a simple chain grammar, Z I ~ Z2, Hence, in this situation X

(or Y) is uniquely determined. By condition (i) the chain from X to Z I is uniquely

determined. So we know also the symbol to which the right-hand side with prefix Z I

should be reduced. This information is also held on the stack which we will use.

359

(In case for example X is a terminal the appropriate chain will be <X> and c2g is

prefix of a right-hand side which should be reduced to A).

Condition (iii) of the definition of a simple chain grammar determines if the com-

plete right-hand side of the production has been recognized and then reduction can

take place, that is, an appropriate number of symbols will be popped from the stack

and the production will be given as output.

The r e a d e r who is familiar with strict-deterministic grammars [9] and their parsing

method [10] will have noticed some similarities. Elaboration of this will not be

done here. The next step to a formal definition of the parsing method introduces the

parsing graph.

The parsing method for simple chain grammars will turn out to be ~ery simple. It is

a modified version of the method for production prefix grammars a presented in [4],

or if one Wishes so, a modified version of the LR(O) parser (see e.g. DeRemer [3]).

From the informal discussion given above we can conclude that the parsing decisions

can be made if we know the configuration (A,a), where A~@ is a production and prefix

has already been recognized. These configurations will be the nodes of a parsing

graph which controls a pushdown stack in which we store subsequent configurations

of productions of which the right-hand sides have not yet been completely recognized.

This is of course the same idea as for LR(O) parsers in which case each node of the

parsing graph represents a configuration set of a more complex nature than in our

case.

To be more precisely, and using the terminology of DeRemer [3],in our case each node

(except the start node) represents a basis set which has only configurations of the

form A-~.@i, where i runs from I to the number of productions which have left-hand

side A and prefix ~ (~ ~ ~), and its related closure set. This means that the pair

(A,~) uniquely determines the configuration set and we can simply speak of the con-

fiquration, or the node, (A,~). In an LE(O) parser each node can represent a configu-

ration set such that a configuration B÷B.~, where B ~ ~ and Aa ~ BB, may also be

contained in the basis set,

ALGORITHM 4.1. (parsing graph)

Input: A simple chain grammar G = (N,T,P,S).

Output: A parsing graph for G.

Method: Each node of the parsing graph will correspond to a configuration. The start

node is (S).

I. Let A-yy be in P. A configuration is denoted by (AT'), where 7' ~ s and X' is a

prefix of y. If y = y' then the configuration is denoted by [Ay].The corres-

ponding nodes are in the form of a circle and a square respectively.

360

II. Let (Aa) be a configuration, a ~ V*. If A-~o~<@ is in P then (A~X) is a (basis)

X-successor of (Aa) and an edge with label X is drawn from node (A~) to node

(~x),
Furthermore, for all Y such that X=~=> Y~=~=> Z~', for some ~ and 6' in V*

and Y e N we have that (YZ) is an (closure) Z-successor of (Ae), and an edge

with label Z is drawn from node (As) to node (YZ).~

This algorithm is illustrated with an example. In figure 2 we display the productions

and the parsing graph of a simple chain grammar.

Figure 2. Parsing graph.

b

D

B

) c

e

In the following algorithm we describe the parsing method.

Productions :

S÷aBC $÷bDe

S+ab S÷eF

B÷dB B÷a

C+c D+c

F÷bC

ALGORITHM 4.2. (parsing algorithm)

Input: A parsing graph for a simple chain grammar G = (N,T,P,S) ~nd a string w ~ T .

Output:If w e L(G) then a sequence of productions used in a rightmost derivation of w,

in a reversed order. If w { L(G) then an error is declared.

Method:We maintain a stack on which the (representations of the) configurations will

be stored. We refer to the symbol on top of this pushdown stack as the current

state . The start state is (S), Which will be on top of the stack as the par-

sing starts. Observe that condition (iii) of definition 2.4. provides that

the current state is either a read state, that is, of the form (...), or a

reduce state, that is, of the form [...].

I. If the current state is a read state then read the next symbol of w and place the

successor of this symbol on top of the stack. If there is no such successor then

declare an error and halt.

II.If the current state is a reduce state then the number of symbols corresponding

to the length of the righthand side of the production involved is popped from the

361

stack. The production is given as output. The successor of the lefthand side of

this production for the current state (after popping the stack) is placed on the

staok.~

Since this parsing algorithm is nothing more than the wellknown method in [3] the

validity of our way of parsing simple chain grammars is guaranteed by the following

observations on the parsing graph.

OBSERVATION 4.1.

a. Condition (i) and (it) of definition 2.4. guarantee that for each element Z ~ V

each node has at most one Z-successor. Otherwise, let X,Y and Z in V and (A~)

is a node of the parsing graph. Suppose A-~X@I and A~<~Y@2 are two (possibly

equal) productions. If (A~) has two Z-successors then we have one of the fol-

lowing two situations:

V* I. There exist XI, X 2 ~ N, 41, ~2 ~ 51, 62 e such that

X~> XI@ I and X1÷Z61, and

Y--~--> X2@2, X I ~ X 2 and X2+Z62.

II. X = Z (or the symmetrix case Y = Z) and there exist X 2 ~ N and ~2,62 ~ V* such

that Y=T=> x2~ 2 and X2÷Z~ 2 (X 2 ~ Z).

That is, we have Z-successors (XIZ) and (X2Z) in case I or (A~Z) and (X2Z) in case II.

If X = Y then case I is impossible since X is chain-independent. If X ~ Y then case

I is impossible since X ~ Y. Also case II is contradicted by X ~ Y.

b. Condition (iii) of definition 2.4. provides that each node denotes either a

reduce or a read state.

c. Since there is no edge with label S leading away from (S), which is guaranteed

by condition (i) of definition 2.4., the parsing properly terminates if a re-

duction to S has been made.D

The use of the algorithm is illustrated by parsing the sentence of the grammar in

the example following algorithm 4.1. (figure 2). Without comment we display the con-

tents of an input tape, the stack and the output which is emitted. In this table the

top of the pushdown stack (the current state) is on the right-hand side.

362

input tape stack

a d a c

d a e

a c

c

c

c

c

c

i -

output

(S)

(S)(Sa)

(s) (Sa)(Bd)
(S)(Sa)(Bd)[Ba]

(S)(Sa)(~d) B÷a

(s) (sa) (Bd)[mB]
(S)(Sa) ~

(s)(sa)(Sa~)

(s)(sa)(sa~)[Cc]
(s)(sa)(SaB) ~o

(s)(sa)(sa~)[s~c] -

(S) S+aBC

Table I. Actions of the parser on adac.

5. CONCLUSIONS.

In this paper we introduced a proper subclass of the LR(O) grammars, the class of

simple chain grammars. We showed that every simple chain grammar is prefix-free. The

simple chain grammars generate exactly the class of simple deterministic (or simple

LL(1)) languages. A parsing method, very close related to, and inspired by the method

of production prefix parsing was introduced, and the relation to LR(0)-parsers was

shown.

We want to spent some notes on, what are in our eyes, the most important features of

simple chain grammars. In the first place we want to mention the possibility to trans-

form each simple chain grammar to a simple LL(1) grammar [15]. What class of grammars

is obtained after a similar transformation if we extend the definition of simple chain

grammars with look-ahead? In the second ~lace we have to mention the definition of

simple chain grammars, which is entirely in terms of the finite sets of productions,

nonterminals and terminals, instea~ of the (in general infinite) set of derivations.

Moreover, the very simple parsing method follows directly from this definition and

can be considered as a restricted way of LR(0)-parsing [3].

In the third place we have the following question. In [8] Hammer introduced a method

to obtain LL(k) grammars from LR(k) grammars. On a much lower level we are doing some-

thing like that. As we show in [15] the simple chain grammars, which can be parsed

using a bottom-up parsing method, can be transformed to a class of grammars (the simple

LL(1) grammars) which have a top-down parsing method.Immediately from this we come to

our fourth and last note on possible future work on the simple chain grammars,

363

We can ask what kind of covers are possible from simple chain grammars and their

extensions to simple LL(1) and probably less restrictive classes of grammars. Al-

though given in an informal way, in [8] the transformation and cover is such that

right parses are mapped on left parses. In [15] we show that in general a left cover

from simple chain grammars to simple LL(1) grammars is impossible. Therefore also

the question of possible covers is interesting.

Of course we are aware of the fact that only a very restricted class of deterministic

la/Iguages is generated by the class of simple chain grs/umars. We think however that

extensions of the definition of simple chain grammar are possible, which preserve

some of the appealing properties of simple chain grammars and their parsing method,

and which remain rather simple.

REFERENCES

I. Aho A.V. and J.D. Ullman, 'The theory of parsing, translation and compiling',

Vol.I and II, Prentice Hall, Englewood Cliffs, 1972 and 1973.

2. Conway M.E., Design of a seperable transition-diagram compiler, C.ACM 6,(1963),

No. 7. P. 396-408.

3. DeRemer F.L., Simple LR(k) grammars, C.ACM 14, (1971), No.7, p.453-460.

4. Geller M.M., S.L.Graham and M.A.Harrison, Production prefix parsing, in 'Auto-

mata, Languages and Programming', J.Loeckx (ed.), 1974, Lecture Notes in Computer

Science 14, Springer-Verlag, Berlin, p.232-241.

5. Geller M.M. and M.A.Harrison, Strict deterministic versus LR(0) parsing, Conf.

Record of ACM Sympos.on Principles of programming languages, Boston, Massachu-

setts, 1973, oct I-3, p.22-32.

6. Geller M.M. and M.A.Harrison, On LR(k) grammars and languages, manuscript.

7. Gray J. and M.A.Harrison, On the covering and reduction problems for context-

free grammars, J.Assoe. Comput. Mach. 19, (1972), No.3, p.385-395.

8. Hammer M., A new grammatical transformation into LL(k) form, Conf.Record of 6th

Ann. ACM Sympos. on Theory of Computing, 1974, p.266-275.

9. Harrison M.A. and I.M.Havel, Strict deterministic grammars, J.Comput.System Sci.

7, (1973), No.3, p.237-277.

10. Harrison M.A. and i.M. Havel, On the parsing of deterministic languages, J.Assoc.

Comput.Mach.21, (1974), No.4, p.525-548.

11. Knuth D.E., On the translation of languages from left to right, Info. aud Control

8, (1965), No.6, p.607-639.

12. Korenjak A.J. and J.E. Hopcroft, Simple deterministic languages, IEEE Conf.Record

of 7th Annual Sympos. on Switching and Automata Theory, 1966, p.34-46.

13. Kr~l J. and J.Demner, Psmsing as a subtask of compiling, Sympos. on Mathematieal

Foundations of Computer Science, 4th, Marlanske Lazne~, 1975, Lecture Notes in

364

Computer Science 32, Springer-Verlag, Berlin, p.6]-74.

14. Lomet D.B., Automatic generation of multiple exit parsing subroutines, in 'Auto-

mata, Languages and Programming', J.Loeckx (ed.), 1974, Lecture Notes in Computer

Science 14, Springer-Verlag, Berlin, p.214-231.

15. Nijholt A., Simple chain languages, manuscript, march 1977.

Acknowledgement s.

I am grateful to prof.L.A.M. Verbeek for his comments on an earlier version of

this paper. I thank ms. Carla Reuvecamp for typing this paper.

