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ABSTRACT. A subclass of the LR(0)-grammars, the class of simple chain grammars is in- 

troduced. Although there exist simple chain gr~ars which are not LL(k) for any k, 

this new class of grammars is very close related to the class of LL(1) and simple 

LL(1) grammars. In fact it can be proved (not in this paper) that each simple chain 

grammar has an equivalent simple LL(1) grammar. A very simple (bottom-up) parsing 

method is provided. This method follows directly from the definition of a simple chain 

grammar and can easily be given in terms of the well-known LR(0) parsing method. 

I. INTRODUCTION 

In this paper we consider a subclass of the LR(O)- gr~ars which has some interes- 

ting properties. This class of grammars, called the simple chain grcgzmar8, has a very 

simple and natural bottom-up parsing method. Our definition of a simple chain grsmmar 

was motivated by the parsing method for production prefix gr~are as introduced by 

Geller, Graham and Harrison [4]. However, they start with a method to construct a 

parsing graph for a context-free grammar and give conditions which should be satisfied 

in order that the parsing method works. 

In our approach we start with a grammatical definition and as can be shown we can use 

a slightly adapted version of their parsing method. There is also a very strong and 

clear correspondence with the LR(O) p~msing method [3]. 

This paper however is mainly concerned with properties of simple chain grammars and 

languages. 

For the time being we consider only simple chain gran~nars for which no look-ahead is 

allowed. An extension with look-ahead seems to be straigtforward and is not considered 

here. 

Besides the research reported in [4], work which is related to the ideas in this paper 

has been done by Lomet [14], Kr~l and Demner [13], and Conway [2]. 

Preliminaries. 

We assume the reader is familiar with the basic concepts of formal languages and auto- 

mata theory [I]. Some of them are reviewed below for notational reasons. 
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A context-free grammar (cfg) is denoted by G= (N,T,P,S), V= NuT; elements of N (non- 

terminals) will be denoted by the Roman capitals A,...,T; elements of T (terminals) 

by the Roman lower case letters a,b,c, .... ; elements of V by the Roman capitals U,..., 

Z; in P are the (context-free) productions and S is the start symbol. Elements of T* 

will be denoted by the Roman lower case letters u,v,w,x,y,z; elements of V * by the 

Greek lower case letters ~,6,T~6 ..... The length of a 6 V ~ is denoted by IGI, the 

symbol s is reserved for the empty str~ng~ if a 6 V + then (I)~ denotes the first 

s~mbol of ~. The notation G~==~ is used for a leftmost derivation of B from a; 

• > B denotes a ridhtmost derivation. 
r 

DEFinITION 1.1. (cycle-free, s-free~ left-reeursive) 

A efg G= (N,T,P,S) is said to be cycle-free if there is no derivation A +. > A, for 

any A E N. Cfg G is said to be s-free if there are no productions of the form A ÷ s 

in P. A nonterminal A is said to be left-recursive if A +=~> A6 for some ~ C V*. A 

cfg is said to be left-recursive if G has at least one left-recursive nontermina!. 

From now on we assume that all the context-free grammars in this paper are proper, 

i.e. reduced, cycle-free and e-free. 

DEFINITION 1.2. (LL, simple LL) 

a. Let G= (NsT,P,S), ~ ~ V*, then 

FIRST (6) = {a E T I 6 ~* > a@, for some ¢ E V*). 

b. G is said to be an LL(1) grarmar if for every pair A ÷ ~ and A + ~ in P, if a # B 

then FIRST (~) n FIRST (~)= ¢. 

c. G is said to be a simple LL(1) grammar if 

(i) every production is of the form A ÷ a¢ (a 6 T, ¢ 6 V*), and 

(ii) if A ÷ a¢ and A ÷ b@ then a # b or a¢ = b@. 

Our definltlon of an LL(1) grammar slightly differs from the usual one which is caused 

by the fact that our grammars are proper. LL-grammars are not left-recursive; each 

simple LL(1) grammar is LL(1). 

2. SIMPLE CHAIN GRAMMARS 

In this section we introduce the class of simple chain grammars and we discuss some 

of their properties. First we need a few more definitions. 
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DEFINITION 2.1 ,  (prefix-free) 

Let G= (N,T,P,S) be a cfg and let A ~ N. A is said to be prefix-free if A-->w I and 

A-->WlW 2 implies w 2 = c. A cfg is said to be prefix-free if all nonterminals are 

pre@ix-free. A language L is prefix-free if w I a L and WlW 2 ~ L implies W 2 = e. 

V ÷ Extension of the definition of prefix-free for a string e e is straightforward. 

DEFINITION 2.2. (chain) 

Let G = (N,T,P,S) be a cfg, let X 0 ~ V. The set of chains of X0, denoted by CH(X0) , 

is defined by 

CH(Xo) = { <Xo,X t . . . . . .  Xn>IXoXI...Xn ~ N*T & 

XoT>xI~I T>"'T>Xn~n ' ~i ~ v*, 1~i~n}. 

If ~ = <Xo,X1, .... ,Xn> then l(w) = Xn, that is, l(w) denotes the last element of a 

chain 7, 

EXAMPLE 2.1. Consider a cfg G with only productions S+AF, A+Ba, B+Cd, C÷dF, F+Ga, 

G+Cb C+dB', B'÷b, F÷a. For this cfg we have for example CH(C) = {<C,d>}, CH(a) = {<a>} 

and CH(F) = (<F,a>,<F,G,C,d>} 

DEFINITION 2.3. (chain-independent) 

Let G = (N,T,P,S], X ~ V. X is said to be chain-indepe~nt if for each pair wl,v2, 

Wl ~ w2' in CH(X), we have l(wl) ~ l(w2). If each element of V is chain-independent 

then V is said to be chain-independent. 

Let X, Y e V, X ~ Y. X and Y are said to be mutually chain-independent if for each 

pair w I e CH(X) and 72 e CH(Y), z I ~ 72, we have l(w I) ~ l(w2). Notation: X ~ Y. This 

notation is also used if X = Y and X is chain-independent. 

Observe that a left-recursive nonterminal cannot be chain-independent and that each 

terminal is chain-independent. Moreover, if X is chain-independent then X ~ X. For 

each cfg in Greibach normal form V is chain-independent. 

For the cfg of example 2.1. both A and F are chain-independent. However A and F are 

not mutually chain-independent. 

We are now sufficiently prepared to give our definition of a simple chain grammar. 
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DEFINITION 2.4. (simple chain-grammar) 

A cfg G = (N,T,P,S) is said to be a simple chain gr~ar if it satisfies the following 

three conditions: 

(i) V is chain-independent. 

(ii) if A~X¢ sad A+~Y~ are in P then X ~ Y. 

(iii) if A+~ and A+a8 are in P then 8 = e. 

One can easily verify that the cfg of example 2.1. is a simple chain grammar, We give 

anothar example. 

EXAMPLE 2.2. Consider the cfg with only productions S+aEc, S+aEd, E~aE and E+ab. 

Clearly V is chain-independent since CH(S) = {<S,a>) and CH(E) = {<E,a>}. Moreover 

condition (ii) is satisfied since E ~ E, c ~ d and E ~ b. Also condition (iii) is 

satisfied. Notice however that this cfg is not LL(1), moreover, there is no k such 

that it is LL(k). 

THEOREM 2. I. EVERY LL( I ) GRAMMAR IS A SI~£PLE CHAIN GR/hMMAB. 

Proof. We consider the three conditions of the definition of a simple chain grammar. 

Let G = (N,T,P,S) be a (proper) LL(1) grammar. 

a. Let X 0 ~ V and suppose X 0 is not chain-~ndependent. Then there are at least two 

chains z I = <X0,XI~...,Xn> and w 2 = <X0 'XI'I "'~Xlm>' Wl ~ w2' such that Xn = xlm' Hence 

FIRST (Xl) n FIRST (X11) ~ #, which contradicts G being LL(1). 

b. Let A-~X@I and A-~IY@2 in P and assume we do not have X ~ Y. Hence there are chains 

w I in CH(X) and w 2 in CH(Y), l(w I) = l(z 2) and X ~ Y (since V is chain-independent). 

Therefore eX@1 ~ mY@2 and ~ = ~ since otherwise FIRST(~X@I) 0 FIRST(GY@2) ~ @. However, 

also FIRST(X$1) ~ FIRST(Y~2) ~ ¢ since l(wl) = l(z2). 

c. Let A-~ and A-~B be in P. If ~ ~ e then ~ ~ ~8 and FIRST(~) n FiRST(~6) ~ ~, 

hence G is not LL(1). Contradiction D. 

The cfg of example 2.2. is a simple chain grammar and it is not LL(1). Therefore the 

LL(1) grammars are properly included in the class of simple chain grammars. Another 
example is the cfg with only productions A÷aBc, A+aCd, Bob and C+c. Before going to 

some general properties of simple chain grammars and languages we take a closer look 

at the set CH(X) for any X e V. If a cfg G is in GNF (Greibach normal form) then each 

chain of the finite set CH(X) is of length I. If G is not left-recursive then CH(X) 

is finite. In general CH(X) is a regular set, which can easily be verified by construc- 

ting a regular grammar G for any X E N, 
x 
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THEOREM 2.2. EVerY SIMPLE CHAIN GRA~/~kR IS PREFIX-FREE. 

Proof. We have to prove that every nonterminal of a simple chain grammar is prefix- 

free. Let G = (N,T,P,S) be a simple chain grammar. First notice that for all u,v c T* 

such that A > u and A > uv this implies v = e iff for all ~,6 ~ V such that 
r r 

A 11 > G and A * > G8 this implies 6 = s. By induction on the length of derivations 
r r 

we prove that every finite string ~ £ V + is prefix-free. 

Basis. If ~=~=>w I and ~ ==~=>WlW 2 then there exist C, z I and z 2 such that 

> W'ZlW" = w'Cw" r = w1~ and 

= z2w" = w'Cw" ~ > w' WlW 2. 

Therefore W'ZlW" is a prefix of w z 2 and from this it follows that z I is a prefix 

of z2, which contradicts condition (iii) of the definition of a simple chain grammar. 

Hence w 2 = e. 

* =~>wlw 2 with lengths Induction. Assl~me for all ~ £ V+~ and derivations ~ ~wl, and 

less than n and m respectively, we have w 2 = e. Now consider derivations ~ ~>w I 

and ~ =~=>wlw2, with lengths n and m respectively. There exist C, PI' X, Y, ~I' ~2' Vl 

and v 2 such that C+pIX$ I and C+pIY~2 are in P, X ~ Y, and 

W=7=> pCw' --~--> pplX¢Iw' =~=> pplXvlw' -~--> w I , and 

~ >  pCw' r > PPIY¢2 w' ~> PPIYV2 w' r > WlW2' 

Since G is a simple chain grammar we have X ~ Y and hence pp~ ~ s. Moreover,,to obtain 

both w I and WlW 2 there exist w ~ s and ~ ~ a such that Op I 7-->r ~ mud Op I ~> w, 

both w and ww are prefixes of w I, and both derivations are of length less than n and 

less than m. Since this contradicts the induction hypothesis we must conclude w 2 = e. 

This concludes the proof that every D c V +, and hence every A e N is prefix-free.O 

THEOREM 2.3. E\rERY SIMPLE CHAIN GRAMMAR IS UNAMBIGUOUS. 

Proof. Let G = (N,T,P,S) be a simple chain grammar. 

* ,> w by at least two different (rightmost) derivations. Then there are Suppose S r 

productions, say A÷pX~ I and A÷PY~2 , where X ~ Y, such that there exists w' in 

L(pX@I) n L(PY~2). Therefore there are two derivations 

~*> w' and A => pX¢ I r 

* > W T 
A--> QY(~2 r ' 

G is a simple chain grammar, hence X ~ Y and we must conclude that p is not prefix- 
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free, which contradicts theorem 2.2. So the assumption that there are two such 

derivations must be false. 

A characteristic feature of simple chain grammars is mentioned in the following 

theorem. 

THEORF~4 2.4. LET O = (N,T,P,S) BE A SIMPLE CHAIN GRAI@IAR AI{D SUPPOSE THERE ARE DERI- 

VATIONS 

s ~> ~x% AND s-~> wY¢ 2, W~ERE X ~ ~, T~ x ~ ~. 

Proof. The proof, which is omitted in this extended abstract, is by induction on the 

lengths of the derivations. 

DEFINITION 2.5. (LR(0) grammar) 

The (proper) efg G = (N,T,P,S) is said to be I~R(O) iff: 

for each w, w' * and A,A' • N, if , x • T ; y,~,a',~,~' c V* 

(i) S--> ~Aw > ~Bw = yw, and 
r r 

(ii) S * > a'A'x ............ > ~'~'x = yw' 
r r 

then A ÷ s = A' ÷ ~, and I~l = T~'~'I 

An LR(0) grammar according to this definition does not necessarily- generate a prefix- 

free language. For example, the cfg G with only productions S÷Sb and S+a is LR(0) 

and L(G) is not prefix-free. G is not LR(0) according to the definition in ~ho and 

Ullman []], see also [5] and especially [6] in which a lot of definitions for LR(k) 

grammars are compared, 

THEOREM 2.5. EVERY SIMPLE CHAIN GRAMMAR IS AN LR(O) GRAMMAR. 

Proof. The proof~ which starts by assuming that a cfg is a simple chain grammar and 

not LR(O), is omitted in this extended abstract. D 

Observe that, since we are only concerned with g-free grammars, the combination of 

theorems 2.1 and 2.5 does not load to the incorrect result that every LL(]) grammar 

(not necessarily E-free) is an LR(O) grammar. Clearly every simple LL(1) grammar is 

a simple chain grammar. The class of simple chain grammars is properly included in 

the class of LR(0) grammars since the cfg with only productions S÷aBIeB , B÷cDIcF, D+b 

and F÷b is LR(O) but it is not a simple chain grammar. 

3. SIMPLE CHAIN LANGUAGES. 

We list, without proofs, some properties of the languages generated by simple chain 

grammars. A cfg is in Greibach normal form (GNF) if each production is of the form 

A+a~, where a ~ T and ~ £ N*. If ~ • V* then we say that the cfg is in pseudo-GNF. 

Clearly, if a cfg G is in (pseudo-) GNF then V is chain-independent. Our results on 

simple chain languages are listed in the following corollary. 
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COROLLARY 3.1 

a. Every simple chain grammar can be transformed to an equivalent simple chain gram- 

mar in GNF. 

b. Each simple chain grammar can he transformed to an equivalent simple LL(1)-grammar 

(or s-grammar [12]), 

c. The simple chain grammars generate exactly the class of simple deterministic langu- 

ages. 

d. It is decidable whether two simple chain grammars are equivalent. 

In this paper we do not consider the question whether the transformation to a simple 

LL(1)-gr/mmar can be given in such a way that the new grammar z~ght-eo~ers the ori- 
ginal grammar (see for definitions [I, p.276] and [7]). 

h. THE PARSING OF SIMPLE CHAIN GRAMMARS. 

Intuitively we can introduce the parsing method by considering the following two si- 

tuations. The first one is a start-situation, the second is an arbitrary situation 

occuring later during the parsing process. 

Let a ~ T in figure I. There is onSy one chain w in CH(S) with l(w) = a. Therefore 

the pair (S,a) determines chain ~, and thus if z = <S,C I, .... ,Cn_1~a> then we know 

that a is a prefix of a right-hand side of a production with left-hand side Cn_ I. 

This information should be held on a stack and we can enter a new situation. 

Figure 1. Situations during the parsing process. 

S A A 

w Z I Z 2 
situation I. situation 2. 

For example, if we leave situation I. then A = Cn_ I and ~ = a (if we assume that a 

is not the complete right-hand side). After having recognized a we want to recognize 

the remainder of the right-hand side 0~X~ I or oX# 2. If X = Y then, by condition (ii) 

of the definition of a simple chain grammar, Z I ~ Z2, Hence, in this situation X 

(or Y) is uniquely determined. By condition (i) the chain from X to Z I is uniquely 

determined. So we know also the symbol to which the right-hand side with prefix Z I 

should be reduced. This information is also held on the stack which we will use. 
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(In case for example X is a terminal the appropriate chain will be <X> and c2g is 

prefix of a right-hand side which should be reduced to A). 

Condition (iii) of the definition of a simple chain grammar determines if the com- 

plete right-hand side of the production has been recognized and then reduction can 

take place, that is, an appropriate number of symbols will be popped from the stack 

and the production will be given as output. 

The r e a d e r  who is familiar with strict-deterministic grammars [9] and their parsing 

method [10] will have noticed some similarities. Elaboration of this will not be 

done here. The next step to a formal definition of the parsing method introduces the 

parsing graph. 

The parsing method for simple chain grammars will turn out to be ~ery simple. It is 

a modified version of the method for production prefix grammars a presented in [4], 

or if one Wishes so, a modified version of the LR(O) parser (see e.g. DeRemer [3]). 

From the informal discussion given above we can conclude that the parsing decisions 

can be made if we know the configuration (A,a), where A~@ is a production and prefix 

has already been recognized. These configurations will be the nodes of a parsing 

graph which controls a pushdown stack in which we store subsequent configurations 

of productions of which the right-hand sides have not yet been completely recognized. 

This is of course the same idea as for LR(O) parsers in which case each node of the 

parsing graph represents a configuration set of a more complex nature than in our 

case. 

To be more precisely, and using the terminology of DeRemer [3],in our case each node 

(except the start node) represents a basis set which has only configurations of the 

form A-~.@i, where i runs from I to the number of productions which have left-hand 

side A and prefix ~ (~ ~ ~), and its related closure set. This means that the pair 

(A,~) uniquely determines the configuration set and we can simply speak of the con- 

fiquration, or the node, (A,~). In an LE(O) parser each node can represent a configu- 

ration set such that a configuration B÷B.~, where B ~ ~ and Aa ~ BB, may also be 

contained in the basis set, 

ALGORITHM 4.1. (parsing graph) 

Input: A simple chain grammar G = (N,T,P,S). 

Output: A parsing graph for G. 

Method: Each node of the parsing graph will correspond to a configuration. The start 

node is (S). 

I. Let A-yy be in P. A configuration is denoted by (AT'), where 7' ~ s and X' is a 

prefix of y. If y = y' then the configuration is denoted by [Ay].The corres- 

ponding nodes are in the form of a circle and a square respectively. 
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II. Let (Aa) be a configuration, a ~ V*. If A-~o~<@ is in P then (A~X) is a (basis) 

X-successor of (Aa) and an edge with label X is drawn from node (A~) to node 

(~x), 
Furthermore, for all Y such that X=~=> Y~=~=> Z~', for some ~ and 6' in V* 

and Y e N we have that (YZ) is an (closure) Z-successor of (Ae), and an edge 

with label Z is drawn from node (As) to node (YZ).~ 

This algorithm is illustrated with an example. In figure 2 we display the productions 

and the parsing graph of a simple chain grammar. 

Figure 2. Parsing graph. 

b 

D 

B 

) c 

e 

In the following algorithm we describe the parsing method. 

Productions : 

S÷aBC $÷bDe 

S+ab S÷eF 

B÷dB B÷a 

C+c D+c 

F÷bC 

ALGORITHM 4.2. (parsing algorithm) 

Input: A parsing graph for a simple chain grammar G = (N,T,P,S) ~nd a string w ~ T . 

Output:If w e L(G) then a sequence of productions used in a rightmost derivation of w, 

in a reversed order. If w { L(G) then an error is declared. 

Method:We maintain a stack on which the (representations of the) configurations will 

be stored. We refer to the symbol on top of this pushdown stack as the current 

state . The start state is (S), Which will be on top of the stack as the par- 

sing starts. Observe that condition (iii) of definition 2.4. provides that 

the current state is either a read state, that is, of the form (...), or a 

reduce state, that is, of the form [...]. 

I. If the current state is a read state then read the next symbol of w and place the 

successor of this symbol on top of the stack. If there is no such successor then 

declare an error and halt. 

II.If the current state is a reduce state then the number of symbols corresponding 

to the length of the righthand side of the production involved is popped from the 
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stack. The production is given as output. The successor of the lefthand side of 

this production for the current state (after popping the stack) is placed on the 

staok.~ 

Since this parsing algorithm is nothing more than the wellknown method in [3] the 

validity of our way of parsing simple chain grammars is guaranteed by the following 

observations on the parsing graph. 

OBSERVATION 4.1. 

a. Condition (i) and (it) of definition 2.4. guarantee that for each element Z ~ V 

each node has at most one Z-successor. Otherwise, let X,Y and Z in V and (A~) 

is a node of the parsing graph. Suppose A-~X@I and A~<~Y@2 are two (possibly 

equal) productions. If (A~) has two Z-successors then we have one of the fol- 

lowing two situations: 

V* I. There exist XI, X 2 ~ N, 41, ~2 ~ 51, 62 e such that 

X~> XI@ I and X1÷Z61, and 

Y--~--> X2@2, X I ~ X 2 and X2+Z62. 

II. X = Z (or the symmetrix case Y = Z) and there exist X 2 ~ N and ~2,62 ~ V* such 

that Y=T=> x2~ 2 and X2÷Z~ 2 (X 2 ~ Z). 

That is, we have Z-successors (XIZ) and (X2Z) in case I or (A~Z) and (X2Z) in case II. 

If X = Y then case I is impossible since X is chain-independent. If X ~ Y then case 

I is impossible since X ~ Y. Also case II is contradicted by X ~ Y. 

b. Condition (iii) of definition 2.4. provides that each node denotes either a 

reduce or a read state. 

c. Since there is no edge with label S leading away from (S), which is guaranteed 

by condition (i) of definition 2.4., the parsing properly terminates if a re- 

duction to S has been made.D 

The use of the algorithm is illustrated by parsing the sentence of the grammar in 

the example following algorithm 4.1. (figure 2). Without comment we display the con- 

tents of an input tape, the stack and the output which is emitted. In this table the 

top of the pushdown stack (the current state) is on the right-hand side. 
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input tape stack 

a d a c  

d a e  

a c  

c 

c 

c 

c 

c 

i .............. - 

output 

(S) 

(S)(Sa) 

(s) (Sa)(Bd) 
(S)(Sa)(Bd)[Ba] 

(S)(Sa)(~d) B÷a 

(s) (sa) (Bd)[mB] 
(S)(Sa) ~ 

(s)(sa)(Sa~) 

(s)(sa)(sa~)[Cc] 
(s)(sa)(SaB) ~o 

(s)(sa)(sa~)[s~c] - 

( S ) S+aBC 

Table I. Actions of the parser on adac. 

5. CONCLUSIONS. 

In this paper we introduced a proper subclass of the LR(O) grammars, the class of 

simple chain grammars. We showed that every simple chain grammar is prefix-free. The 

simple chain grammars generate exactly the class of simple deterministic (or simple 

LL(1)) languages. A parsing method, very close related to, and inspired by the method 

of production prefix parsing was introduced, and the relation to LR(0)-parsers was 

shown. 

We want to spent some notes on, what are in our eyes, the most important features of 

simple chain grammars. In the first place we want to mention the possibility to trans- 

form each simple chain grammar to a simple LL(1) grammar [15]. What class of grammars 

is obtained after a similar transformation if we extend the definition of simple chain 

grammars with look-ahead? In the second ~lace we have to mention the definition of 

simple chain grammars, which is entirely in terms of the finite sets of productions, 

nonterminals and terminals, instea~ of the (in general infinite) set of derivations. 

Moreover, the very simple parsing method follows directly from this definition and 

can be considered as a restricted way of LR(0)-parsing [3]. 

In the third place we have the following question. In [8] Hammer introduced a method 

to obtain LL(k) grammars from LR(k) grammars. On a much lower level we are doing some- 

thing like that. As we show in [15] the simple chain grammars, which can be parsed 

using a bottom-up parsing method, can be transformed to a class of grammars (the simple 

LL(1) grammars) which have a top-down parsing method.Immediately from this we come to 

our fourth and last note on possible future work on the simple chain grammars, 
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We can ask what kind of covers are possible from simple chain grammars and their 

extensions to simple LL(1) and probably less restrictive classes of grammars. Al- 

though given in an informal way, in [8] the transformation and cover is such that 

right parses are mapped on left parses. In [15] we show that in general a left cover 

from simple chain grammars to simple LL(1) grammars is impossible. Therefore also 

the question of possible covers is interesting. 

Of course we are aware of the fact that only a very restricted class of deterministic 

la/Iguages is generated by the class of simple chain grs/umars. We think however that 

extensions of the definition of simple chain grammar are possible, which preserve 

some of the appealing properties of simple chain grammars and their parsing method, 

and which remain rather simple. 
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