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Contents: Descriptions and correctness proofs are discussed of three algorithms 
involved with iteratlve processing of tree-structured computations: iterative 
traversal of a Binary tree, a backtracking algorithm, and a marking algorithm of a 
binary directed graph which constructs a spanning tree of that graph (the Deutsch- 
Schorr-Walte marking algorithm). The backtracking algorithm is believed to be 
novel. Intuitively these proofs are complicated by the fact that one does not know 
beforehand whether the processed space of computations is finite or infinite 
(; in the finite case a proof is simple). The complication due to the possibility 
of an infinite (search) space is dealt with by introducing an induction principle 
which asserts that a given computation is necessarily infinite, and therefore yields 
an undefined result. This principle, greatest fixpoint induction, is both in its 
actual mechanics and in spirit complementary to Burstall's structural induction. 

i. MOTIVATION 

i.i Practical motivation 

(i) Eventually, to obtain machine-checkable proofs of graph processing 

algorithms of the kind studied in concrete complexity. 

(ii) To find an informal formulation of Hitchcock & Park's analysis of 

termination. 

*) The author wrote this paper while supported by a senior visiting fellowship 
related to SRC Contract No. B/RG/74082 (ProgTam Proving Techniques). 

The research described was also carried out: 
at the Mathematisch Centrum, Amsterdam; 
at the Progra,un~ng Research Group, Oxford, on a scholarship of the Netherlands 
Organization for the Advancement of Pure Research (Z.W.O.)~ 
at the D~pa~tement d'Informatique, University of Rennes, France. 



413 

1.2 Formal motivation 

Equivalence proofs involving recurslve procedures are sometimes at first sight 

hard to find when only Scott induction is available. This may be due To The following 

situation: 

In a naive setting, all induction arguments in such proofs concern induction on the 

recurslon depth of some quantity, and ape Therefore carried out within the framework 

of ~he natural numbers. 

However, in the context of program proofs there is no reason for the preponderant 

role of the natural numbers since one would like equally well To (i) induct directly 

on the complexity of lists, Trees, directed graphs, etc. (structural induction of 

some sort), or, (2) carl ~ J out one's proofs in a system in which the natural numbers 

are no par% of one's underlying domain of data. One therefore looks for natural- 

number-free induction principles. 

Scott induction is such a principle; it generalizes the following induction scheme 

over the natural numbers, n-step-n¢l induction, To formal systems in which no natural 

numbers are explicitly present: 

n-step-n+linducTion scheme: If (A!) A(O) can be proved, 

and (A2) if one assumes A(n) as hypothesis, then 

A(n+l) can be proved, 

Then (A3) V n. A(n) holds. 

Again, if the natural numbers are an explicit part of one's formal system, then 

n-step-n+l induction is equivalent to 

Course-of-values induction scheme: If (BI) A(O) can be proved, 

an__~d (B2) for every m, if for some O~ml<m2<...<mksm one 

assumes A(ml)AA(m2)A...AA(mk) as hypothesis, 

Then A(m+l) can be proved, 

the_.__nn (B3) ~m. A(m) holds. 

However in natural-number-free formalisms there exists no direct analogue of course- 

of-values induction, because its formulation seems to require explicit knowledge of 

the natural numbers; therefore only Scott-induction is at one's disposal in such 

formalisms. 

Yet many equivalence proofs - especially those between a recu~sive procedure and 

some form of iterative implementation - requlme induction steps for which (B2), and 

not (A2), is the natural naive setting. 

Transposing such pmoofs to formalisms in which only Scott's equivalent of (A2) is 

available as induction step requires sometimes ingenuity. I shall argue, by way of 
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example, that in such cases greatest fixpoint induction may provide a solution. The 

resulting proofs display a combination of least and greatest fixpoint reasoning. 

However, as observed independently by Robert Milne and Robin Milner, the proofs so 

obtained also suggest in their turn a n-step-n+l argument, i.e., application of 

Scott-induction. 

Consequently, from a formal point of view, ~eatest fixpoint induction is in the 

considered applications of heuristic value. 

2. ITERATIVE PROCESSING OF TREE-STRUCTURED COMPUTATIONS 

First we discuss iterative traversal of an a priori given binary tree, then 

iteratlve processing of tree-structured computations, - i.e., backtracking - and 

finally iteratlve traversal and construction of spanning trees of binary directed 

graphs - the Deutsch-Schorr-Walte mamklng algorithm. The outline of the correctness 

proof of the last algorithm shows how proofs about program schemes can be relevant 

to higher-order programs. 

2.1 Iterative versus recursive tree-traversal 

2.1.1 Iteratlve traversal of a given binary tree can be illustrated by the 

following p~cture: 

~" 

,~. " ,., ',. ,,; ', / " 
.'.. ",., ,.' . ,. 

=7 

2.1.2 

Since each arrow changes exactly twice of direction, the net result 

of %he traversal is no change at all : a% %he end the original tree 

is recovered. 

The above pictume illustrates the idea behind the following algorithm: 

S(£,r) <= if at (%) then 

if £=NIL then r else S(P~A(£)) fi 

else S(car(£),cons(cdr(£),m)) fi ... I 
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Here at(£),car(£),cdr(£),cons(~) denote the usual binary tree processing primitives, 

call-by-value is used as parameter mechanism, i.e., S is stZict, and at(E) implies 

that A(£) is defined. 

2.1.3 Let 

N(E) <= if at(E) thenl(E=NIL) else N(car(~))^N(cdr(E)) fi 

define a boolean procedure which determines whether NIL occurs or does not occur 

amongst The leaves of £. Then correctness of S is expressed by 

~[~(~) ~ S(~,NIL) = P(~)], 

where P(£) is given by 

P(£) <= if at(E) then A(£) else cons(P(car(£)),P(cdr(£))) f_~i. 

A direct proof of this assertion by structural induction on £ fails. 

By proving 

V A,r[N(£) ÷ S(£,r) = S(r,P(£))] ... II 

instead, the previous assertion follows, since if N(£) holds then 

S(£,NIL) = (by II) S(NIL,P(£)) = P(£). 

A proof of II using structural induction is straightforward (; the difficult 

step is realizing that correctness of S requires proving II): 

Assume N(£). There are two cases: 

a. at(Z): Then S(A,r) = (since'l(£=NIL))S(r,A(£)) = S(r,P(£)). 

b. "Tat(A): Assume the result by hypothesis for car(E) and cd~(£). 

Then S(£,r)=S(car(£),cons(cdr(A),r))=(hyp.) 

S(cons(cdr(£),r),P(car(£))) = 

S(cdr(£),cons(r,P(car(A))))=(hyp.) 

S(cons(r,P(car(£))),P(cdr(£)))= 

S(r,cons(P(car(£)),P(cdr(£))))=S(r,P(£)), 

since N(£) implies N(car(£)) and N(cdr(A)). 

2.1.4 Generalization to infinite trees 

Without the presence of NIL in £, S(£,r) = S(r,P(£)) also holds if £ is 

infinite; then S(£,r) does not terminate, and neither does P(£), and a forteriori 

S(r~(£)) since the parameters of S are called by value. (AT this stage divergence 

with call-by-name (or call-by-need) based ~sTm~ct formalisms occur; in such 

formalisms P(£) may very well represent for infinite £ a well-defined value obtained 
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as result of a limiting process, while for S(~,r) this limiting process "never takes 

off", and hence the value of S(£,r) is represented by the "undefined" value I.) 

Lifting the finiteness condition off £ implies that no inductive argument upon 

the structure of £ is anymore available. 

Yet II can still be proved by mathematical induction on the recurslon depth of N(£). 

(This possibility is eliminated in the next section.) 

Note that the value of N(£) may now be either true, false, or 'undefined'. 

Consequently our propositional logic should be adapted [9]. The kind of intricacies 

involved in proving II for the case N(~) = 'undefined' are illustrated in the 

section 2.2.4. 

2.2 Backtracking 

2.2.1 introduction : representing the 4 queens" problem. 

The 4 queens' problem requires a quaternary tree representation. 

recurslve solution has the following for~: 

where 

(1) 

(2) 

(3) 

Therefore a 

P'(£) <= if s(£) then P'(SI(£))uP'(S2(~))uP'CS3(£))uP'($4(£)) e!s e SoI(£) fi. 

The intended interpretation of P'(~) is given by 
4 e 

P'(col,s) <= i~ eol<4^free(col,s) then U P(col+l,~s) else 
i=l 

if col=4^free(4,s) then {s} else ~ fi, 

coi¢{1,2,3,~}, s denotes a linear list with 1,2,3,4 as atoms, and the 

value of P(col,s), if defined, is a set consisting of llnear lists, 

free is a total predicate checking the particular constraints dictated 

by the 4-queens' problem, 

"~' denotes set-theoretic union, "~" concatenation of an atom to a 

linear list, "~" the empty set, and is} the set with element s. 

The call P(O,A), with A denoting the empty linear list, has as value a set 
[5] 

consisting of all solutions to the 4-queens' problem 

An equivalent iterative solution is obtained by Q(£,endmarker), with Q 

defined by 

Q(£,r) <= if is-probl-repr(£) then 

if s(£) then Q(Sl(£),cons(S2(£),S3(£),S~(£),r)) else Q(r,Soi(£)) f i 

else if Z=endmarker then r else 

Q(car(£),cons(cdrl(£),cdr2(£),cdrs(£),r)) f i, 
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where if-prohl-repr(A)^ £:endmarker implies A:cons(car(£),Cdrl(£),cdr2(£),cdr3(~)). 

This transformation of a recurslve solution into an iterative equivalent 

results in a backtracking algorithm. 

2 . 2 . 2  

where 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

This example motivates our study of the scheme Q, defined by 

Q(£,r) <: i_~flpr(£) then 

if s(£)then Q(Si(£),cons(S2(£),r)) else Q(r,A(£)) f_~i 

else if em(£) then r else Q(car(£),cons(cdr(£),r)) f~i, 

ipr is a total predicate s.t. ipr(£) implies that s(£) is defined, and 

~ipr(£) implies that em(£) is defined, 

s(£) iff SI(£) and $2(£) are defined, and 7 s(£) iff A(£) defined, 

~em(£) implies ear(g) and cdr(£) defined, 

SI,S 2 and A denote functions, SI(£) defined iff $2(£) defined and 

then ipr(Sl(£)) and ipr(S2(£)) are satisfied, too, and if A(£) is 

defined then ipr(A(£)) is satisfied. 

car,cdr,cons operate on finite or infinite binary trees over atoms 

£ satisfying either ipr(£) or em(£), *) 

cons and Q are strict, i.e., use call-by-value. 

Let T(£) he defined by 

T(A) <= i~f s(£) then cons(T(Sl(£)),T(S2(£)) ) else A(£) f~i. 

Then we have 

~,r[ipr(£)÷Q(£,r) : Q(r,T(~))] ... !II 

2.2.3 A proof of III can be split into two parts: 

~,r[ipr(~)÷Q(A,r) ~Q(r,T(£))] ... III.l 

~,r[ipr(£)~(r,T(A)) ~Q(£,r)] ... III.2 

Here~is defined as follows: 

Let D denote a set, A denote an element not contained in D, and x and y 

denote elements of DU{A}. Then x~ iff either x=i or x=y. 

Moreover, for n-tuples <Xl,...,Xn>~<yl,...,yn > iff xig_v i holds coordinatewise, 

i=l,...,n, and for functions fl&-f2 iff, for all x, fl(x)g_f2(x) holds pointwise. 

*) Note added in proof: and em(cons(£1,£2))=ipr(cons(£1,£2))= false. 
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Assertion 111.2 can he proved by induction on the recursion depth of T(£), 

and is s~2aightforward. 

Proof of assertion III.l, at first sight, seems to require course-of-values induction, 

also called truncation induction, on the recursion depth of Q. 

Let o[Q] denote the procedure body of Q. Then Qn' the restriction of Q to 

recursion-depth ~n, is defined by Q0=~[~£,r.I/Q3, Qn+l=a[Qn/Q], and we have 

Qn~£Qn+l for all heN. 

Proof of;II.J using course-of-values induction: 

Assume ipr(£). There are two cases: 

a. ~s(~) ~x)Ids: Qo(Z,r) = I_CQ0(r,T(£)). 

For all k>O, Qk(£,r) = Qk_l(r,A(£)) = Qk_l(r,T(£))~Qk(r,T(£)). 

b. s(£) holds: Assume ~,r.(ipr(£)~Qj(£,r)ZQj(r,T(~))) 

for j=n and j=n-l. 

If nz2 then 

Qn+l(£,r) = Qn(Sl(~),cons(S2(£),r))~(hyp., since ipr(Sl£) follows from (1)~(ii), 

(iv) above) 

Qn(cOns(S2(£),r)~T(Sl(£)))= 

Qn_l(S2(£)~cons(r,T(Sl(£))))t(hyp., since ipr(S2£) holds) 

Qn.I(cons(r,T(SI(£))),T(S2(£)))= 

~_2(r,cons(T(Sl(~)),T(S2(£)))) = Qn_2(r,T(£)) _E 

Qn+l(r,T(£)). 

If n=l then Q2(£,r)EQ2(r,P(£)) follows from 

Q2(£,r)=Qo(cons ...), see above, and Qo(cons ...) = I. 

2.2.4 In mechanized proof systems, proofs using course-of-values induction are 

undesirable since these involve unnecessary operations on the natural numbers~ in 

such systems one prefers proofs using n-step-n+l (- Scott -) induction. 

Two such proofs are presented. 
a 

The first one is given below and applies Ereatest fixpoint inductlon,/principle for 

reasoning about infinite computations. 

The second one is given in section 3.4 and amounts to a translitteration of the 
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course-of-values proof given above. 

Proof of III.l using n-step-n+l and greatest fixpoint induction: 

Introduce the auxiliary boolean procedure k(Z); 

k(£) <= if s(Z) then k(Sl(£))Ak(S2(£)) else true f~, 

assume ipr(£)~ and distinguish between two cases: 

a. k(£) = true: proof: by n-step-n+l induction on the recumsion depth of k(£). 

The prqof is similar to that of section 2.1.3 and therefore omitted. 

b. k(£) = 'undefined' : proof: BY greatest fixpoint induction. Since s(£)=false 

implies k(A)=true, necessarily k(£)=k(Sl£)^k(S2£)='undefined'; hence either 

k(SIA)='undefined' or k(SIE)=tr~__~eand k(S2A)='undefined'. 

bl. k(Sl£)='undefined' : Then Q(£,r)=Q(Sl£,cons(S2£,r)). 

b2. k(S!A)=tru ~ and k(S2£):'undefined' : Then 

Q(£,r)=Q(Sl£,cons(S2A,r))_K'(by (a) above)Q(cons(S2£,r),T(Sl£)) 

=Q(S2A,cons(r,T(Sl£))). 

Thus k(£)='undefined' implies in both subcases that computation of Q(£,r) 

requires computation of an inner call Q(£'~...) with k(£')='undefined'. 

Moreover the two suhcases are exhaustive. Therefore computation of Q(£,r) has 

to proceed infinitely if k(£)='undefined' is not to be violated, and hence 

assertion III.l is trivially fulfilled since the value of Q(£,r) is undefined. 

In section 3 the induction principle behind the infinite-sequences argument 

used above - greatest fixpoint induction - is formally introduced, and the proof 

given above is justified. 

2.2.5 

(1) 

(2) 

(3) 

The reader may object that: 

he considers the example too contrived, 

he is perfectly satisfied with the proof of III.l using course-of-values 

induction~ 

the example is too trivial since the course-of-values proof at level n÷l uses 

the hypothesis at levels n and n-i only, and that he would rather see an 

algorithm in which the hypotheses are dynamically rather than statically deter- 

mined. 
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Objection (i) is met in the next section. 

I do not know of an example to answer objection (3) above~ it would be very 

interesting to see. If anybody finds such an example, please inform me l 

2.3 The Deutseh-Schorr-Waite marking algorithm. 

2.3.1 Version for binary trees 

The idea behind the Deutsch-Schorr-Waite marking algorithm is described in two 

steps: 

First we refine the figure in section 2.1.1 as follows: 

That is, we distinguish during traversal of the tree between a leftdown phase and a 

~ckup phase. 

Traversal in leftdown phase ends upon encountering an atom, upon which 

traversal in backup phase is initiated. 

Traversal in backup phase changes into leftdown phase upon encounterir~ a (not yet 

visited) righthand subtree of the original tree, and remains in backup phase, 

otherwise~ a bit is introduced in each interior node to distinguish between these 

two cases. 

An interior node met in leftdown phase - this is the first time that node is met - 

is marked by 1 to encode that the righthand subtree must still be traversed. Upon 

encountering that node (for the first time) in backup phase - this is the second 

time that node is met - the marking bit is set to 0 to encode preservation of that 

phase after the righthand Tree has been traversed. Finally, the third time that 

node has been met, its bit has served its purpose as far as marking phase differences 

~s concerned, and it is systematically set to, e.g.~ i. 
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This reflected in the following figure: 

¢ • / ?  . - ! ?  

" " " "  { 

Hence one obtains the following marking algorithm for binary Trees (with one 

bit in each interior node): 

Left(£,r) <= if at(£) then Back(£,r)else Left(car(£),cons(cdr(£),r,l)) fi, 

Back(£,r) <= if r:NIL then £ else 

if bitfield(r)=l then Left(cam(r),cons(cdr(~),£,O)) 

else Back(eons(cdr(r),A,l),car(r)) f i, 

where NIL serves as endmarker, and bitfield(r) isolates the marking-hit of r. 

Let 

M(£) <: if at(g) then ~ else cons(M(car(£)),M(cdr(~)),l) fi 

denote the obvious recurslve version of the marking algorithm. 

Then the following assertion holds both for finite and infinite trees £ (- cons calls 

its arguments by value -). 

Y~,,.~eft(£,r) : Back(M(£) ,r~. 

This algorithm has been investigated independently in Burstall [I0~ and de Roever[ll]; 

its ccTrectness proof is similar to that of section 2.2.%. 

2.3.2 Version for directed binar9 graphs. 

In The above algorithm new nodes of the tree are encountered for the first time 

in leftdown phase, and are then submitted to a test of the form at(g). 

Therefore, in the case of traversal of a cycle of a binary directed graph, that test 

is The spot in the algorithm where newly encountered nodes have To be distinguished 

from already visited ones in order to prevent infinite repetition in traversal of 



422 

that cycle. 

This distinction is made by introducing a second marking bit which enables marking a 

node upon encountering that node for the first time, and by replacing the test at(£) 

by a test at(£)vm(£) with m(£) checking whether or not a node has been visited 

already. 

In order to express the change in underlying formalism required to express 

binary directed graphs, a new formalism is introduced. 

New formalism (based on [8]): 

Let At and Loc denote two disjoint sets~ and at denote a total predicate over 

these sets satisfying at(e) = true iff a~At. 

A memorF for representing binary directed graphs with two marking bits is a 

total function a :Loc+{O,l}2x(LocuAt) 2. 

Changes of such a memory are described as follows: 

al,a2~{0,1} , and a3,a4¢(Loc u At), then c[~+al~a2,a3,a ~] is for ~Loc defined Let 

by 

AScLoc.ife=8 the m <al,a2,a3,a4> els.._~ea(8) fi. 

For ecLoc, elements of the quadruple ~(~) are accessed hy the (total) functions 

m,£: LocxMem*{0,1) and 

hd,tl: LocxMem~Loc u At, with Mem denoting the collection of memories as defined 

above, and m,f,hd,tl defined by: 

If ecLoc,~Mem, and ~(~) = <al~a2,a3,a4 >, then 

m(~,~) = al,f(s,c) = a2,hd(~,~) = a3,tl(s,~) = a 4- 

In view of the above, the Deutsch-Schorr-Waite marking algorithm of binary directed 

graphs, expressed by LEFT(e,8,s) and BACK(e,8~s) below, should now be obvious: 

LEFT(e,6,c) <= if at(~) v m(a,~) = I then BACK(e,6,~) 

else 

LEFT(hd(e,~),~,~[~l,l,tl(s,a),S]) fi, 

BACK(u,8,a) <= if 8 = NIL then <~,~> else 

if f(8,e) = 1 then 

LEFT(hd(6,e),6,e[6~m(8,a),O,tl(8,e),e]) 

else 

BACK(8,hd(8,e),a[8+l~l,tl(8,s),e]) f_~i. 

Let 

M(e,a) <= if at(e) v m(s,e) = 1 then q else 

M(tl(e,a),M(hd(~,e),a[a~l,f(a,a),hd(e,a),tl(a,e)])) f i, 



423 

denote the obvious recumsive version of the marking procedure. 

Then correctness of the Deutsch-Schorr-Waite marking algorithm for binary directed 

graphs is expressed by 

y~,O'.~ LEFT(~,NIL,~)= <~,M(~,o)~,... 

a special case of 

~,,~,Q../LEFT(~,8,o) = BACK(~,B,M(~,o))] ... IV 

The only interesting part in the proof of assertion IV is that of 

This assertion is proved by 

- introducing the boolean procedure k(~,8,~): 

k(e,8,o) <: if at(£) v m(u,~) : 1 then true else 

k (hd(e,~),e,c[s~l,l,tl(a,o),83) ^ 

k (tl(~ ,~ ) ,u ,M(hd(a ,o ) ,~[a~1,0, S ,hd(a ,~ ) ] ) ) f l, 

- distinguishing between the cases k(m,8,~) = true and 

k(a,8,o) = 'undefined', 

cf. de Roever[6]; this proof was inspired by Topor [81 , and derives from an attempt 

to elucidate the inductive structure underlying Topor's proof. 

Remark: Michael Patterson observed that the idea behind algorithm S as expressed in 

section 2.1.1 applies also to directed graphs without marking bits. This can be 

understood by translitterating S into a formalism such as described above (but 

deleting the part dealing with marking bits). 

Open problem: Pmove corTectness of this new version of S (, for traversal of un- 

marked directed graphs). 

3. FORMAL JUSTIFICATION 

First, greatest fixpoint induction is formally introduced as a valid principle 

in its own right. 

Then our use of it in section 2 is justified. 

Finally, we present Milne's and Milner's observation that the use of greatest 

fixpoint induction in section 2 also suggests a proof using n-step-n÷l (- Scott -) 

induction. 
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3.1 Greatest fixpoint induction 

Greatest fixpoints, and their associated operators, were described by 

David Pamk in [4] their first application in programmlng - expression of fairness 

of a merge of two infinite sequences - was also fo1~mulated by him. 

Just as in the context of complete partial orders the least fixpoint of an 

equation X = a(X) is defined by ~X[~] = {XI~(X) C'X} , in dual fashion its greatest 
DEF 

fixpoint is defined by 

vx[~] = {xix£~(x)}. 
DEF 

It can be checked that vX[u] is a fixpoint, indeed. 

Consequently The following rule, greatest fixpoint induction, is valid: 

TC_~(T)~T©_vX[c]. 

Obviously greatest fixpoint induction is dual to the following propemty - 

least fixpoint induction - of least fixpoints: 

~(~)=~ #x[a]=_~ 

As usual, these definitions and this rule can be generalized to finite or 

infinite systems of equations. 

Existence of These fixpoints is guaranteed by monotonicitg of o(X) in X 

(; {XIXE_a(X)} is then obviously a directed set). 

Expression of the relationship between least and greatest flxpoints requires 
I! _. 

complete partial orders equipped with a complementation, or negation, operator 

Examples of such structures are complete algebras of relations, or complete boolean 

algebras (in the latter case the sign will be used). 

In such structures 

: v 

holds, as originally observed by Park, and proved below: 

Proof of v: 

: Since ~X[a] is a fixpoint of X=o(X), 

vX[~]=~(vX[~]) ~=> 

~X ~ X [ ~ ]  <=> 

(By least fixpoinT induction) 
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~_ : Since ~X[~(-~5] is a flxpolnt of ~(X)=X , 
._._...-.------- 

.xr ] = o i l )  o >  (by greatest fixpoint induction) 

D 

3.2 Formal application 

3.2.1 Consider again the recumsive procedume T(£) of section 2.2 over (finite or 

infinite) binary trees: T(£) <= if s(£) then T(SI(£)AT(S2(£)) else A(£) f~i, 

assuming that s(£) implies that A(£) is defined. 

It can be proved [i],[2] that T(£) terminates iff k(£) - recall 

k(Z) <= if s(£) then k(Sl(£))Ak(S2(£)) else tPue fi - 

terminates, i.e. k(£) = true. 

Let L he the complete lattice of total predicates p from finite or infinite 

binary trees to the complete lattlce~ defined by {faise,truelfalse ~ true}. 

Define o I by 

o I = lp.l£, i_~f s(£) then p(Sl(£))wp(S2(Z))els___~ee false fi. 
DEF 

~i is a continuous functional over L, and hence its greatest fixpoint (denoted by) 

up[~l(p)] exists. 

Now k is characterized by the least fixpoint ~p[Tl(p)] of the dual~ansform- 

ation 

Tl = Ap.l£. i~f s(£) then p(sl(£))Ap(S2(£)) else true fi. 
DE£ 

It follows from V that 

~p[cl(p)](£)*-+ ~p[~l(p)](~) . . . .  Vl 

sincelsl(~ p) = A~. if s(£) the__._qnl(IP(Sl(A))vlp(S2(£))) else tmue fi = Tl(p). 

Consequently, up[cl(p)](£) = tFue iff T(£) does not terminate. 
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3.2.2 A similar argument applies t o  

q(~,r) <= i_~fipr(~)then 

i_~fS(£) the._.~nQ(Sl(£),cons(S2(£),r)) els___._eeQ(r,A(£)) f_~i 

else ~f em(£) Then r else Q(car(~),cons(cdr(£),r)) fl. 

Introduce the functional a 2 over L: 

~2 = DEF 
Ip.l£,r. i_ffipr(£) the__._nn 

i_~fs(A) the__n_np(Sl(£),cons(S2(A),r)) els_.__~ep(r,A(£)) f~i 

else if em(£) then false else p(car(£)~cons(cdr(£),r)) f_~i. 

Then vp[~2(p)](£,r) = true iff O(~,r) does not terminate. 

3.2.3 Using these notions, our proof in section 2.2.4 of 

~£,r[ipr(£)~Q(~,r) = Q(r,T(£))] 

involving informal use of greatest fixpoint induction, can be formally justified 

using the principle defined in section 3.1: 

Assume ipr(£). By Vl, 

pp[Tl(p)](£)VuP[Ol(p)](£) = true. 

Hence the proof splits into: 

a.~£,r[~p[Tl(p)3(£)~Q(£,r) = Q(r,T(A))]. Proof: by simultaneous Scott induction 

on ~p[Tl(p)3 and T. (Cf. section 2.2.4). 

b.V£,r[pp[al(p)](£)*vp[o2(p)](£,r)]. I.e., k(£) = 'undefined' implies that Q(A,r) 

does not terminate. This is sufficient to prove, since vp[al(p)](£) = true iff T(£), 

and a forteriori Q(r,T(£)), does not terminate. 

By introducing the predicate transformer Rop = Ax. y[xRyap(y)3 and The strict 
DEF 

projection function ~i defined by ~i(<Zl,~2 >) = £i,i = 1,2, 

~E,r[vP[Ol(p)](£)÷vp[o2(p)](£,r)] is expressible by the inclusion 

~l°vP[Ol(p)] _~vP[%2(P)]. 

In ihls formulation, Park's rule of greatest fixpoinl induction is applicable: 

_= (~ Ovp[o (p)])~ ovp[~ (p)] ~vp[c2(p)]. 

LHS 

[7] 
LHS is formally proved in 

Thus our informal appeal to greatest fixpoini induction in section 2.2 can he 
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under~inned by formal application of the principle introduced in section 3.1. 

Similar arguments apply to other Informal appeals to this principle in section 2. 

This justifies our use of the term greatest fixpoint induction in section 2. 

Remark. Robert Milne observed That by intmoducing The lattice T = {l,false,true I 

± false, I true), and by considering least flxpoints of o I and ~i w.r.t. T, VI 

can be proved by Scott induction. Then one could probably prove the above results 

using least flxpoints only. 

3.2.4 Obviously, our use of this mule depends critically on finding auxilia~ 

predicates - such as k - describing The domain of (non) termination of recursive 

procedures. In genemal, existence of such predicates follows from Hitchcock & 

Fark [2] . Our particular versions of these predicates are obtained by applying a 

theorem of de Bakker's [I]. 

3.3 An alternative proof 

Robert Milne and Robin Milner observed independently of each other that The 

informal use of ~eatest fixpolnt induction in section 2 suggests proofs by 

n-step-n+l induction. This is illustrated by The following proof of 

~£,r[ipm(£)÷Q(£,r)£ Q(r,T(£))] ... iII.l 

In this proof ± denotes either fals__._~e in~, om the undefined value representing 

nonter~ination. 

III.I follows from proving 

(Qi£Qi+l)^~A,r[ipr(A)=true~{(k(£)=±~Qi(£,r)=l)^ 

(k(A)=tru__~Qi(~,r)~Qi(r,T(£)))}3. 

by induction on i : 

Proof: n=O: Immediate. 

n=i÷l: Assume the result by hypothesis for n=i. 

(a) Assume ipr(£)=True and k~=l. Then of course s(£)=True, 

Qi+l(~,~)=Qi(Sl~,co~s(S2£,r)), SI~ is defined and ipr(Sl~)=ipr(S2~)=true. 

We have either k(Sl£)=l or k(Sl£)=true and k($2£)=I. 

In the first case, Qi(Sl£,...)=l, by hypothesis. 

In the second case, 

Qi(Sl£,cons(S2£,r))~(hyp.,2nd conjunct)Qi(cons(S2£,r),T(Sl~)) 

(hyp')QI+I(eons(S2£,r),T(SI£))=Qi(S2A .... )=(hyp.)l. 
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Qi+l ~ Qi+2 
procedure bodies. 

(b) Assume ipr(£)=true=k£. Of course, s(£) is defined~ we proceed analogous to 

section 2.2.4 case (a): 

(i) s(£) = false: 

Then Qi+l(£,r)=Qi(r,A(£))=Qi(r,T(£))EQi÷l(r,T(£)). 

(ii) s(£)=true: Then since k£=true,kSiZ=kS2~=true. 

Then Qi+l(£,r)=Qi(Sl£,cons(S2£,r)) 

~(hyp.)Qi(cons(S2£,r),T(Sl£)) 

~(hyp.)Qi+l(cons(S2£,r),T(Sl£)) 

= Qi(S2£,cons(r,T(Sl£))) 

~(hyp.)Qi(cons(r,T(Sl£)),T(S2£)) 

~(hyp.)Qi+l(cons(r,T(Sl£)),T(S2£)) 

=Qi(r,cons(T(Sl£),r(s2£)))=Qi(r,T(£)) 

~(hyp.)Qi+l(r,T(£))- 

(c) follows by monotonicity of the transformations induced by 

8 

3.4 In retrospect 

In the meantime more proofs of III.l have been found, displaying the rich 

variety which S c o t t  induction allows in this kind of examples. 

The simplest of these proofs is the following one: 

Proof of III.l using n-step-n+l induction: 

Assume ipr(£). We prove for all n: 

V£,r[ipr(A)~-Qn(£,r)£Qn(r,T£)]- 

n=O: QO(£,r)=±~Q(P,T£). 

n=k+l: Assume the result by hypothesis for n=k. 

a. ns(A) holds: Qk+l(£,r)=Qk(r,A~)=Qk(t,T£)~Qk+l(r,T£). 

b. s(A) holds: Qk+!(£,r):Qk(Sl£,cons(S2£,r))[(hyp.) 

Qk(COnS(S2£,r),T(Sl£))~Qk÷l(COns(S2~,r),T(SiZ)) = 

Qk(S2£,cons(r,T(Sl£)))~(hyp.)Qk(COnS(r,T(Sl£)),T(S2£))E 

Qk+l(r,T£) • B 
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I tried to tame the variety mentioned above by simulating a structural- 

induction-type argument by 

(i) introducing auxiliary predicates, and 

(2) applying Emeatest fixpoint induction in order to reason about 

nonter~ination. 

Acknowledgement: I am grateful to Bruno Courcelle, Robert Milne, Robin Milner, 
Michael Patterson and Christopher Wadsworth for their interest. Robin Milner's 
criticism was justified. Robert Milne generated several alternative proofs 
of III of varying complexity, invented systems [3] which tackled The general 
problem raised in section 1.2 of this note, and wrote me many helpful letters. 

Belfast, 7th April, 1977. 
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