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l.Introduetion 

LL(k) &rammars were first defined by Lewis and Stearns[5].Algebraic 

properties, as closure under usual operations ( union, intersection~ 

complement, product, etc. ) have been first studied by Rosenkrantz 

and Stearns[4] .They have proved that the class of LL languages is not 

closed under any of these operations. 

Nevertheless~ closure properties have been investigated. Wood[j 

has proved that the LL languages are not closed under pre-product with 

finite or regular languages. Now we shall prove that they are closed 

under union and difference with finite languages. Moreover, the union 

( or difference ) of an LL(k) language with a finite one does not mo- 

dify the initial "k" : the resulting language still remains LL(k). 

2.Previous definitions and results 

In order to prove %he results announced in the introduction, we 

shall use the following notations, definitions and theorems from Aho 

and Ullman[l] : 

(2.1) ~et G=( N,~ ,P,S ) be a context-free grammar. For ~(NU~-)~and 

an integer k > O, we define : 

FIRST~(~-)={we['/ either |wl< K and aU~w, or ~w| =k and ~.~wx,for 

some x eZ*] .Ifm%~[ e , the definition is independent of G. 

For L¢ Z', FIRSTk(L)= {FIRSTk(W) I w* L} 

(2.2) A context-free grammar, G=( N,[ ,P,S) ~ is LL(k), for some inte- 
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ger k> 0, if whenever there are two leftmost derivations: 

s 

s 

such that FIRSTk(X)=FIRSTk(Y) , it follows that ~=~. 

We say that: a grammar is LL, if it is LL(k) for some integer k; 

a language is LL(k), if there is an LL(k) grammar G, such that L=L(G). 

(2.3) Let G=(N,[,P,S) be s context-free grammar. Then G is LL(k) if 

end only if the fDllowing condition holds: if A-~ and A ~# are dis- 

tinct productions in P, then FiRSTk(~) n F!RSTk(~)=~ , for all w;~ 

such that S l~m wA~. 

(2.4) Every LL(k) grammar has an equivalent LL(k+I) grammar in Greibsch 

normal form. 

(2.5) If a language L has an LL(k) grsmmar without e-productions,k~ 2, 

then L has an LL(k-I) grammar. 

3.Main results 

(3.1) Lemma. Let L I and L 2 be LL languages, such that LInL2= ~.A suffi- 

cient condition for LI• L 2 to be LL is the existence of an integer ~>0 

such that: 

(5.1.1) FIRSTk(LI)n FiRSTk(L2)=~. 

The condition is not necessary. 

Proof. Let Gi=(Ni, Z ,Pi,Si) be LL(k i) grammars, such that Li=L(G i) 

(i=1,2). Without loss of generality, we can assume that NI~N2=~.We 

shall define a new grammar G=(N,X P,S) such that: N=NIUN2ULS}, where 

S is a new symbol, S~ NIL) N 2 ;P=Pi u P2U[S-~S I , S-~S2~ . 

It is easy to verify that L(G)=LIUL 2. 

Now we shall prove that G is an LL(n) grammar, where n=max(~,Kl,k 2) 

First of all, we shs!l remark that the new initial symbol S does not 

belong to the right side of any production from G ( the only producti- 

ons where S appears are S~S I and S-~S 2 ).But, because Nl~N2=~,it is 

true that: 
G 

± S - ~ - . . . .  ,~G F i R S T k ( L = ) = F t R S T k l (  i ) - ~ I ~ k ( S  i )  , i = t , 2 .  

Then, from the hypothesis (5.1.1) it follows that: 

(3.1.2) FiRsTG(sI) ~ G FIRSTk(S2)= ~ , and this is also true for n, 
because ~ n. 

f~[oreover, from (2.3) it follovls that for any ~N i (i=1,2), the 

following conditions hold , for i=1,2 : if a-~ and A-,~ are distinct 
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productions in Pi ( then, elso in P ), then: 
G i G i 

FIRSTki(~)A FiRSTki({~)=~,for 811 wa~sueh that S i l~m wA~. 

But, because ki~ n, Pi G P, NI~ N2=~ and S-~S1, S~S 2 are the only S- 

productions in P, it follows that : 
(3.1.3) FIRSTG(~)~ FIRSTG(~)=~, for all wA~ such that S ~wA~. 

From (3.1.2) and (3.1.3), using (2.3), we conclude that G is LL(n). 

The condition (3.1.1) is not necessary, because Ll=[anb n / n odd~ 

and L2={anbn / n even 3 are LL languages, generated by the LL(1) gram- 

mars: Gl: S-~aA , A-~aSbb / b ; G2: S-~aaSbb / e. The condition (3.1.1) 

is notq satisfied, but LlU L2=~nb n /n~ O} is an LL(1) language. 

(3.2) Corollary. If L is an LL language and w is a word, then Lu[w} 

is also LL. 
Proof. If w~L, the statement is trivial.If w~L, the result 

follows from the preceding lemme, ta~ing k=lw! +l (where |wl = the length 

ofw ). 
Remark. The proof of Lemma (3.1) shows that, if L is LL(k) and}wI=n, 

then Lu[w) has an LL(m) grammar, where m=ma~(k,n+l). The following 

theorem will prove s stronger result, n~mely that Lu[w~ is still an 

LL(k) language, if L is so. 
(3.3) Theorem. Let L be an LL(k) language, w#L. Then there exists an 

LL(k) grammar which generates Lu~w 3. 
Proof. From (2.4) it follows that we can find an LL(k+l) grammar 

in Greibach normal form, G=(N,[ ,P,S), such that L=L(G). We shall prove 

that Lu~w} can be generated by an e-free LL(k+l) gr~ar, and then , 

using (2.5), we may conclude thst Lu[w~ csn be generated by sn LL(k) 

grammar. 
In fact we shall no more complicate the notation and we'll prove 

that : if G=(N,~ ,P,S) is an LL(K) grammar in Greibach normal form 

(k~2), then there exists an e-free LL(Z) grammar which generates 

L(G)u~w~ • 
Let w=ala 2...a m • Let n>O be an integer such that for st least 

one word in L~ala2...an is a prefix, and for no word in L ala~...an+ 1 

is s prefix. The case n=m is when w is a prefix for some word in L(in 

this case we suppose an+l=e).Note that here we ~se the fact that w~L. 

If n~ k, the statement follows from the proof of Lemma (3.1).So 

we shall suppose that n)k.Let us consider in G a leftmost derivation 

of the form: 

Pn-k+l ala2" 
S ~ al@g I p2~ ala2¢g 2 P3~, ... ===:~ ..an-k+l ~n-k+l 
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such that : ai÷ 1 . .. ai+k~ FIRSTk(~i ) ,l-<i~ n-k, an_k+ 2. .. an+l~ FIRSTk (OCn_k+ 1 ) • 

Such a leftmost derivation can be found because of the choice of n , 

and it is even unique, because G is an LL(k) grammar. Additionally, 

if we set O6o=S and if for a value of i,O.~i~n-k, we write the sequence 

of nonterminals ~i as ~i=A~i (A6N,~iENW), then for any rule A--~ 

which is ~ot the rule Pi+l , it follows that: 

(3.3.1) FIRST~ ~ ~i) '~ ~TRST~( ~i+l ~i+l )-- ~, O~i.~n-k. 
Let us now modify the initial grammar G=(N,~-,P,S) in order to 

obtain a new LL(k) grammar, G'=(N',Z,P',X o) such that L(G')=Lu{w~ . 

Let Xo,Xl,...,Xn_k+ 1 be new symbols not in NuZ, all different. Let 

N'= NU{Xo~Xl,..~Xn_k,l} , where Xois the new initial symbol. P" is the 

set obtained by joining to P the following new productions: 

(3.3.2) Xi-~ ~i~ if ~i=A~i and A--~ is a rule in P, but not the 

rule Pi+l" 

(3.3.3) Xi-~ai+iXi+l 

for all i=O,!~...,n-k, and 

(3.3.4) Xn_k+l--~ O~n_k+ ! 

(3.5.5) Xn_k+l--> an_k+ 2...a m . 

Note that for k>: 2 this is an e-free grammar. 

Let us now prove that G" is LL(k).We shall use theorem (2.3). Let 

A~N', A-~¢ ,A-~ be two different productions from F'~andd.~N'~uch 

that x o ~ x~. x.:~e ~ust prove that F~RST~ (~) ~ FIRST~ ( ~)= ~ 
If AeN, it is easy to remark that ~ N~,, and A-*~ ,A-~ are from P. 

Then FIRSTG( " ~)=FIRSTG(~ ) and FIRST G ( ~)=FIRSTkG(~), which are 

disjoint, because G is LL(k). If A=X i (O~i.<n-k+l), then ~=e. Then 

FIRST ( @ )~ FIRST (~)=¢, because we have the statement (3.5.1) true, 

if A-~ or A-~ are (3.3.5) or (3.3..~) rules, and because G is LL(k), 

if both are (3.3.2) rules.So it follows that G" is LL(k}. 

Let us now prove %hat L(G')=Lu[w]. In order to prove that Lu~w~ c 

L(G'), we shall remark that shy word from L which has no prefix in 

common with w may be derived in G" by using at first a (3.3.2)-rule, 

and then rules from P.Any word in L having ala2...a i as a prefix may 

be derived in G" in the same way as before, if i4k, and otherwise by 

using (i-k+l)-times (3.3.3)-rules,then a (3.3.2) or a (3.3.4)-rule, and 

finally using rules from P. At last~ w may be derived by using all the 

(3.3.3)-rules and the (3.3.5)-rule. In order to show the other inclu- 

sion, it may be proved, by induction on the number of steps used in 
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the aeri  tion X i , that 

So, for i=O, Xo~ x implies thst x~ Lu~,~}. The proof by induction is 

not difficult and i% is le~t to the resder. So, we m~y conclude that 

the LL(~<) e-free grammar G" generates Lu~w~, and the taeo~'em is thereby 

proved. 

(3.4) Corollary. if L I is LL(k) and L 2 is finite, then LlU L 2 is LL(k}. 

(3.5) Corollary. Lemms (3.1) is valid even if Ll~L 2 is finite. 

Remark. Using an analogous proof to that of theorem (3.3), one might 
show that, if L is LL(k) and w is s word in L, then L-~w} can be ge- 

nerated by an LL(k) grammar. An important consequence of these facts 

is the following: 

(3.6) Theorem. If L is LL(k) but not LL(k-1), then Lu~w~and L-~w} are 

also LL(k), but not LL(k-1). 

(3.7) Corollary. The class of LL(k) languages is closed under union 

and diffmrence with finite languages. 

Remark. Examining the proof of Lemms (3.1), we conclude that LlU L 2 

is LL(n), where n=max(k,kl,k2). This value can be improved, remarking 

that we need k only for expanding S: here we must make s choice between 

of"llne S ~ S 1 and $ ~S 2. Using a method arizstion" of e derivation ana- 

logous to that from the proof of theorem (5.3), one mig~it obtain an 

LL(n) gre~nar to generate LlU L2, where n=maX(kl,k2). 
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