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l.Introduction

LL(kx) grammars were first defined by Lewis end Stearns{3].Algebraic
properiies, as closure under usual operations ( union, intersection,
complement, product, etc. )} have been Ffirst studied by Rosenkrantz
and Stearns{4] .They have proved that the class of LL languages is noi
closed under any of these operations.

Nevertheless, closure properties have been investigated. Wood[5])
has proved that the LL lsnguasges are not closed under pre~product with
finite or regular languages. Now we shall prove that they asre closed
under union snd difference with finite languasges. Moreover, the union
{ or difference ) of an LL{k) lsnguage with a finite one does not mo-
dify the initisl "k" : the resulting language still remsins LL(k).

2.Previcus definitions and results

In order to prove the results snnounced in the introduction, we
shall use the following notations, definitions and theorems from Aho
and Uliman[1]:

(2.1) Let G=( N,Z ,P,S ) be a context-free grammar.For % (NUES and
an integer k>0, we define
FIRST{(eb)={ we E*/ either lwick and «3w, or lwl=k and «=rwx,for

some x:asz.ifﬂkﬁz*, the definition is independent of G.
For Le I*, FIRST,(L)= { FIRST, (w) / we L}

(2.2) & context-free grammar, G=( N,¥ ,P,8) , is LL{k), for some inte-
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ger k>0, if whenever there are two leftmost derivations:
-
5 £ ke 79 wpapu

5 => X
i wAd.fg'wiaﬁ?wy
such that FIRST,(x)=FIRST,(y), it follows that p=¥ .

We say thst: a grammar is LL, if it is LL(k) for some integer k;
a langusge is LL(k), if there is an LL(k) grammar G, such that L=L(G),.
(2.%3) Let G=( N,Z ,P,8) be e context-free grammsr.Then G is LL(k) if
and only if the following condition holds: if A-»p and 4 -»¢ are dis-
tinct productions in P, then FIRSTK(Poo)r\FIRSTk(?&')=45, for all whec
such that S fg WA .

(2,4) Every LL(k) grsmmer has an equivalent LL{k+l) grammar in Greibach
normal form.

(2.5) If a language L has an LL(k) grammar without e-productions,k» 2,
then L has an LL{k-1) grsmmar.

Z.Main resultis

(3.1) Lemma. Let L, and L, be LL languages, such that LyNL,= P.4 suffi-
cient condition for LjU L, to be LL is the existence of an integer «>0
such thst:

(3.1.1) FIRST,(L;)N FIRST,(Ly)=9.
The condition is not necessary.

Proof. Let G;=(N;,Z ,P;,S;) be LL(kj) grammars, such that L;=L(G;)
(i=1,2). Without loss of generslity, we can assume that NlnN2=¢6.we
shall define & new grammar G=(N,Z P,S) such that: N=N1LJN2LQS}, where
S is 2 new symbol, S¢ N;U N, ;P=P;U P,u{S>3, , 5»5,}.

It is easy to verify that L(G):LlLJLZ.

Now we shall prove that G is an LL(n) grammar, where n=max(K,K1,k2)
First of all, we shell remsrk that the new initisl symbol S does not
belong to the right side of any production from G ( the only producti-
ons where 3 appears are 554 and S-S, ).3ut, beceause N N2=}O,it is
true that:

G ~
;T ¥ -1 b =T 'Mﬁb’ 3z
ELRSEK(Li)—EIBSTk (Si)—blﬁoik(si) ,1i=1, 2.
Then, from the hypothesis (%.1.1) it follows that:

{(3.1.2) FIRST%(Sl)f\FIRST§(82)==?5 , and this is also true for n,
becsuse kg n.
lioreover, from (2.3) it follows that for any a6 Ny (i=1,2), the
following conditions hold , for i=1,2 : if A—9P eand A-sy are distinct
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productions in P; ( then, #lso in P ), then:

G. G.
i AT am. ok - X
FIRSTy (pe)n HRoTki<{¢)~ ¢ ,for ell wad such that S; T2 wa.

But, because k;<n, Pjg?, NyN Ny=¢ and S-35,, S»3, are the only S-
productions in P, it follows that :
(3.1.3) FIRSTS(pa) n FIRSTR(fu)=, for sll wA« such thet S T wA .

From (3.1.2) and (3.1.3), using (2.3), we conclude that G is LL(n).

The condition (%.1.1) is not necessary, because Ll={anbn / n odd}
end L2={anbn / n even} are LL languages, generated by the LL(1) gram-
mars: Gy: S9eh , A—>aSbb / b ; G,: S—>aaSbb / e. The condition (3.1.1)
is notr satisfied, but I v LZ;@nbn /nzVO} is an LL(1) lenguage.

(3.2) Corollary. If L is an LL language and w is a word, then Louf{wj
is e2lso LL.

Proof. If wel, the statement is triviel,lf w¢ L, the result
follows from the preceding lemma, taxing k={wl +1 (where |wl= the length
of w ).

Remark. The proof of Lemma (3.1) shows that, if L is LL(k) andlw|=n,
then Lu{w) has an LL(m) grammar, where m=max{k,n+l), The following
theorem will prove a stronger result, namely that Lu{wy is still an
LL(k) language, if L is so.

(3.%3) Theorem. Let L be an LL(k) language, w¢1“ Then there exists an
LL(k) gremmer which generates Lu{w}.

HmM&me(ZAJitfﬂhmsﬂwtwecmxﬁndanLMkﬂ)gmmmr
in Greibach normsl form, G=(N,%¥ ,P,S), such that L=L(G). We shall prove
that Lu{w} can be generated by an e-free LL(k+1) grammar, and then ,
using (2.5), we may conclude that Lu{w} cen be generated Dy an LL(k)
gremmar.

Tn fsct we shall no more complicate the notation snd we”ll prove
that : if G=(N,¥ ,P,S) is an LL{k) grammar in Greibach normal form
(k%»2), then there exists an e-free 1L{k) grammar which generates
L(Gu{w].

Let w=ajas..s8p. Let n»0 be an integer such that for at least
one word in Lysyas...ay ig a prefix, and for no word in L ajage«clnyy

is a prefix. The case n=m is when w is a prefix for some word in L(in
this case we suppose an+1=e).Note that here we use the fact that wgl.

If ng¢ k, the statement follows from the proof of Lemma (%.1).S80
we snall suppose that nyk.lLet us consider in G s leftmost derivation
of the form:

By Py Pz Pn-k+1 5
S =h a4y =% Blayp == - ES ) 1804008y k+]1 Kn-k+1
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such that:ai+l...ai+kéFIRSTk(di),lsisn~k,an_k+2...an+l¢FIRSTk(“h&k+l).

Sweh o leftmost derivation can be found becsuse of the choice of n ,
and it is even unique, because G is gn LL(k) grammer, additionally,
if we set o, =S agnd if for a velue of i,0¢i¢n-k, we write the sequence
of nonterminels o as dimApi ( AEN,FiéN*), then for eny rule A—>f
which is not the rule p;,; , it follows that:

(3.3.1) FIRSTH(P ;)N FIRSTE(oy 1 0¢; ,1)= #, Ocien-k.

i41
Let us now modify the initial grammsr &=(N,3 ,P,S) in order to
obtain a new LL(k) grammar, G'=(N’,Z:,P’,XO) such that L(G’)=Lv{w} .

Let X ,%y,+00,%, 47 be new symbols not in NuZ, 21l different. Let

N’= NLJ{XO,XI,..,Xn_k+1}, where X is the new initisl symbol. P’ is the
sel obtained by Jjoining to P the following new productions:
(3.3.2) %, BB if o;=Ap; and A—>p is a rule in ¥,but not the

rule Pi41*
{3.3.%) Xi") ai'flxi*l

for all i=0,1,...,n~k, and
(3.3.4) k41 Xkl

(3.3.5) pmk41 > Bpokapr o8y o

Note that for k3 2 this ig an e-free grammar.

Let us now prove thet G’ is LL(k).¥We shall use theorem (2.3%), Let
AEN’, A—=B ,A—>y be two different productions from P’,and oc;eN"’éuch
that X, 53 x4« ,xeZ".¥e must prove that FIRSTy (pe)a FIRSTY (fu)=gb.
If A€W, it is easy to remark that o« N’:, end A—p,A—y are from P.
Then FIRSTY(Ba)=FIRSTH(B& ) and FIRSIS ( ye)=FIKSIZ(y), which are

disjoint, because G is LL(k). If A=X; (Osisn-k+l ), then «=e. Then

FIRSTﬁ’k @')n PIRSTg'(Q*)=9b, because we have the statement (3%.3.,1) true,
if A—»p or Ay are (3.3.3) or (3.3.8) rules, and because G is LL(k),
if both are (%.3%.2) rules.So it follows that G’ is LL{k).

Let us now prove that L(G")=Lu{w}. In order to prove that Lu{wyc
L(G"), we shall remark that any word from L which has no prefix in
common with w may be derived in G~ By using at first a (3.3.2)-rule,
and then rules from P.Any word in L having aj8s...8; as a prefix may
be derived in G’ in the same way as before, if i<k, and otherwise by
using (i-k+l)-times (3.3.%)-rules,then a (3.%.2) or a (3.3.4)-rule, snd
finelly using rules from P. At last, w may be derived by using all the
(3.3.3)-rules and the (3.%.5)-rule. In order to show the other inclu-
sion, it may be proved, by induction on the number of steps used in
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L) . " * .
the derivation X; $2 x , that xé{yeZ*Yalag...aiyéZbuhﬁ}(Oslsn~k+1).

So, for i=0, X65% ¥ implies that xe Lvi{w}. The proof by induction is
not difficult and it is lert to the reader.So, we mey conclude that

the LL{k) e~free grammar G’ generates lLufw}, and tihe tneorem is thereby
proved,

(3.4) Corollary. If Ly is LL(k) and L, is finite, then Lyju L, is LL(k).
(%.5) Corollary. Lemma (3.1) is valid even if Llf\L2 is finite.

Remark. Using an analogous proof to that of theorem (%.%), one might
show that, if L is LL(k) and w is a word in L, then L-{w} can be ge-
nerated by sn LL(k) gremmsr. An important consequence of these facts
ig the following:

(%3.6) Theorem. If L is LL{(k) but not LL(k-1), then Lu{wjand L-{w} are
also LL(k), but not LL{(k-1).

{%3.7) Corollary. The class of LL(k) languages is closed under union

and difference with finite languages.

Remark. Examining the proof of Lemmg (3.1), we conclude that L U L,

is LL(n), where n=max(k,kj,k,). This velue can be improved, remerking
that we need x only for expending S: here we must make a cholce between
5-?51 and 5-»8,. Using a method of"linearization™ of o derivation ana-
logous to that from the proof of theorem (%.%), one mignt obtain an
LL(n) grammar to generate 1 U Lp, where n=max(ky,ko).
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