
THE TIME AND TAPE COMPLEXITY OF DEVELOPMENTAL LANGUAGES (#)

by

I. H. Sudborough
Department of Computer Sciences

The Technological Institute
Northwestern University
Evanston, Illinois 60201

Abstr@ct

The following results are established:

(i) EDOL ~ DSPACE (log n)

(2) EOL ~ DSPACE ((log n) 2)

(3)* EDTOL < NSPACE (log n)

(4) EDTOL < DSPACE (log n) if and only if NSPACE (log n) ~ DSPACE (log n)

Statement (4) fe[~C~v~ from statement (3) above, the fact that all linear context-

free languages are EDTOL languages [21], and the existence of a linear context-free

language which is log-tape complete for NSPACE (log n) [15]. Furthermore, it is

shown that all EOL languages are log-tape reducible to context-free languages.

Hence, EOL ~ DSPACE (log n) if and only if every context-free language is in DSPACE

(log n).

Introduction

In [I] t~ne author has shown that the set of languages which are log-tape

reducible to context-free languages (deterministic context-free languages) is

identical to the set of languages recognized in polynomial time by non-deterministic

(deterministic) log(n)-tape bounded auxiliary pushdown automata. This characteriza-

tion enables one to show that many families which properly contain the context-free

(~)

(*)

This work is supported by NSF Grant GJ-43228

This result has been independently obtained by Tero Harju [18] and Nell Jones
and Sven Skyum [20] using essentially the same algorithm as stated here. In
fact, the author has recently become aware of an earlier paper by Harju [19]
again with essentially the same algorithm, which demonstrates that EDTOL ~ U
DTIME (nk). k>o

510

languages have the same tape complexity as the family of context-free languages [2].

It is known that context-free languages can be recognized in (log n) 2 space determin-

istically [3]. It is not known if this result is optimal. Greibach has described

a context-free language whose time or tape complexity is the least upper bound on

the complexity of all CFL's [4]. Moreover, it is known that if all CFL's can be

recognized in deterministic log space, then nondeterministic L(n)-tape complexity

classes are identical to deterministic L(n)-tape complexity classes, for L(n)~

log n [5].

In this paper we consider the tape and time complexity of developmental

languages [6]. It is shown that every EOL language is log tape reducible to a

context-free language. Thus, EOL languages can be recognized in (log n) 2 space.

In fact, the algorithm described ~n [3] for CFL's is the basic component of our EOL

algorithm. It is shown that the EDOL languages are recognizable in log n space

(and in O(n2)time). It is also shown that EDTOL languages can be recognized in log n

space nondeterministicallyo As a corollary we obtain Harju's earlier result [19]that

every EDTOL language is recognizable deterministieally in polynomial time. Further-

more, since every linear CFL is an EDTOL language [21~,we obtain that EDTOL

DSPACE(Iog n) if and only if NSPACE(L(n)) = DSPACE(L(n)), for all L(n)~ log n [15].

This work was principally motivated by the results of Van Leeuwen which show that

EOL G DSPACE((Iog n) 3) [7] and that the membership problem for ETOL is NP- complete

[8].

We shall employ the following terminology in the remainder of this paper. Let

be an alphabet of symbols. %* will denote the set of all sentences of strings

over the alphabet ~. The string consisting of zero symbols, called the empty string,

is denoted by e. The number of symbols in a string x, called the length of x, is

R
denoted by Ixl. The reversal of a string x is denoted by x .

We shall assume that the reader is familiar with the basic concepts of formal

language theory and computational complexity as contained, for example, in [9]. Let

DSPACE(L(n)) and NSPACE(L(n)) denote the families of languages recognized by determi-

nistic (nondeterministic) L(n)- tape bounded off-line Turing machines, respectively.

Let P and NP denote the families of languages recognized by deterministic

511

(nondeterministic) multitape Turing machines in polynomial time. We shall employ

the concept of a log tape reduction as discussed, for example, in [I0, ii].

, ,
Definition. Let E and A be alphabets and f be a function from % to A •

f is log-tape computable if there is a deterministic Turing machine with a two-way

read-only input tape, a one-way output tape, and a two-way read-write work tape,

which when started with x~ on its input tape will halt after having written f(x)

in A on its output tape and having visited at most log (Ixl) tape squares on its

work tape.

Definition. Let A=~ and B~ be arbitrary sets of strings. A is log-tape

reducible to B, denoted by A~logB, if there is a log-tape computable function f

such that, for all x in ~*, x is in A if and only if f(x) is in B.

The following le~mmas are from [i0, Ii].

Lemma. ~log is transitive

Lemma. Let A and B be sets of strings. If A~_logB and B is in DSPACE

((log n)k), for k~l, then A is in DSPACE((Iog n)k).

Definition. For any family of languages ~ let LOG(~) denote the set of all

languages which are log-tape reducible to some language in~°

In [i] the families LOG(CFL) and LOG(DCFL), where CFL (DCFL) denotes the family

of context-free languages (deterministic context-free languages), have been charac-

terized as the families of languages recognized by nondeterministic and determinis-

tic log(n)- tape bounded auxiliary pushdown automata in polynomial time, respectively.

L(n)- tape bounded auxiliary pushdown automata were first considered in [12]. It

was shown there that nondeterministic and deterministic L(n) ~ tape bounded auxiliary

pushdown automata recognize the same family of languages, for L(n)~ log n. However,

if we restrict these families by insisting that each string accepted must be accepted

in some number of steps bounded by a fixed polynomial in the length of that string,

then the equivalence of nondeterministic and deterministic families is an open ques-

tion. Also,i~ is well known that the family of languages recognized by log(n)- tape

bounded auxiliary pushdown automata is identical to the family of languages recog-

nized by two-way multihead pushdown automata. We shall use both type of machine

512

models interchangeably.

Let APDAp(Iog n) (ADPDAp(Iog n)) denote the family of languages recognized by

nondeterministic (deterministic) polynomial time bounded and log(n)- tape bounded

auxiliary pushdown automata, respectively. Thus, LOG(CFL)=APDAp(Iog n) and

LOG(DCFL)=ADPDAp(Iog n). Since CFI~_ DSPACE((Iog n) 2) [3], it follows that LOG(CFL)

DSPACE((Iog n)2). In [12] Cook has shown that P is identical to the family of

languages recognized by log(n)- tape bounded auxiliary pushdown automata (with no

time restriction). Thus, LOG(CFL)= APDAp(Iog n) ~ P. A language L 0 is lqg-tape

complete for a family ~ if (i) L 0 is in ~, and (2) for all L in ~, L~logL 0. It

follows that if a language L 0 is log-tape complete for NSPACE(Iog n), then L 0 is in

DSPACE(Iog n) if and only if NSPACE(L(n)) = DSPACE(L(n)), for all L(n)~ log n [13].

Context-lndependent Developmental Languages

In [7] Van Leeuwen described an algorithm to recognize any EOL language and

demonstrated that it could be implemented within (log n) 3 space on a deterministic

Turing machine. It is shown here that the family of EOL languages is contained in

LOG(CFL). Therefore, the EOL languages are essentially of the same tape complexity

as context-free languages and the algorithm given by Lewis, Stearns, and Hartmanis

in [3], which requires (log n) 2 space on a deterministic Turing machine, is also

applicable to the family of EOL languages.

The reader is referred to [6] for motivation and background information rele-

vant to the study of developmental systems. The basic idea is to describe a math-

ematical model of the growth patterns of simple cellular organisms. For brevity,

and to avoid repetition, we shall describe here only the formal definitions of the

grammars and languages under consideration. We follow basically the approach des-

cribed in [7] .

Definition An EOL-grammar is a four-tuple G = (V,~,~,S), where V is a finite

set (of symbols) , ~ ~ V (a set of terminal symbols), S is an element of V (the

initial symbol), and 8 is a function which maps elements of V to finite subsets of

V (the set of productions).

If 8 (A) = [~i,~2, ~n] , then we say that the symbol A can in one step become

513

any one of the strings of symbols ~I' for i ~ i ~ n. We may extend $ to map V into

V , in the customary way~ by ~(e)=e,$(~A) = ~(~)~(A), for BEV and AEV. For n ~ 0,

let n denote the composition of ~ with itself n times. (Note that ~0 is considered

* 51 to be the identify function on V and = 6.)

Instead of o~(A) we shall often write A ~ ~ and call such an item a production.

For x and y in V we shall often write x = y for yE6(x). Let = be the transitive,

reflexive closure of =° (In this vein the reader will note that an EOL-grammar is

a context-free grammar in which the usual notion of "6 derives ~", i.e. ~ = ?, has

been altered. In a context-free grammar 6 derives V means one of the symbols in B,

say A, has been replaced by the right side of a production of the form A ~ ~ to ob-

tain ?. In an EOL-grammar ~ derives V means all of the symbols in 8 have been re-

placed by the right hand side of a production involving that symbol.)

Definition An EDOL-$rammar is an EOL-grammar G = (V,~,8,S) such that, for all

aEV, ~(a) contains exactly one element.

Definition Let G = (V,~,6,S) be an EOL-grammar. The language generated by G,

denoted by L(G), is:

= *
L(G) = U an(s) N ~* {w6~* I s ~ w~

n~O

A language L is called an EOL-language if there exists an EOL-grammar G such

that L = L(G). A language L is called an EDOL-language if there exists an EDOL-

grammar G such that L = L(G). The family of context-free languages is properly con-

tained in the family of EOL-languages [6].

To show that every EOL-language is in LOG(CFL) we describe an algorithm to

recognize EOL-languages which may be implemented on a log(n)-tape bounded auxiliary

pushdown automaton that operates in polynomial time. The algorithm is basically

similar to the usual algorithm for recognizing context-free languages using a non-

deterministic pushdown store automaton (see, for example, pages 176-77 of [14]).

However, the derivation tree corresponding to a derivation by an EOL-grammar must

satisfy the property that all paths from the root of the tree to a leaf are of the

same length. This additional requirement can be checked by adding to the symbols

stored in the pushdown store, during the usual context-free language algorithm, an

514

integer which denotes the level in the corresponding derivation tree at which the

symbol resides. Thus, if the symbol A on top of the store is at level i then the

pushdown store will contain a representation of the pair (A,i). If A ~ BC is a

production in the grammar, then (A,i) will be removed from the top of the store and

(B,i+l) and (C,i+l) will be added to the store. For some particular value k, which

denotes the length from the root of the derivation tree to each leaf, each pair of

the form (A,k) as it appears on top of the store will initiate a verification that

the next input symbol is A and will then be deleted from the store. By Lemma 3.1,

page 207, of [7], for each word x generated by an EOL-grammar there is a derivation

tree such that the distance from the root to each leaf is some integer k less than

or equal to clxI+l.

The pair (A,i) consisting of the symbol A and the integer i will be represented

by the string [A * N(i)], where [,*, and] are new symbols not occurring in the

symbol alphabet of the EOL-grammar, and N(i) is the binary representation of i. In

order to perform the replacement of the pair (A,i) by the pairs (B,i+l) and (C,i+l)

indicated in the production A ~ BC we shall need to use the worktape space of the

auxiliary pushdown automaton. The algorithm is incorporated into the proof of the

following theorem:

Theorem Every EOL-language is in LOG(CFL).

Proof. Let G = (V,~,8,S) be an EOL-grammar. Let M be the nondeterministic

log(n)-tape bounded auxiliary pushdown automaton which performs the following steps

on an input string w of length n:

(i) M nondeterministically writes an integer k (0 ~ k ~ clwl+l) on its worktape.

(k denotes the length of each path from the root to a leaf in a derivation

tree for w.)

(2) M places the string consisting of the representation of the pair (S,O) and the

special symbol # on its pushdown store. (The symbol # is on the bottom of the

store.)

(3) For 0 ~ i< k, if the representation of (A,i) is the top string on the push-

down store, then M may replace that string with the representations of

(Bl,i+l), (B2,i+l) (Bm,i+l), if BIB2...Bm is an element of 8(A).

515

(4) If the representation of (A,k) is the top string on the pushdown store,

then M determines whether A is the current input symbol or not and whether

A is in E or not. If A is not the current symbol or A is not in E, then M

stops without accepting. Otherwise, M deletes the representation of (A,k)

from the store, moves the input head right, and executes step (5).

(5) If the top symbol on the pushdown store is not #, then M executes steps

(3)-(5) again. If the top symbol on the store is # but the input head is not

scanning the right endmarker, then M stops without accepting. Otherwise, if

the top symbol is # and the input head is scanning the right endmarker, then

M stops and accepts.

M can execute step (3) or (4) by (i) writing the representation [A*N(i)] for

the pair (A,i) on its worktape, (2) determining whether or not N(i) is equal to

N(k) (which is stored permanently on the worktape), and if i < k, then (3) incre-

menting i to obtain N(i+l) and writing sequentially the representations for

(Bm,i+l), (Bl,i+l), as specified in step (3), on the pushdown store. Clearly,

this process can be performed using only d.log(lwl) cells on the worktape, for some

constant d > 0, since k < clwl=l. Moreover, M is polynomial time bounded, since M

executes at most elk steps between movements of the input head, for some c I > 0.

(That is, after each execution of step (3) the level number in the top pair on the

pushdown store is increased by one and when the level number in the top pair becomes

k the input head moves right or M stops.) Therefore, M operates in time O(n2).

That M accepts w if, and only if, w is in L(G) can easily be verified.

Therefore, L(G) is in LOG(CFL) by Theorem 2.1.

It should be noted that the use of the index i in the symbols (A,i) stored in

the pushdown store of the preceding algorithm is mainly for convenience. That is,

the level of a symbol in a derivation tree could be determined from the symbol~s

position in the pushdown store. Thus, we need only use the worktape space to record

the fixed path length k and to count the appropriate level number of a sumbol in the

pushdown store. It follows that the algorithm we have described can be viewed as an

implementation of a pre-set pushdown automaton [22]on an auxiliary pushdown automaton.

It follows that every pre-set pushdown automaton language is in LOG(CFL). It is

5 1 6

known that the family of pre-set pushdown automata languages properly contains the

family of EOL languages ~2].

For EDOL languages we can obtain a better result. That is, every EDOL-

language can be recognized by a deterministic log(n)-tape bounded Turing machine.

The basic idea, in this case, is that for each string wEV from an EDOL-grammar G

= (V,E,6,S) and each integer i,~l(w) is a single string in V and the length of that

string can be easily obtained. In fact, the length of that string can be ascertained

in an amount of space bounded by the logarithm of max {18J(w) l I 0 ~ j ~ i]. Such

an algorithm, denoted by LENGTH(w,i), is described below: (Let #a(W) denote the num-

ber of occurrences of the symbol a in the string w)

LENGTH(w,i)

(I) If i=O, then set LENGTH to lwl. Otherwise, for each a~V, set N[FM~ER (a) =

#a(w) ;

(2) For each aEV, set NUMBER (a) = ~ ~NUMBER (b) × #aS(b)]
b~V

(3) Set i to i-l.

(4) If i = 0, then set LENGTH = ~ NUMBER(a) and stop. Otherwise, re-execute
aEV

step (2).

For example, if 5(a) = bab and ~(b) = abaa, then LENGTH(abb,2) = 37. Since the

above algorithm need only represent, say in binary notation, a finite set of integers,

namely NUMBER(a), for each aEV, each of which is never larger than m =

max {I&J(w) l I 0 ~ j ~ i~, the space needed for execution is bounded by c.log2m, for

some c~ 0 dependent only upon the grammar G.

Let G = (V,~,&S) be an EDOL granmmr. As in [24],we shall say that a symbol aEV

is mortal if &i(a) = e, for some i>o. Those symbols in V which are not mortal will

be called vital Let l lwll denote the number of occurrences of vital symbols in

the string w. We observe that there is a constant m~0, depending only upon G, such

that for all w in V* and i2o,

(*> 18i(w) I ~ c • max [II~i<w) ll,w].

In order to see this, let p = max ({l~(a) llaEV] ~ {i]) and let q be the smallest

integer such that, for all aEV, if a is mortal, then ~q(a)=e. Let e = pq. We sepa-

rate two cases:

517

pi. s) if i< q, then 1 i(w)1 lw} c !w i

b) if i ~ q, then consider y = 8~-q<w). Since, for all x in V*, II x II~ Ilh(x>ll,

it follows that II Y II ~ II ~q(y)ii = II 6i(w)II. it follows also from the

definition of p that 16(x) l ~ p • Ixl and, hence, 18q(x)I ~ pq. Ixl. Since all of

the mortal symbols occuring in x will map to e in ~q(x), we have,in fact,that

}6g(x) l ~ Pq " II X Ii" Therefore,

Igi(w) l = 16q(gi-q(w)) I = Igq(Y) l £ Pq'll Y II ~ Pq. II ~i(w) II.

Therefore, the claim in line (*) is established. That is, the length of any

string of symbols generated from a string w in a deviation of ~i(w) is bounded by a

constant multiple of the length of either w or 6i(w).

The next lemma from [23] is needed, to bound the size of integers represented

in the algorithm.
L emma. Let L he generated by an EDOL grammar G. There is a constant c > 0

@e~endent only upon G such that each word w in L has a derivation of length less

than or eaual to c-max [lwl, 1~.

The next procedure is used to determine whether or not a symbol B is the j-th

symbo I in the string 6i(A~,for any m}mbol A in V and i ~ 0. It is denoted by

VERIFY(B,j,A,i):

VERIFY(B,j~A~i)

(!) If i > O, then go to (3);

(2) If A = B, then stop and answer "true"; if A # B, then stop and answer "false";

(3) Let 6(A) = AIA2...A (where p ~ i and each A. is in V) and let 6 be the least
p l

integer (i ~ 6~ p) such that j ~ LENGTH(AIA2...AI,i-I). Then call VERIFY

(B,j-LENGTH(AIA2...Ai_I,i-I), A~,i-l). (If 6(A) = e, then stop and answer "false".)

The above algorithm requires space only to record the four arguments and to

execute the LENGTII routine described earlier. Let n be the length of 6i(A).

Then, by the previous lemma, i ~ cn, for some c >0. Since we may assume that the

argument j is between 1 and n, all four arguments may be represented in d-log2n

space, for some constant d. Furthermore~ by our previous analysis, since the LENGTH

routine is called only to evaluate the length of 6J(w) where w is a snbword of

8 I'3 (S), for 0 ~ j ~ i, the space needed to execute this routine is bounded by

d2,1og 2 (16i(s)l) = d2,1og2n , for some constant d 2 > 0.

The following algorithm, denoted by MEMBER(x), determines whether x # e is

generated by a given EDOL grammar G or not. It is an iterative algorithm which

calls the previous VERIFY algorithm in succession to determine whether the i-th

symbol of x is the i-th symbol of ~J(s), for 1 ~ i ~ Ixl, and for increasing

518

values of j. (One can determine whether e is generated by an EDOL gra~ar or

not by a table look up procedure. That is, the answer may be prerecorded.)

MEMBER (x~

(Let x = ala2...an, where n ~ 1 and a i is in ~, for I ~ i ~ n~and let c be the

constant from the previous lemma.)

(i) Set i = 0. If LENGTH (S,i) # n, then go to (5).

(2) Set j =

(3) If VERIFY (aj,j,S,i) is true, then go to (4). Otherwise, go to (5)

(4) If j = n, then stop and answer "true". Otherwise, set j = j+l and go to (3).

(5) If i = cn, then stop and answer "false". Otherwise, set i = i+l and go to (6).

(6) If LENGTH (S,i) = n, then go to (2). Otherwise, go to (5).

It should be clear from the previous discussion that MEMBER(x) correctly

determines whether x is generated by some specific EDOL grammar or not and that

it does not require more than log(Ixl) space° Therefore, we have established the

following theorem:

Theorem The family of EDOL languages is contained in DSPACE (log n).

EDTOL languages

In [8~ Van Leeuwen has sho~n that the membership problem for ETOL languages is

NP-complete. This implies that the ETOL languages are in P if and only if P = NP

and, for some k ~ I, are in DSPACE((Iog n) k) if and only if NP = DSPACE ((log n) k)

[i0,ii]o It is shown here that the membership problem for EDTOL languages is

solvable nondeterministically in log n space. Thus, Harju's result [I~ that EDTOL

P follows as a corollary. Furthermore, since all linear CFL's are in EDTOL [2~,

and there is a linear ~L which is lob-tape complete for NSPACE (log n) [15], EDTOL

= DSPACE (log-n) if and only if NSPACE (L(n)) = DSPACE (L(n)), for all L(n)~log n.

An EDTOL-gra~nar differs from an EDOL-gran~nar in that there are a finite set

of tables of productions. At any time within a derivation an arbitrary table may

be selected and only productions within that table may be applied° The tables in

an EDTOL-gra~ar mu3t, moreover, satisfy the property that no two productions within

a table have the same left side. (In other words, the tables are deterministic.)

Definition. An ETOL-grammar is a four-tuple G = (V,~,~,S), where V is a

519

finite set (of s~mbols), ~ ; V (a set of terminal s~mbols), @ is a finite set

[~1,82, o..,8k] , for some k ~ i, of functions which map elements of V to finite sub-

sets of V* (each 6i is a set of productions), and S is an element of V (the start

symbol)° An EDTOL-~rarmnar is an ETOL-graranar G = (V,~,P,S) such that,for every 6

in P and every aEV,~(a) contains exactly one e~ement.

As in the case of an EOL grammar we may extend the functions 6 in # to map V*

into V* by specifying that 8(e)=e and ~(~A) = ~(~) 6(A) for ~V* and AEV. Instead

of ~(A) we shall often write A ~ ~ and call such an item a production° For x and

y in W~ and ~i~we shall often write x ~ y for yEll(X) 0 Let = be transitive re-

flexive closure of the union of the relations ~. We may consider # to be a finite z

set of tables of productions. At any step in a derivation some table is chosen

and only productions in that table are applied°

Definition° Let G = (V~,#~S) be an ETOL granmar° The language generated by

G, denoted by L(G), is:

L(G) = [81~ 2.oo8p(S) I P ~ i & &1,82 6p~4~} n~* = [w6~* I S ~ w}

Let G = (V,~,P, bl)be an EDTOL grammar with V = [bl,b2, o..,bm}o Let

x = ala2°.oa n be a string over ~ of length no Our algorithm stores initially a

representation of the initial string hi. A representation of an intermediate string

in a derivation of x will be accomplished by the array T(i), with I ~ i ~ m, in

our algorithm. For each I ~ i ~ m, T(i) will either contain the empty set 6 or will

contain a pair of natural numbers (si,ti). If T(i) = ~, then b i does not occur in

the intermediate string ~. If T(i) = (si,ti) , then the algorithm has guessed that

each b i in the intermediate string ~ generates the string of length (ti-si) start-

ing at cell s i of the input tape. (The algorithm is nondeterministic; it will veri-

fy that its guesses are correct before accepting the input string.) S~nce an EDTOL

gra~mmr is deterministic,each occurrence of b. in ~ must generate the same
l

string after any finite number of steps° Thus, it is sufficient to represent ~ by

recording which variables occur within it and for each of those variables record

what portion of the input string it should generate. The representation of a inter-

mediate string ~ such that ~ and 8 = x is accomplished by (I) guessing which

table of productions is used at this step of a derivation of x and (2) updating the

520

array information to represent 6. For example, if b i ~ bjbj were a production in

the current table and T(i) = (si,ti) , then our algorithm will "guess" a natural

number v such that s. ~ v ~ t. and determine whether the string of length (v-si)
l i

that begins at cell s. of the input is identical to the string of length (ti-v)
L

that begins at cell v~ If so, then T~j) will be set to (si,v) and the algorithm

continues. If not, then the algorithm stops without accepting the input.

The algorithm terminates when all of the non-empty elements of the array T

have been verified. That is, when it is verified that T(i) = (si,ti), where

t i = si+l , and b i is the symbol (string of length one) on cell s i of the input tape,

for all i ~ i ~ mo The algorithm also uses an array T0(i), I ~ i ~ m, for tempor-

ary storage of new values for the array T during some steps of the process. A more

complete description of the algorithm follows.

Let G = (V,~,#,bl)be an EDTOL grammar such that V = [bl,b2,..~bm}o Let

be a string of length n over ~. The following steps are executed: x = ala2. o oan

(i) Set T(1) to the pair (l,n+l) and each of T(2) T(m) to ~o

(2) Select nondeterministically a function 6 from the set ~. For i ~ i ~ m, set

WO(~) = ~.

(3) For each I ~ i ~ m, such that T(i) # ~,do the following:

(a) If &(bi) is the empty string, then determine whether s i = t i or not. If

s i # ti, then stop without accepting the input. If s i = t i, then continue.

.o-bi6, (b) If 6(bi) = bilbi2 with 6 e I, then choose nondeterministically

integers Vl,V2,o..,v6_ I such that v 0 = s i ~ v i ~ v 2 ...~ v6_ I g t i = V£o (If

6 = I, then there is nothing to choose.) Then, for I ~ j ~ 6, do the following:

(i) If T0(ij) = ~, then set T0(i j) to the pair (vj_l,vj);

(ii) If T0(i j) # ~, say T(!j)=(mj,nj), determine if the input tape has the

same string on cells mj through nj -i as on cells vj. I through vj-l. If

not, then stop without accepting the input. If so, continue.

(4) For I g i g m, set T(i) to To(i). If t i = si+!, for all i g i ~ m such that

T(i)#~, then go to step (5); otherwise, go to step (2).

(5) For i ~ i ~ m, if T(i) # ~, determine whether b i is the symbol in cell s.l of

the input tape. If not, then go to (2). If for all Ig i g m, such that T(i) #

521

~, h. is the symbol in cell s. of the input tape, then stop and accept the
l l

input.

It should be noted that this algorithm does not require more than log (n)

space for inputs of length n. That is, the number of elements in the arrays T and

T O is dependent only upon the number of symbols in the EDTOL gran~nar (not on the

length of the input string)° Furthermore, each element of these two arrays is

either the empty set or a pair of natural numbers between I and n+l. Thus, at most

log n space is required for, say, a binary representation of each element of the

array. Thus, at most c.log n cells are sufficient storage for the arrays, for some

c > 00 Since constant factors are irrelevant for general tape bounded Turing

machines,we have:

Theorem. EDTOL ~ NSPACE (log n)~

Fagto EDTOL = DSP~CE (log n) if and only if NSPACE (log n) = DSPACE (log n).

Proof. It is known that every linear CFL is an EDTOL language [21]. In [15]

a linear CFL which is log tape complete for NSPACE (log n) was described° It fol-

lows that if EDTOL ~ NSPACE (log n), then NSPACE (log n) = DSPACE (log n). The

converse follows directly from the preceding theorem, i.e. EDTOL ~ NSPACE (log n)o

Acknowledsements

I am indebted to Jan Van Leeuwen for carefully reading an earlier version of

this paper and his comments which helped improve the presentation. An earlier ver-

sion of the theorem showing that EOL is contained in LOG(CFL) is contained in the

paper [17], which was jointly authored with a graduate student at Northwestern

University, A. K. Arora.

522

REFERENCES

(io).

(11).

(12).

(i). !.H. Sudborough, On the Tape Complexity of Deterministic Context-Free

Languages, to appear. Some of these results are in "On Deterministic Con-

text-Free Languages, Multihead Automata, and the Power of an Ausiliary

Pushdown Store," Proceedings of the 8th Annual ACM Symp.osium on Theory of

Computing (1976), 141-148.

(2). I.H. Sudborough, The Complexity of the Membership Problem for Some Exten-

sions of Context-Free Languages, Intern. J. Computer Math., to appear.

(3). P.M. Lewis, R.E. Stearns, and J. Hartmanis, Memory Bounds for the Recogni-

tion of Context-Free and Context-Sensitive Languages, P rocgedings of the

Sixth Annual IEEE Symposium on Switching Circuit Theory and Logical Design

(1965), 199-212.

(4). S.A. Greibach, The Hardest Context-Free Language, SIAM J. on Computin $

2 (1973), 304-310.

(5). I.R. Sudborough, On Tape-Bounded Complexity Classes and Multi-Head Finite

Automata, JCSS (1975), 62-76.

(6). G.T. Herman and G. Rozenberg, Developmental Systems and Language.s, North

Holland Publishers, Amsterdam, 1975.

(7). J. Van Leeuwen, The Tape Complexity of Context-Independent Developmental

Languages, JCSS (1975), 203-211.

(8). J. Van Leeuwen, The Membership Questions for ETOL-languages is Polynomial

Complete, Info. Processing Letter§ 3 (1975), 138-143.

(9). J.E. Hopcraft and J.D. Ullman, Formal Languages and Their Relation to

Automata, Addison-Wesley Publishing Co., Reading, Mass., 1969.

N.D. Jones, Space-Bounded Reducibility among Combinational Problems, JCSS II

(1975), 62-85.

A.R. Meyer and L.J. Stoekmeyer, Word Problems Requiring Exponential Time,

Proceed.ings of Fifth Annual ACM Symposium on Theory of Computing (1973), 1-9.

S.A. Cook, Characteristics of Pushdown Machines in Terms of Time-Bounded

Computers, JACM 18 (1971), 4-18.

523

(13).

(14).

(15).

(16).

(17).

(18).

(19).

(20).

(21).

(22).

(23~.

(24).

W.J. Savitch, Relationships Between Nondeterministic and Deterministic Tape

Complexities, JCSS 4,2 (1970), 177-192.

A.V. Aho and J.D. Ullman, TheTheory of Parsin$~ Translation~ andCompiling,

Vol. I, Prentice-Rail Publishing Co., Englewood cliffs, N.J., 1972.

I.~. S~dborough, On Tape-Bounded Complexity Classes and Linear Context-Free

Languages, JACM (1975), 500-501.

S.A. Cook, Path Systems and Language Recognition, Proceedings of Second An-

nual ACM Symposium on Theory of Computing (1970), pp. 70-72.

A.K. Arora and !.H. Sudborough, On Languages log-tape reducible to context-

free languages, Proceedin$s of the 1976 Conference on Information Sciences

and Systems, Johns Hopkins University, Baltimore, Maryland, 1976.

T. Narju, personal con~nunication.

T. Harju, A polynomial recognition algorithm for the EDTOL languages,

Elektron. Informationsverarbeit. Kybernetik, to appear.

N.D. Jones and S. Skyum, Recognition of deterministic ETOL languages in

polynomial time, Technical Report DAIMI PB-63 (October, 1976), Institute of

Mathematics, University of Aarhus, 8000 Aarhus C, Denmark.

A. Salomaa, Parallelism in rewriting systems, in Automata~ Lansuages and

Programming, J. Loeekx (ed.), Springer-Verlag Lecture Notes in Computer

Science Series 14 (1974), pp. 523-533.

J. Van Leeuwen, Notes on pre-set pushdown automata, in L Systems, G. Rozen-

berg and A. Salomaa (eds.), Springer-Verlag Lecture Notes in Computer

Science Series 15 (1974), pp. 177-188.

G. Rozenberg and P. Doucet, on OL-Languages, Information and Control 19,

1971, pp. 302-318.

P.M.B.Vitanyi, On the size of DOL languages, in L systems , G. Rozenberg and

A. Salomaa (eds.), Springer-Verlag Lecture Notes in Computer Science Series

15 (1974), pp. 78-92.

