
FACTOR GRAPHS, FAILURE FUNCTIONS AND BI-TREES 

R.C. Backhouse and R.K. Lutz 
Department of Computer Science 

Heriot-Watt University, 
Edinburgh EHI 2HJ 

Abstract The factors and factor matrix of a regular language are 

defined and their properties stated. It is shown that the 

factor matrix of a language Q has a unique starth root - 

called the factor graph of Q. The Knuth, Morris, Pratt 

pattern-matching algorithm, its extensions and Weiner's 

substring identifier algorithm are all shown to correspond 

to finding the factor graph of some regular language. 
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i. Introduction 

The remarkable pattern-matching algorithm due to Knuth, Morris and Pratt 

[7] is well-known and needs no introduction. Much less well-known is 

an area of automata theory initially developed by Conway E5] - the study 

of the factors of a regular language. This paper correlates these two 

in a way which we feel is quite startling. The results we present 

therefore offer (in our opinion) a significant challenge to automata 

theorists - to explain the correlation and to exploit it by developing 

new algorithms for the solution of pattern Matching problems. 

In section 2 we define the factors of a language and state a number of 

properties of factors due to Conway E5]. We then prove that the factors 

of a regular language Q define a (non-deterministic) recogniser of Q 

which we call the factor graph of Q. Sections 3 and 4 then show that 

the failure function method of solving the pattern matching problem is 

equivalent to finding the factor graph of a regular language. Section 

4 illustrates that, after a minor modification, Weiner's algorithm E9] 

is also equivalent to finding the factor graph of a regular language. 

We shall assume familiarity of the reader with the terminology of graph 

theory and language theory. There is a well-known correspondence between 

labelled p-node graphs and p×p matrices, and hence we use the terms 

graph and matrix synonomously, e is used to denote the empty word and 

V is used to denote a finite alphabet. Following Conway ~5] we call 

a matrix all of whose non-null entries are e a constant matrix and a 

matrix all of whose entries are subsets {al,a 2, .... a k} of V a linear 

matrix. A constant + linear matrix is, as the terminology suggests, 

one which is the union of a constant and a linear matrix. A recogniser 

(G,S,T) consists of a constant + linear matrix G and two subsets S and 

T of the nodes of G which are designated as start and terminal nodes~ 

respectively. The language recognised by (G,S,T) is ~/~G~t . A 
' S ~  

t a T  

r e c o g n i s e r  i s  a l l - a d m i s s i b l e  i f  f o r  a l l  n o d e s  x o f  t h e  g r a p h  t h e r e  i s  

a p a t h  i n  t h e  g r a p h  f r o m  some  s t a r t  n o d e  s t o  x a n d  a p a t h  f r o m  x t o  

s o m e  t e r m i n a l  n o d e  t .  F i n a l l y  i f  X i s  a f i n i t e  s e t  2 Z d e n o t e s  t h e  s e t  

o f  a l l  s u b s e t s  o f  X a n d  IxI  d e n o t e s  t h e  s i z e  o f  X. 
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2. Factor Theor~ 

2~I Fundamentals ol Factor~ Theory and the Factor Matrix 

The concept of a factor of a regular language was introduced by Conway 

[5]. Since Conway's work appears not to be well known~ this section 

surm~Jarises the fundamental definitions and properties of factors. All 

proofs can be found in Conway~s book. 

Definitions Let F, G, H ..... K, Q denote arbitrary languages 

F.G...H...J.K is a subfactorization of Q if and only if 

F.G...H...J.K c Q. (*). 
m 

A term H is maximal if no word may be added to H without violating the 

inequality (*). A factorization of Q is a subfactorization in which 

every term is maximal. A factor of Q is any language which is a term 

in some factorization of Q. A left (right) factor is one which can be 

the leftmost (rightmost) term in a factorization of Q. 

Lemma I Any left factor is the left factor in some 2-term factor- 

ization. Any right factor is the right factor in some 2-term factor- 

ization. Any factor is the central term in some 3-term factorization. 

The condition that L.R be a factorization of Q defines a (I-I) corre- 

spondence between left and right factors of Q. 

Let Q be a regular language having q left factors. Following Conway, 

let us index the left and right factors as LI, L2, .... Lq and Rl, 

R2, ... , Rq wherein corresponding factors (see lemma i) are given the 

same index. We now define Qij (I ~ i, j ~ q) by the condition that 

LiQijR j is a subfactorization of Q in which Qij is maximal. (It is 

important to note that LiQijR j may not be a factorization of Q). We 

note that, by lemma I, H is a factor of Q if and only if it is some 

Qij" Thus the factors of Q are organised into a q × q matrix which is 

called the factor matrix of Q and is denoted ~. 

Various properties of the factor matrix may be observed [5], some of 

which are summarized below. 

Theorem 2 

(i) H is a factor of Q <=> H is some entry Qij in the factor matrix 
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(ii) 

(iii) 

(iv) 

(v) 

Qij is maximal in the subfactorizations Li°Qij ~ Lj and 

Qij.Rj i R i. Thus Qij is a right factor of Lj and a left 

factor of R i. 

unique indices s and t such that Q = L t = R s = Qst, 

Li = Qsi and R i = Qit" 

If AI.A 2 ..o A m ~ Qij is a subfactorization of Qij, then 3 

indices kl, k 2 ..... km_ 1 such that A 1 ~ Qikl, A 2 ~ Qklk2 ..... 

Am ~ Qkm_lJ" 

Theorem 2 is an extremely interesting and powerful theorem, from which 

most results on factors can be deduced immediately. Part (iii) tells 

us that the s th row of ~ contains all the left factors and the t th 

column all the right factors, and the intersection of this row and 

column is the language Q itself. This and (iv), ~ = ~*, suggest 

very strongly that there is some recogniser of Q,(G,{s},{t}), consist- 

ing of a graph G with start node s and terminal node t, such that L i 

is the set of all words taking node s to node i, and Rj is the set of 

all words taking node j to node t. In fact there is often more than 

one such G, but we shall show that there is a unique minimal one. 

2.2 The Factor Graph 

In this section we shall outline the proof that there is a unique min- 

imal matrix GQ such that ~ = G~. GQ is a constant + linear matrix 

and so is called the factor Graph of Q. 

Theorem 3 (Conway) ~ unique maximal constant and linear matrices 

Cma x and Lma x such that ~ = (Cma x + Lmax)*. 

Proof Cma x and Lma x are defined to be the unique maximal constant 

and linear matrices (respectively) such that ~ ~ Cma x and ~ ~ Lma x. 

The reader is referred to [3] or [5] for the remainder of the proof. 

Let A, B and C be pxp matrices, elements of which are regular languages. 

Let [B\C]ij = [bij\cij] where \ denotes set difference. Let E be the 

pxp matrix, where E = [eij] , e i. = e if i = j and eij = ~ otherwise. 

Finally B 2+* is defined to be JB2.B *, 

Lemma 4 Cmax\E is acyclic. 
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Proof Suppose Cmax~E contains cycles. Then there must be two 

= = C ~ E]ji. Using distinct nodes i and j such that ECmax\E]ij e [ max ~ 

= ~* (2(iv)) we may deduce that Qsi i Qsj i Qsi' I.e. Qsi = Li 

= Qsj = Lj. Similarly R i = Rj. But then i = j and we have a con- 

tradiction. 

The main theorem in this section is the following. 

Theorem 5 Let Q be a regular language, and let Cma x and Lma x be as 

defined in Theorem 3. Then there is a unique minimal matrix GQ such 

that G~ = ~, given by GQ = ((Cma x + Lmax)\E)\ ((Cma x + Lmax)\E)2+*. 

Moreover the triple (GQ,{S},{t}) (where s and t are given by Theorem 

2 (iii)) is a recogniser for Q. 

GQ is a constant + linear matrix and so its graph will be called the 

factor graph of Q. 

Proof The proof given here differs from that given in E4] and was 

suggested by Mike Paterson. We assume two fundamental properties of 

regular languages E8]: 

(a) The matrix equations R = AR+B and S = SA+C have the unique 

solutions R = A*B and S = CA*, respectively, provided that A does 

not possess the empty word property. 

We note also from lemma 4 and the definition of the empty word property 

E8] that: 

(b) Neither (Cmax+Lmax)\E nor GQ possess the empty word property. 

The proof of the theorem is now as follows. 

Let B = (Cmax+Lmax)\E. Then GQ = B\B 2+* So, by definition 

B + = GQ + B.B +. 

Hence, by (a) and (b), B + = B*.GQ . 

Therefore B* = E+B + = E+B*.GQ 

= G~ by (a) and (b) 

I.e. ~ = (Cmax+Lmax)* (Theorem 3) 

= ((Cmax+Lmax)kE) * = G~ . 
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An Example 

The following simple example illustrates the concepts of factor graph 

and factor matrix. 

Let Q = (a+b)*a(a+b)*b(a+b)* 

Table I shows the corresponding left and right factors of Q and table 

2 shows the factor matrix of Q and indicates the row s and column t 

corresponding to the left and right factors, 

figure 1 shows the factor graph of Q. 

respectively. Finally 

Row/col. no. Left Factors Right Factors 

1 (a+b)* Q 

2 (a+b)*a(a+b)* (a+b)*b(a+b)* 

3 Q (a+b)* 

Table 1 

left factors ÷ (a+b)* (a+b)*a(a+b)* Q 

(a+b)* (a+b)* (a+b)*b(a+b)* 

(a+b)* (a+b)* (a+b)* 

right factors 

Table 2 

FIGURE 1 
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A number of other examples of factor graphs appear in [3] where also 

an algorithm for calculating the factor graph of a language is present- 

ed. Note however that the alEorithm may have exponential time com- 

plexity (in the size of a regular expression denoting Q)o Indeed the 

number of nodes in the factor graph of Q may be exponential in the size 

of a regular expression denoting Q [3]. These remarks militate strongly 

against the possibility of applying factor theory in any practical 

language recognition problems~ Nevertheless the next two sections 

demonstrate one area where the factor graph has found a practical 

application. 

A minor technical nuisance in the calculation of factor graphs is that 

may be a factor, and the factor graph can have up to two "useless" 

nodes i.e. nodes such that there is no path from s to the node, or 

no path from the node to t. We call the graph obtained by eliminating 

these nodes the all-admissible factor graph and all factor graphs we 

display will be all-admissible. 

3. Failure Functions 

The problem of relevance to the next three sections is the string- 

matching problem. That is, given a (long) symbol string 

X = x I x 2 .... x m, the "text", and another (short) string 

Y = Yl Y2 .... Yn' the "pattern ~', over the same alphabet V, find all 

occurrences of the pattern as a consecutive substring in the text. 

Two methods for solving this problem are available, both of which have 

time-complexity which is linear in the combined length of the pattern 

and text strings. In the next section we shall relate the first method, 

the use of failure functions [6,7], to factor theory and in section 4 

we relate the second method, Weiner's bi-trees [9], to factor theory. 

Definition Given a string Z = z I z 2 ... Zr, the function f*: 

{l...r} ÷ 2 {0'''r} is defined by: 

f*(i) = {jlj~i and z I ... zj = zi_j+ 1 ..,zi}. 

The failure function f : {l.,0r} ÷ {0...r-l} is defined by [6]: 

f(i) = max {jlj~f*(i) and j~i}. 
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The failure function of Z corresponds naturally to a transition diagram 

recognising V*Z. As an example, the functions f and f* defined for 

Z = aabba are given in table 3; fig. 2 shows the corresponding trans- 

ition diagram. In the transition diagram there is an arc labelled e 

from node i to node j iff f(i) = j. It is our objective to show that 

fig. 2 is the factor graph of V*aabba, that Cma x corresponds to f* 
2+* 

and (Cmax\E)\(Cmax\E) to f .  

e 

a_ f 

FIGURE 2 

Z. 
1 

f*(i) 

f(i) 

a 

{0,I} 

0 

a 

{0,i,2} 

1 

b 

{0,3} 

0 

b 

{o,4} 

o 

a 

{0,I,5} 

1 

TABLE 3 

In all the following lemmas the string Z = ZlZ2...z r, over the alphabet 

V, is understood. Proofs of all results can be found in [4]. 

Lemma 6 f*(i) = {jlzl...z i E V*zI~..zj} 

= {JlV*zl.''z i ! V*zI'''zj}" 

Lemma 7 f*(i) = { i }  u f*(f(i)). 
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Lemma 8 Q has r+2 left factors~ namely Lo=V*, LI=V*zI~ L2=V*zIz 2 ...... 

Lr=V*zlz2...z r and Lr+ 1 = ¢ 

Theorem 9 The all-admissible factor graph of Q = V*Z = V*zlz2o.oz r 

can be constructed from the failure function for Z as follows: 

(a)  There are r+l nodes~ the (i-l)th node being connected to the ith 

node by an arc labelled zi(l~i~r) 

(b) There is an e-arc from the i th node to f(i). 

Proof 

(b) .  

Let G(Z) be the graph constructed by applying steps (a) and 

By lemma 8 the factor graph of Q has r+l nodes. Let Cma x and Lma x 

be the maximal constant and linear matrices such that ~ = (Cmax+Lmax)*. 

Since V*zl...Zi_l. Zi. Zi+l...z r ~ Q and V*zl...zf(i) Z V*zl''-z i (lemma 

6) we have Cmax+Lmax Z G(Z). Let Cmi n and Lmi n be the constant and 

linear parts of G(Z) We must prove that (a) Cma x = C * " min' 

(b) Lma x ~ (Cmin+Lmin)*, (c) Cmi n ~ (Cmax\E)\(Cmax\E) 2+* and (d) 

Lmi n ~ Lmax\((Cmax+Lmax)\E) 2+*. (a) and (b) establish that ~ = G(Z)*; 

(c) and (d) establish the minimality of G(Z). 

Let L i = V*Zl...zi, l~i~r and L o = V*. 

(a) is immediate from lepta 7 and the identity Cmi n* = E + Cmin~Cmino* 

(For e c Qij <=> Lj ~ L i (Theorem 2) <=> j E f*(i) (lemma 6). Also 

e ~ [Cmin]ij <=> j = f(i).) 

To prove (b), suppose a ~ Qij ~ where a ~ V. Then zl...zi.a.zj+l~..z r 

c Q (Theorem 2) => i _> j-l, a = z. and ZlZ2...z. = _c Li.a.R J _ • j j-i 

zi_j+2...z i. Thus j-I ~ f*(i), whence [Cmin]i,j_ 1 = e (by (a)), and 

[Lmin]j_l, j = a..'. a ~ [Cm*in. Lmin]ij. I.e. Lma x _c (Cmin+Lmin)*. 

TO prove (e), suppose e ~ [Cmin]ij and e ~ [(Cmax\E)2+*- Jij" Then 

j = f(i). But also ~ k such that [CmaxkE]ik = e and [Cmax\E3kj = e. 

I.e. i ~ k ~ j, k ~ f*(i) and j c f*(k). But then i > k > j and 

k s f*(i) contradicting the maximality of f(i) = j. 

(d) is proved similarly. Suppose zj ~ [(Cmax+Lmax)\E]~:~,jo 

Then 3 indices k, m such that e e [CmaxkE3j_l, k , zj ~ [Lmax]km and 
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e e [Cmax\E]mj . ° k < j-I and j < m. I.e. k < m-l. But also 

zl...Zk. Zj.Zm+l...z r ~ Lk. Zj.Rm ~ Q (Theorem 2) => k ~ m-l. This is 

a contradiction, so (d) is proved. 

4. Generalised Failure Functions and Bi-trees 

For lack of space we can only provide examples to illustrate the 

relationship between factor graphs and generalised failure functions 

and bi-trees. For further details see [4]. 

4.1 Generalised Failure Functions 

An obvious generalisation of the string-matching problem is the follow- 

ing: Given a text X and p patterns YI,Y2,...,Yp find all occurrences 

of each pattern in the text. The failure function method can be gen- 

eralised to solve this problem in time proportional to m + n I + .. + np, 

where m is the length of text and n i is the length of the pattern Yi[l]. 

The method involves constructing a tree from the set of pattern strings 

and defining a failure function from the nodes into the nodes of the 

tree. For example the tree constructed from the set of strings {abc, 

be,bda} is shown in Fig. 3(a), and table 4 gives the failure function. 

Node No. I l 2 3 4 5 6 7 8 
Failure No del 1 1 5 6 1 1 1 2 

TABLE 4 

Letting $I, $2 and $3 by any new symbols not appearing in the pattern 

strings, fig. 3(b) shows the factor graph of {a,b,c,d,$1,$2,$3}* (abc$1 

u bc$ 2 u bda$3). Note that, apart from an extra node and the $ arcs 

to it, the linear part of the factor graph corresponds to the tree of 

fig. 3(a), and the constant part corresponds once more to the failure 

function, where there is an arc labelled e from node i to node j iff 

f(i) : j. 

4.2 Bi-trees 

Weiner's bi-tree method [ 9 ] ,  for computing substring identifiers, 

constructs two trees a prefix tree and an auxiliary tree [2]. The 

string Z = bbabb~ has prefix identifiers {bba,ba,a,bb~,b~,~}. The 
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prefix tree and auxiliary tree for Z are shown in figs. 4(a) and 4(b)~ 

respectively, whilst figs. 5(a) and 5(b) show the linear and constant 

parts of the factor graph of Q = {a,b,l-,$ I ..... $6)* {bba$1,ba$2,a$3, 

bb~$4,b~$5,~$6}, respectively. 

References 

I° Aho,A.V. and Corasick~M°J. 

"Efficien~ string matching: An aid to bibliographic search" 

C.A.C.M. (June 1975) i_~8~ 6, Pp. 333-340. 

2. Aho,A.V., Hopcroft,J.E. and Ullman,J.D. 

"The design and analysis of computer algorithms" 

Addison-Wesley: Reading, Mass. (1974). 

3. Backhouse,R.C. 

"Closure algorithms and the star-height problem of regular 

languages" 

Ph.D. Thesis, Univ. of London, Sept. 1975. 

4. Backhouse,R.C. and Lutz,R.K. 

"Factor graphs, failure functions and bi-trees" 

Dept. of Comp. Sc., Heriot-Watt U., Tech. Rep.No.4 (October 1976). 

5. Conway,J.H. 

"Regular algebra and finice machines" 

Chapman and Hall: London (1971). 

6. Fischer,M.J. and Paterson,M.S. 

"String-matching and other products" 

SIAM-AMS Proc. 7 (1974) Pp. 113-125. 

7. Knuth,D.E., Morris,J.H. and Pratt,V.R. 

"Fast pattern matching in strings" 

TR CS-74-440, Stanford Univ., Stanford, California 1974. 

8. Salmoaa,A. 

"Theory of automata" 

Pergammon Press: Oxford (1969). 

9. Weiner,P. 

"Linear pattern matching algorithms" 

Conf. Record IEEE 14th Annual Symposium on Switching and Automata 

Theory (1973) Pp. I-I!. 



~ 
~

'~
 

l:
l 

¸,
, 



c~
 

o 

o 

c
~

 

c o c 

c
~

 

J J \ 

| 



FI
GU

RE
 

4 
Z 

= 
b 
ba

bb
~ 

(a
) 

Pr
ef

ix
 

tr
ee

 
(b

) 
Au

xi
li

ar
y 

pr
ef

ix
 

tr
ee

 



~
i
~
$
2
,
.
.
.
,
~
 6 

F
I
G
U
R
E
 
5 

F
a
c
t
o
r
 
G
r
a
p
h
 

b 
) 

C
m
i
 n
 


