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Abstract 

Let be associated to each element N of the set ~of the normal forms 

of the X -k- ~ calculus and to each integer r > 0 the semi but non - 

decidable domain D [ N,r] ~r onto which N, considered as partial ma£ 

ping ~r ~, is total (that is the computation starting from NXI.~.X r 

where N E~ and XI,...,XrE ~[ N,r] and evolging through a ~ -reduc- 

tion algorithm terminates).The decidability of the relation ~ [ Nrr] =0~ r 

has been proved in a previous paper. In the present paper, for any N 

and r, an infinite, decidable subdomain C [N,r] C D [N,r] is defined 

in a constructive way. The ensuing sufficient condition for the termi- 

nation of a computation starting from N XIo.. X r can be tested in a 

number of steps negligible with respect to those needed for reaching 

the n.f., if there is one. 

I. Introduction 

It is well known that k - ~ -~ calculus (A) can be interpreted as 

a programming language where data, instructions, programs and results 

are represented by I -terms [11 , [21 r [3] , [7] , [ 8] . In this way 

the application of a program to some data is represented by a l-term 

(thought as the initial configuration of a computation), whose stepwi- 

se reduction, following the H-rule, may represent the associated com- 

putation and whose normal form (n.f.), if it exists, shall then repre- 

sent the result (or the final configuration) of the computation.The set 

~ C A of n.f.s is a suitable one not only to represent results (uni 

vocally determined in consequence of the Church-Rosser theorem [ 4])but 

also programs [8] and distinguished data(since any non- a -convertible, 

closed pair of n.f.s cannot be put convertible without making collapse 

all closed terms into one [2] ) . The identification of all programs 
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and data with elements of O~ is a first step toward the construction 

of a model for computation where each program can be written in at 

most one way. In fact if, for some positive integer r, N ~ , M @~C 

= M X I ... X r for all X I .. X E O~ r then and moreover N X I "'" Xr '" ' r 

N = M (extensionality principle [ 4] ). This means that, in such a fra 

mework, convertibility may be identified with equivalence of programs 

with the property that no two programs can be equivalent unless they 

coincide. The price to pay for that is high: 

- the set 0~ viewed as data set cannot be identified with the set of 

integers or with some other known data structure set like lists,etc., 

but it is a larger one 

- the set 0~ viewed as operator or function set contains essentially, 

even if very sophisticated, only composition operators, with the al- 

ways present danger to apply some functions to itself, creating par! 

doxical situations. 

Neverthless we find meaningful to study the termination properties of 

k -terms of the shape N X I ... Xr where N, X I, ..., Xr are n.f.s. In 

fact this X-term is the initial configuration of a computation start 

ing from the application of a "program" N to the r-tuple of "data" Xl, 

..., X . In this case N may also be interpreted as a partial function 
r 

N : ~r-> 0~ . 

Although the whole domain ~ [N,r ] onto which N : 0~ r ~ is total is, 

in general, semidecidable [4 ] , in [ 3] it has been shown that, given 

N and r, the relation D [N,r]:~¢ r is decidable. The theory developed 

[ 3 ] , neverthless, becomes unseless with respect to termination propel 

whenever ? IN,r] ~r. This paper provides, for any pair N,r, ties, 

a decidable infinite "security" domain C [ N,r ] (I)~ D [ N,r ] onto which 

N : ~C r ~ is total. 

As a trivial example of the results of [ 3] we have that, for each free 

variable a and for all integers r, D [a,r ] = ~r. In the same paper it 

is defined the whole subset OT of O~ for which this property is true, 

i.eo such that each n.f. belonging to it behaves, with respect to ter- 

mination properties, like a free variable. 

(I) A first attempt to build C [N,r] is given in [6 ] . Neverthless the 

method of [6] is unable to treat some cases. 
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Moreover we notice that, if N is an arbitrary n.f. and a1,...~a are 
r 

free variables, then surely Na I .... a r possesses n.f. . We can prove 

(Lemma I) that NXI...X r possesses n.f. also when X1,oo.rX r are n~f.s 

which belong to ~ . Therefore we can say that, for each n.f. N and 

integer r,~rC C[ N,r] . To find other elements of C [ N,r] we may ob- 

serve that NXI...X r possesses n.f. also when it reduces to a k -term 

in which all redexes are of the shape MYI...Y k where k > 0 ,M,YI,...~Y k 

are n.f.s and M E~ or Y1 C~J~ (I < 1 < k) . This last observation su~ 

gests us to look for conditions on N,XI,...,X which assure us that 
r 

each bound variable of N will be either non replaced or replaced by 

n.f.s belonging to0~ in some contractum of NXl...X . To study the be- 
n 

haviour of the bound variables of a n.f. N we will associate to each 

bound variable of N a (possibly undefined) list of integers (a._~)which 

tells us "where" this variable is bound in N. A further step toward our 

goal will then be the introduction of the concept of structure, built 

directly from that one of a.p~ taking into account the relative posi - 

tions of the occurrences of couples of variables in N. The set of all 

structures of N will finally build the schema of N which may be view- 

ed intuitively as a "map" of the occurrences of the bound variables of 

N. In this way we will be able to define a necessary condition under 

which a given variable in an application of n.f.s can be replaced only 

by a k-term whose n.f. (if it exists) belongs to ~ (Lemma 2).At this 

point we will be able to give a definition of C[ N,r] (definition [7]) 

which is based on the comparison between the schema of N and the sche- 

mata of all its possible r-tuples of arguments. The formal proof of 

the correctness of our definition will be given in Theorem 3. We noti- 

ce that the same definition of schema will be suitable to represent 

properties of both N and its arguments. This can be justified taking 

into account the fact that in the contracta of NXI...X each X (I <i<r) 
r i 

may be, in its turn, applied to other arguments playing so the same 

role as N in NXI...X r. 

2. Key notions and definitions 

It is well known that an arbitrary n.f N can be written (unless 

finite number of ~-reductions) in the following way: 
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N-~xl.., kXn(~ N I ... Nm) 
where xj (I _< j _< n), ~ are variables and NI(I _< i _< m) are n.f.s (2). 

We call ~ the head variable of N, N i(I ~ i < m) the i-th component . of 

N and k x k x the initial abstractions of N. The order of a va- 
t"'" n 

riable x in a n.f. N is the maximum number of components of subterms 

of N whose head variable is x. I N I abbreviates the number of variable 

occurrences in the n.f.N. Its recursive definition is obviously: 

INI = I+~ I Nil when ~[-k~ I . kx ( ~ N I . N ). As usual 
Ii "" n "" m 

N[ x / X] denotes the contractum of XxN X. In this case we say that 

x is replaced by X. According to [ 1]we say that X is free for x in N iff 

all free variables which occur in X remain free in N [ x / X ]. Through 

definition I we will associate to each variable which occurs in a n.f. 

N a list of integers called its access path (a.p.) which tells us, in- 

tuitively, what "must be done" to "reach" the variable x and to repla- 

ce it. The a.p. of x in N is h if x is bound by the h-th initial ab- 

straction of N. This means that to replace x we must apply N to at 

least h arguments (the h-th argument will then replace x). Let us sup- 

pose instead that x is bound by the initial abstractions of the p-th 

component of a subterm zY I .. oYp of N, i.e. Yp - k YI"'" ~Yq-1 h x Yp, 

and moreover that the a.p. of z in N is h (i.e., z is bound by the h-th 

initial abstraction of N). In this case to replace x: 

- N must be applied to at least h n.f.s 

- if ~ (which will replace z) has at least p initial abstractions,the 

variable bound by the p-th initial abstraction of X h must be the head 

variable of a subterm whose q-th component will finally replace x. 

In this case we will define the a.p. of x as the list h,p,q. In the ge 

neral case, if Z _--yZ I ...Z is a subterm of N, Z - k Ylo..XyqZp and 
P P 

the a.p. of y in N is p , then the a.p. of yq in N is defined as the 

list u ,p,q. 

Lastly we observe that a free variable of N can never be replaced and 

therefore we assume that its a.p. is undefined. If the a.p. of the head 

variable of a subterm Z of N is undefined, then the a.pos of all the va 

(2) For clarity reasons(indexedlx, y, z will denote bound variables,whl 

lelindexed~a will denote free variables and variables bound in dif- 

ferent abstractions will have different labels. S, ~ and T will be 

used for variables either free or bound. 
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riables bound by the initial abstractions of each component of Z will 

be undefined too, since all these variables can never ]De replaced.The 

formal definition of a.p.~ then~ is the following: 

Definition I. The ~ (access path) of a variable which occurs in a 

n.f. N s X x1... k x n ( ~ N I ~.. N ) is a list of integers built up re 
m 

cursively according to the following rules: 

i) xj, for I j j J n, has a opo j 

ii) the free variables have undefined a.p. 

iii) if Z ~ 8 ZI...Z is a subterm of N, Z 
P P 

a.p. of 8 in N is 

p, q (undefined). 

= k YI"'" X yq Zp and the 

(undefined) then the a.p. of yq in N is ~ , 

Example I. To replace the variable x 5 in the n.f. N ~ h x I k x2(x 2 

Ax3(a I I x4(x3a 2 k x5(x5x4x4)xl))) we must replace in order: 

- the variable x 2 which is bound by the 2-th initial abstraction of N 

- the variable x 3 which is bound: 

- in the 1-th component of the subterm x 2 k x3(a I i x4(x3a 2 

k x5(x5x4x4)xl)) 

and - by the 1-th initial abstraction of this component 

- and, lastly, the variable x 5 which is bound: 

- in the 2-th component of the subterm x3a 2 k Xs(X5X4X4) 

and - by the 1-th initial abstraction of this component. 

Therefore the a.p. of x 5 in N is 2,1,1,2,1. 

In [3] it was introduced the notion of h-replaceability of a variable 

that, on the ground of definition I, can now be expressed in the follow 

ing way: 

a variable is h - replaceable if the first element of its a.p. is low 

er than or equal to h 

- a variable is replaceable if it is h-replaceable for some h > 0 

- a variable is non-replaceable if its a.p. is undefined. 

Example 2. In the n.f. of example I we have that x 5 is 2-replaceable, 

i.e. it can be replaced only if N is applied to at least two arguments. 
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Two occurrences of variables in a n.f. N are said to form a coup! ~ if 

they are, respectively, head variable of a subterm Z of N and of one 

of the components of Z. The notion of couple has been introduced(not 

explicitly) also in [3 ] . Moreover in [3 ] (Theorem I) it has been 

shown that if a n.f. N don't contain any couple of variables both h-re 

placeable, then 9 [ N,h] = 0~h~ From this it comes out that the termi- 

nation properties of applications of n.f.s are strongly dependent on 

the couples of replaceables variables that occur in them. We will ta- 

ke into account the behaviour of the couples of variables which occur 

in a n.f. N through the following definition of structure, in which we 

associate to each couple the a.p.s of its variables. 

Definition 2. If Z ~X ZI...Z is a subterm of N, ~ is the a.p. of 
q 

x , v is the a.p. of the head variable y of Z then the structure of 
q 

the couple x, ~ in N is: (u ; 9). 

We notice that different couples can have the same structure. 

Exampl e 3. In the n.f. of example I we have that the couple of vari~ 

bles x3,x 5 in the subterm: x3a 2 I x5(x5x4x4)x I has structure (2,1,1; 

2,1,1,2,1). 

Now, if we consider the structures of all couples in a n.f. N we have 

a complete "map" of the dangerous occurrences of variables in it. We 

may also limit us to consider the variables which are dangerous when 

N is applied to exactly r arguments. To this aim we will associate 

each pair N,~ a set of structures (r-schema of N). 

Definition 3. Let r be a non-negative integer and N~ k xl...X x n 

(~ NI..°N m) an arbitrary n.f. 

The schema ~[ N ]of N is the set of the structures of all couples in 

N (3). 

The r-schema ~[N,r] of N is the set of structures so defined: 

a) if r ~ n then ~[ N,r] = {(h,~ ; k,~ ) { (h,~ ; k,~ )E ~[ N] and 

h,k ~ r 

(3) We convent that when different couples have the same structure 

this one appears only once in ~[N ] . 
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b) if r >n and ~ is a free variable then ~ [ N,r ] = ~[ N ] 

c) if r >n and } is a bound variable with a.p. j then ~[ N,r] = ~ [ N]U 

U { (j; n+p) I I ~_ p <_~ -n } 

We notice that, in case c), the r-schema of N coincides with the r-sche 

ma of a n.f. N' such that: 

- N' is q-reducible to N 

- N' has r initial abstractions. 

Exampl e 4. The l-schema of the n.f. of example I is empty. The schema 

and 2-schema are: 

~[ N ] = ~[ N,2 ] = { (2,1,1; 2,1~I,2,1) ; (2,1,1; I)}. 

The 3-schema is: 

~ [ N,3 ] = { (2,1,1; 2,1,1,2,1) ; (2,1,1; I); (2;3)}. 

etc. 

From definition 3 it follows immediately that: 

~[ N,O I = ~ (4) 

~[N,r] < ~[N, r+1] r> O. 

Moreover if Z - 8 Z I.. oZ is a subterm of a n.f. N, p is the a.p. of 8 
q 

in N and ( g ; ~) E {[ Z ] then from definitions I, 2 and 3 it follows q 

that ( p ~q, s ; u ,q, ~)@ ~[ N I 

3. Fundamental properties 

In this section we will give properties that generalize some re- 

sults of[ 3 ] and that will be used in the proof of Theorem 3. To ren 

der this paper self-cont/ained the classification of n~f.s given in 

[ 3 ] is reported here on the ground of previous definitions. 

Definition 4. A n.f. NE~ h iff ~[ N,h ] = % and ~[ N,h+1] ~ ¢ . 

Definition 5. A n.f. N E~ iff 4 [ N ] = ¢ and its head variable is 

free. 

(4) ~ denotes the empty set° 
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definition 4 the n.f. of example 1 belongs to ~I" By 

The meaning of this classification is that a n.f. N belongs to the 

class 0~ h iff the k-terms obtained by applying N to h arbitrary n.f.s 

possess n.f. too, but there exists h+1 n.f.s XI,...,Xh+ I such that 

NXl...Xh+ I possesses no n.f. The main theorems of [3] (Theorems I and 

2) can then be rewritte~in the present formalism as follows: 

Theorem I. N ~OT h (h > O) iff: 

- ~[N,r] = ~r for 0 < r < h 

- ~ [ N,h+1 ] ~ ~h+1 . 

Theorem 2. N E~iff: Vr(r > O)~[N,r] = ~r 

As sketched informally in the introduction, we show that for each nof. 

N the decidable subset ~ of~ belongs to ~ [N,I], i.e. we have the 

following: 

Lemma I [ 6] For each n.f. N 0~ C ~ [N,I] . 

Proof. We must show that for each M E~ , NM reduces to a n.f..If N 

is k -free then NM is a n.f., Otherwise N ~kx I N and NM ~ N [xl/M ] . 

In N [Xl/M ] the subterms which are reducible are possibly only those 

where M replaces some occurrences of x I . If we suppose to perform the 

reductions from the innermost redexes we have that, since M @<, the 

se s~hterms reduce to n.f. Now we may iterate these considerations 

on the so obtained k-term until we have performed all possible redu~ 

tions in N [xl/M ] .Since all subterms of the so obtained h-term are 

in n.f., the X-term itself is in n.f. too. [] 

Let's now introduce a relation between lists of integers. Through it 

we will compare schemata and a.p.s of n.f.s. 

Definition 6. Two lists of integer s hl,...,h p 

one is an initial segment of the other, i.e.: 

h I = k I (I ~ 1 ~ min 

and kl,...,k q _ _  

(p,q)) • 

match iff 
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Obviously every list matches ~;ith the empty list s - 

By extension we will say that a structure ( ~ ; v ) matches with a list 

if either ~ or v (or both) matches with o . 

Finally Lemma 2 gives a necessary condition on the schema of X h under 

which, if N,X 1,...,xh_ I are n~f.s, in some contracta of N X I ...X h a 

variable having a.p. h, ~ in N is replaceable by a n.f. Y such that 

Y 

Le~na 2. Let N ~ k Xl... h Xn(~NI...Nm) ~XI,...,X h be h+1 arbitrary n.f.s 

and x a variable whose a.p. in N is h, ~ with ~ ~ s . Let k be the order 

of x h in N. If x in any contractum of N XI...X h is replaced by a n~f. 

Y and Y ~ then ~[Xh,k ] must contain a structure matching with p o 

The proof of this Lemma is given in the Appendix. 

4. Decision method 

Now we are able to give a su~cien~ condition to assure the existen 

ce of the n.f. of a X-term N Xj ~..Xr, where N,XI,...,X r are arbitrary 

n.f.s, without execute any reduction. To this aim we associate to each 

arbitrary n.f. N and each integer r > O a domain C[ N,r] whose elements 

are r-tuples of n.f.s XI,...~X r. 

Definition 7. Let N -= k x1~.. h Xn(~N I o.. N m) be an arbitrary n.f.~ r 

a positive integer and t (I < j < r) the order of x. in N (5). The r- 
3 -- 3 

tuple X I .... ,XrC C [N,r] iff, for each structure (h, p ; k, v )@~[N,r] 

at least one of the following conditions hold: 

I) if~e then no structure of $ [Xh,th] matches with p otherwise 

X h @% 

2) if v~E then no structure of ~[Xk,tk] matches with v otherwise XkEu~0. 

From this definition it follows that when ~[N,r] =~ 9iN,r] =u~r, that 

is ~[ N,r]=~ implies that N@ ~q form some q > r (6) by definition 4. 

In this particular case only ~ the results of the present method coinci 

(5) Obviously if n <r then t. = 0 for n< j < r. 

(6) ~ is considered greatest3than any integer. 
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de with those given in [ 3 ] .The following Theorem assures us that the 

given definition of ~[ N,r] is correct, i.e. for any r-tuple XI,...,X r 

E 4 [N,r ] : N X I ... X r reduces to n.f.. 

Theorem 3. Let N be an arbitrary n.f. and r a positive integer. 

¢ [N,r] C ~[N,r] . 

Then 

Proof. The proof is done by induction on the number q of couples hav- 

ing defined structures in N (called in the sequel d-couples). 

First step. q = O, i.e. ~[ N,r] = ~. In this case NE~ with p > r. 
p 

Therefore N X I ... Xr possesses n.f. by Theorem I. 

Inductive step. Let us assume that this Theorem is true for q ~ u and 

we prove that it is true also for q = u+1. I.e.we consider a n.f. N 

with u+l d-couples. In the case that r is greater than the number of 

initial abstractions of N we will replace N by the n.f. N' n-converti- 

ble to N and with r initial abstractions. This can be done since N 

XI"''Xr and N' XI... Xr are ~-convertible and, moreover,~ [ N,r ] = 

= ~[N',r ] = ~[ N'] by definition 3. 

Let x,y be the variables of an arbitrary d-couple and (h, ~ ; k, ~) be 

the structure of this d-couple. Moreover let a be a variable which don't 

occur free in N and which is free for x and y in N. Since Xl,...,X r E 

@ C [N,r ] , X h or X k must satisfy conditions I or 2 of definition 7 

for (h, ~ ; k, ~) . We split the proof according to these four possible 

cases: 

i) xh~ ~ 

ii) X k E~ 

iii) X h satisfies condition I and ~ ~ 

iv) X k satisfies condition 2 and ~ ~ s. 

case i).In this case x is replaced by X h. Let R 1 be the n.f. obtained 

by replacing in N the occurrence of x which belongs to the considered 

d-couple by a.R I contains at most u d-couples. Therefore by inductive 

hypothesis R I X I --- X r ! R4 which is in n.f.. 

By construction N Xl...X r is convertible to kaR4 X h. Since by hypoth~ 

sis X hE~, Lemma I assures us that ka R~ X h possesses n.f.. 

case ii). This case may be proved simply by rephrasing the proof of ca 

se i with: 
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- x replaced by y 

- ~ replaced by X k. 

case iii). Let R 2 be the nor. obtained by replacing the occurrence of 

x which belongs to the considered d-couple by ax. R 2 contains at most 

u d-couples. Therefore by inductive hypothesis: R2XI "°°Xr --> R 2' which 

is in n.f..By construction N XI'''Xr is convertible to k aR~ I (7). We 

show that R~[ a/I] has n.f. by performing the ~-reductions always from 

the innermost ones. In R~ the subterms whose head variable is a ( let 

! them be s) are obviously in n,f. In R 2 [a/X] the first components of 

these subterms are convertible to the k -terms which replace respecti- 

vely the s occurrences of x in some contracta of N XI.Q.X r. We recall 

that, since no structure of ~ [Xh,t h] matches with ~, Lemma 2 assures 

us that any n.f. Y that replaces x in some contractum of NXI...X is 
r 

I such that Y E0~ . First we reduce the subterms of R 2 [ a/I] which coinci 

de with the innermost occurrences of I applied to a given number of n. 

f.s. The first arguments of these occurrences of ] are n.f.s which re- 

. .This place x in some contracta of NX I ..X r and then they belong to ~ 

assures us that the current subterms possess n.f. and therefore we ob- 

tain a k -term in which the only redexes are (as before) occurrences 

of I applied to n.f.s. Again the first arguments of these subterms are 

n.f.s that replace x in some contracta of NXl...X r and then they belong 

to u~ o We can now iterate the same argument as before, reducing at 

each step the subterms which coincide with the innermost occurrences of 

I, until we have exhausted them. (This process will surely stops since 

there is only a finite number of occurrences of I and the reduction stra 

tegy implies that no occurrence of X can be generated). 

case iv). This case may be proved simply by rephrasing the proof of ca 

se iii with: 

- x replaced by y 

- X h replaced by X k 

- t h replaced by t k. 

Example 7. We apply the n.f. N of example I to the n.f.s: 

(7) I =- ~XX. 
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X I = Xz1(z I kz2(z2z2 )) 

and 
x 2 -- ~z I ~ ~ ~z~ (~ z~ ~z~ (~(z~ z~). 

by definition 7 we may assure that X I,x 2 E d [N,2 ] . In fact: 

N XIX2~ a I kx I (~% ~[) kx2(14 (Zz~]. 

We notice that by means of the theory developed in [3 ] and [ 6 ] this re 

sult could not be proved. 

5. Conclusion 

In this paper some termination properties of applications of k-terms 

in n.f. have been presented. We point out that through the set of 

n.f.s it is also possible to represent the set of all h-terms. 

To see this we state here, only sketching the proof, some elementary 

facts true for h-terms. 

i) Any T E A is either a n.f. or it is convertible to a finite combina- 

tion of n.f.s 

ii) Any finite combination M of n.f.s is convertible to the form NXI...X r 

where N, Xl,...,X r are n.f.s for some r> O. 

The proof of i follows from an inside-outside iterated application of 

a basic theorem in combinatory logic [ 4 ] which allows to replace 

kx(F [ x ] G [ x]) by S kxF [ x]~xG [x](8). With such a procedure all un- 

wanted abstractions of applications of k-terms can be eliminated. The 

proof of ii succeds by locating first all the distinguished head sub- 

terms XI,...,X r of M, replacing their occurrences by different varia- 

bles, say xl,...,Xrl creating M [ xl,...lX ~ and defining N~ kxl.., kx r 

M [ Xl,...,x r] which becomes a n.f. . Bringing together i and ii one 

has: 

( V TEA) (~r,N,X I, .... XrEO~) [T = N XI...Xr] . 

so that no much generality is lost by restricting the study of termina 

tion properties to k-terms with the shape N Xl...X . 
r 

The algorithm to test if Xl,...,Xr @ d IN,r] has been implemented 

with run time O(INI 2 log 2 IN I + ~i I Xi 12 log21Xil ). 

The description of this implementation has been leaved out here for s! 

ke of brevity. Since it has been shown [7] that even in a restricted 

(8) ~=XxXykz (xz(yz)). 
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number of cases the number of reductions required to reach the nor. of 

a k-term is bound by a non-elementary primitive recursive function 

(of some numbers depending on the structure of this k-term), the ap - 

lication of the termination test requires a number of steps negligible 

with respect to the reduction algorithm. 

Appendix 

Here we will prove the following more general property, of which 

Lemma 2 is a particular caser and whose proof is no more expensive. 

Property. Let N~ kXl...k Xn(~N1...Nm),X1,...,X h be h+1 arbitrary n.f.s 

and x a variable whose a.p. in N is h, ~ with u~e . Let k be the order 

of x h in N and u a positive integer. If x in any contractum of NXI...X h 

is replaced by a n.f, Y and~ [Y] contains a structure matching with u 

then ~ [Xh,k ] must contain a structure matching with ~,u. 

Proof. Before giving a formal proof of this Property we introduce the 

following definition: in a n.f. N ~ kXl.., kxn(~NI...Nm) we will say 

that all subterms of ~ Ni...N m occur in the body of Xl(1~iLn). We pro- 

ve the 9roperty by induction on !N I . 

First step. IN1 = I implies N ~ kxl.., kx n ~. Then all variables of N 

have a.p. such that z =~. The Property is vacuously true. 

Indcutive ste~. We assume that the Property is true for INI ~s and we 

prove it for INI = s+1. Let be p = q,p,p (where p is possibly empty). 

The variable x must occur in a component of N, say N. (I< i<m). If x in 

kXl.., kXhN i has still a.p. h, then, since Ikx1... kXhNil ~ s, by in- 

ductive hypothesis the Property is true for k Xl... kXhNi,X1,...,Xh. 
Let be ~'~ X. if ~ x with I < j < h and ~'~} otherwise. If N~ for 

] J -- _ 

I ~ 1 ! m is any contractum of kXl.., kXhN 1 Xl...X h, then clearly N' 

AXh+1...k x n (~'N4...N')m is a contractum of N X I...x h. Then the Pro- 

perty is true also for N,XI..pX h since: 

- x in N! and in N' is replaced by the same k-term 
1 

- the order k' of x h in N is less than or equal to k and therefore 
l 

%[Xh,k']  ~ ~[Xh,k] . 
Otherwise, if x in N. will have a.p. p,p , then 1 ~ ~ x h' q=i, p =i,p,p 

and k Z m, i~ ~. k ~. 
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We will show that there is no n.f. X h such that both the following co~ 

ditions hold: 

- no structure of ~[ Xh,k ] matches with ~,u 

- the variable x is replaced in some contractum of N Xl...X h by a n.f. 

Y such that'[ Y ] contains a structure matching with u. 

Let be ~ ~ lzl.., kz (~ Ul...Uf). If g <i and [ is free, then x can- 
g 

not be replaced against the hypothesis. If g <i and ~ is bound with a. 

p. j', then(since k ~ [~ ~[ Xh,k] contains the structure (j';i) matc h 

ing with u,u against the hypothesis. 

Then we must consider the case g > i. Since x is replaced only if the 

p-th initial abstraction of N~ is reduced, z. must occur in TUI...U f 
1 1 

as head variable of a subterm which satisfies at least one of the fol- 

lowing conditions: 

a) it is, in its turn, a component of a subterm whose head variable is 

replaceable (that is it has defined a.p.) ; 

b) it has at least p components. 

In fact, if all subterms of ~UI...U f don't satisfy neither condition 

a nor b, the p-th initial abstraction of N~ will never be reduced. If 
1 

condition a is verified, then TUI...U f has a subterm of the shape 

a R I .R v where ~ has defined a.p., say v, and the head variable of R 
"" V 

is z i. But in this case (v ;i)E~[ Xh,k ] and i matches with p,u against 

the hypothesis. 

If condition b is satisfied TUI...U f has a subterm of the shape ziZl... 

...Z . We must distinguish two further cases: 
P 

b 1)_ the head variable of Z is replaceable 
P 

b 2) the head variable of Z is non-replaceable. 
P 

In case b I let ~ be the a.p. of the head variable of Zp. Then (i; ~) E 

E ~ [Xh,k ] and i matches with p,u against the hypothesis. 

In case b 2 let be p = i',p', p'. We rephrase the same argument as befo- 

re observing that x can be replaced only if Z has at least i' initial 
P 

abstractions, i.e. Zp ~ ... , P ky I ky i Z and there exists at least one 

subterm of Z which satisfies conditions a or b, where z. and p have 
p l 

been replaced respectively by Yi' and p'. Really we enter an iterative 

procedure which may stop only on cases a or b I or when the a.po is ex- 

hausted. In the last case let T be the subterm of X h that we must con- 

sider. T occurs in the body of some abstractions: the first g of them 
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.... Let the next replaceable variables be Zg+1~iZg+w are kz I lZg 

(w ~ O). Then x in any contractum of N XIo..X h will be replaced by the 

l-term: 

V= kZl...kZg+w T N1[Xl/X I ..... Xh/Xh]...N i [Xl/X 1 .... ,Xh/Xh]R1...Rg_i+w 

where the indexed R denote the l-terms which replace zi+1,...,Zg+w in 

the current contractum of N XI...X h. In particular if zi+ e would not 

be replaced we assume Re~ Zi+e(1J e j g-i+w) . 

Since the head variable of T is by hypothesis non-replaceable,then the 

head variable of V is free. If V reduces to a n.f. Y, it is sufficient 

to prove that ~ [Y] don't contain any structure matching with u. 

If ~[Xh,k] don't contain a structure matching with ~,u then: 

i) ~ [T] don't contain any structure matching with u. In fact if ~ [T] 

would contain a structure (~;7) matching with u, by definition this 

structure should became (~,~;~,7) in ~ [Xh,k ] , against the hypothesis. 

ii) ~ [kz1... kZg+wT ] don't contain any structure matching with u+g+w=t. 

In fact if ~[kZl...k Zg+wT ] would contain a structure (t,~;7) matching 

with t, this structure should became (~,u,~;~) (5) i~ ~ [Xh, k~ ~%~i~sh ~e 

hypothesis. We consider the set ~ of variables which are t-replaceable 

in kzl.., kz T with t = u+g+w (that is, they can be replaced only if 
g+w 

the u-th initial abstraction of T is reduced). By condition ii) if yE~ 

then y occurs in kZl.., kZg+wT as head variable of subterms such that: 

- they are, in their turn, components of subterms whose head variables 

are non-replaceable 

- all their components have non-replaceable head variables. 

The non-replaceable variables of kZl.., kZg+wT remain non-replaceable 

in Y. Therefore also in Y the subterms whose head variable is y satisfy 

the former conditions and so ~[Y] cannot contain any structure matching 

with u. 

(9) The relation between %F and ~ depends on • according to the defini- 
tion of a.p.. 
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