
CRITERIA FOR TRANSPORTABLE ALGOL LIBRARIES

Pieter W. Hemker

ABSTRACT

A rather comprehensive numerical software library
(NUMAL {3}) was transported from a Philips EL-X8 computer
to a CDC CYBER system. The experiences justify the
following conclusion:

If (1) we use a well-defined language (e.g., ALGOL 60
or ALGOL 68), if (2) we construct well-programmed software
in that language, if (3) we have a good compiler and if
(4) the computer/compiler has well-designed arithmetic
properties, then the transportability problem scarcely
exists. This statement can also be put the other way.
The requirement of orthogonality of the conditions
(1) - (4) determines what can be considered as a
decent programming language, a good compiler, good
programming and well-behaved arithmetic.

For instance, good programming should not make
use (perhaps at the cost of some efficiency) of
idiosyncratic features of a language dialect, of a
particular compiler or of a particular kind of machine
arithmetic. From this abstract point of view, a
number of useful properties of a well-structured
portable software library are mentioned.

146

INTRODUCTION

In 1973, the Mathematical Centre in Amsterdam had to transport its

numerical software library from a Philips EL-XS computer to a CDC CYBER

system. The library was written in ALGOL 60 and at that time it consisted

of about 250 procedures. During the construction of the library, which

started in the early sixties, a tradition in the use of .ALGOL 60 was

developed. This means that only correct ALGOL 60 in the sense of the

Revised Report {2} was used and that features that were not clearly

defined in the report were avoided as rrruch as possible.

On the EL-XS a reliable, efficient and rather complete ALGOL 60

compiler was available and the library was partly incorporated into the

ALGOL 60-oriented running system.

When, in 1973, the library had to be adapted to the CDC CYBER system,

the change-over took only a few months. In fact, it appeared that no

essential changes in the code had to be made to adapt it for the

CDC ALGOL 60 version 3 compiler and most of the transport work could

be done automatically. Only in a few exceptional cases, some strange

properties of the CDC machine arithmetic caused a procedure to fail

in its new environment.

Since 1973 the numerical library NUMAL has been extended considerably

and now it consists of about 450 specialist-oriented as well as general

purpose routines in the field of numerical mathematics.

Restrictions of ALGOL 60

The easy transport from one machine to the other was mainly due to

the strict use of ALGOL 60 and to the machine-independent way of

programming. The latter means, e.g., that the relative accuracy of a

I
I
I

I
I
t
I
I

I
l

I
I
I

t
'

147

floating-point ntmlber has to be mentioned explicitly in an input parameter

in the calling sequence of a procedure. This kind of machine independence,

however, was not possible for all procedures: in those programs where

representations of floating-point constants are necessary, they are

given to only about 15 decimal places.

The use of ALGOL 60 according to the Revised Report has some apparent

disadvantages:

(1) one cannot use input/output statements;

(2) communication with mass storage is impossible;

(3) double precision arithmetic is not available as

a language feature.

The first two points force us to keep the library completely I/O

free and to exclude all procedures that require mass storage. On the

other hand double-precision arithmetic procedures have been introduced.

Because of the favourable arithmetical properties of the EL-X8 computer,

it was possible to write the elementary double-precision operations +,

-, *, I in ALGOL 60 {l} for the EL-X8; for the CDC CYBER computer,

however, these elementary procedures had to be written in machine code.

These machine-dependent double-precision procedures were implemented

because double precision was considered to be indispensable in several

applications and the procedures only cause machine-dependence in a

clearly distinguishable part of the library.

Structure

Besides the "machine independent" use of ALGOL 60, the library

NUMAL has two other characteristics: it is an integrated library and

it has a modular structure. By integrated Zibrary we mean that it is

148

not merely a collection of tested and doa.unented routines, but a

coherent structure in which the different parts gear into each other.

The main lines of interconnection between the various parts are given

in Figure 1.

By moduZar str>ua1AAre we denote that also on a much smaller scale

programs have been divided into pieces, which can be used separately in

different places. Thus, in principle, in any two places where the same

effect is required, it is effectuated by only a single piece of code.

Compiler Dependence

Though the library takes into account the restrictions that are

imposed by the use of strict ALGOL 60, nevertheless a number of problems

arise when the library is taken to a new compiler.

We give a short list of problems that may arise:

(1) In general a different character representation and ALGOL

symbol representation are used. A very simple program can

take care of this conversion, but it is also possible that

an incomplete character set is used; e.g., lower case letters

are missing in the CDC character set.

(2) Even good compilers have some restrictions. It is wise not

to use all the ALGOL 60 features that are pennitted by the

Revised Report; e.g., most ALGOL 60 compilers do not handle

"own dynamic arrays." However, when a reasonably complete

compiler is available, the restrictions imposed by it

introduce only minor problems for numerical programs and

they are easily eliminated.

149

(3) It is not defined by the Revised Report how independent

compilation of procedures should be handled. In order

to adapt the texts of the original procedures for use

in the CDC system, all externally declared procedures

needed to be referenced by a code declaration inside

the procedure body.

These points all have to do with the peculiarities of a particular

compiler, whereas the library was constructed with no particular compiler

in mind. The only thing we can do - if we want the library to run on

another machine - is to find (or to insist on the construction of) a

compiler with a negligible number of anomalies.

Arithmetic

Two more points have to be kept in mind when we consider the

transportation of a library to a new envirorunent (i.e., computer+

compiler), viz., machine arithmetic and elementary functions.

When an algorithm is coded independently of a particular machine

environment, a guarantee with respect to its performance can only be

given under certain assumptions on the machine arithmetic. Weak

arithmetic can spoil a sound algorithm. For instance, on CDC, a

program failed because, using CDC arithmetic, one can obtain real

numbers a and b such that a f 0.0. b ~ 1.0 and a x b = 0.0. In

implementing programs on existing machines, one has to reckon with

this kind of peculiarity that makes the construction of truly portable

(machine independent) software almost impossible.

It would be expedient if a clear terminology existed to denominate

machine arithmetic characteristics, so that computer/compilers could be

150

classified according to their arithmetical properties. Such a classifi­

cation would enable a programmer to guarantee his code for an environment

in which the arithmetical properties belonged to a certain class.

We do not intend to start such a classification here, but to make

the idea more clear we shall mention some useful requirements for floating­

point arithmetic. A minimal set of requirements should be

fl(a 0 b) = a(l+a.) c b(l+S)

where fl(a 0 b) denotes the result of a floating point operation: 0 = +
'

*, /; a. and S are numbers depending on a and b respectively and on o such

that I a. I .:_ E:, I SI .:_ E: where E: is a machine parameter, the "relative machine

precision." In general these minimal requirements are not adequate. Addi­

tional requirements would be, e.g., monotonicity; i.e.,

a > b + c + a > c + b;

c > 0, a > b + c * a > c * b;

etc.

Machine arithmetic can be called optimal with respect to +, -, *,

/, if, as a result of any of these operations between two floating-point

numbers, the nearest representable number is delivered; if the result

lies exactly between two representable numbers one of these should be

chosen in a uniquely determined way.

Closely related to the machine arithmetic are questions with

respect to overflow and underflow (i.e., situations where the operands

a and b in the elementary operations are such that the arithmetic

requirements cannot be satisfied). For these cases it is expedient

if a user can make a choice among 3 options: (1) hard failure action

(i.e., after an error message the computation is stopped); (2) soft

151

failure action (i.e., after a message the computation goes on), or

(3) no action (computation goes on without any message). If the

computation is continued, the value delivered might be some kind

of "rmdefined" or some "near" representable number.

Another question related to arithmetic is the conversion between

the machine representation of a real number and its decimal representation

in I/O or in a program text. A good compiler should allow all machine

representable floating-point numbers to be converted to distinct decimal

representations, and vice versa. To illustrate, the CDC ALGOL 60 version

3 compiler violates this requirement since floating-point numbers are

represented by a 48-bit binary mantissa, whereas the compiler ignores

the lSth and further digits of any decimal representation. Thus, there

are certain floating-point numbers that cannot be distinguished by their

decimal representation.

Like machine arithmetic, the elementary (i.e., compiler-provided)

functions should satisfy certain clearly defined specifications. A

minimal requirement (which can be imposed on any function) is

"computed value of" function (x, y, ...)

function (x(l+~), y(l+n), ...) (l+~)

where J~I < e, lnl .:_ e, ... ,and l~I .:_ f; e is some number related to

the relative machine accuracy and f is the relative function accuracy.

For most elementary functions one can impose either e = 0 or f = 0,

but f = 0 is preferable, since, e.g., it causes arcsin(sin(x)) always

to deliver a value, whereas e = 0 might result in a call of arcsin(y)

with y > 1.0. For monotonic functions, preservation of monotonicity

could also be required.

152

As with machine arithmetic, a short and clear description of the

properties of elementary functions (independent of the particular algorithm

used for their computation) is important, so that a programmer will be

able to guarantee his code under certain well defined standard conditions.

Like overflow and underflow, an improper call of an elementary function

(such as sqrt(-2.0) or ln(-6.SE-8)) should result in one of 3 (optional)

actions: (1) hard failure, (2) soft failure, or (3) no action. If the

computation continues, the ftmction should deliver "undefined" or rather

a "near" representable mmiber (e. g., ln(x) delivers ln(Jx I) if x < 0. O).

Portability

Although standardization and classification of machine properties

has not yet reached a sufficiently developed state and compilers are

not perfect, the experience with the transportation of the ALGOL library

NllMAL justifies the following conclusion.

If we use (1) a well-defined language (or only a sublanguage with

well-defined effects) and (2) a compiler which interprets the language

correctly; if we have available (3) an environment (hardware + compiler)

with well-behaved and well-defined arithmetic, and if we construct

(4) well-progranmed software, then portability is scarcely a problem.

We can think of these four aspects as independent of each other

and the realization can be a task for different groups of people.

1he ntnnerical or software specialist can raise standards for (I),

(2), or (3) but his prime interest should be (4). If he cannot work

independently of a particular machine he will not be able to create

truly portable software.

153

This conclusion can be used as a starting point for and a philosophy

behind the construction of software packages. In fact this idea is not

new at all and it is even partly realized in some sense in the Handbook

for Numerical Computation {4}. Indeed, the ALGOL texts in this book

appear to be almost completely portable and they were easily implemented

on the CDC CYBER-system*, except for (1) the construction of a double-length

inner product, and (2) the change of some machine constants that were

mentioned in the program texts. The result, however, is rather a collection

of procedures than a coherent structure and the literal ALGOL text could

not be made to run very efficiently.

Portability and Efficiency

The final efficiency of a code is to a high degree dependent on

the compiler used. So, renouncing all special abilities of a particular

envirorunent, we will never obtain the most efficient code. On the

other hand, if we exploit the special features we may not expect

portability. Hence portable software will not be the most efficient

on all computers. However, a great deal of the disadvantage of

portable programming can be eliminated by the exploitation of the

modular structure of a library. An enormous amount of work is

essentially done by the very basic routines such as matrix-vector

operations, polynomial evaluations, etc. This yields the possibility

of speeding up the codes essentially by replacing the isolated,

compiler translated, innermost pieces of a library by hand translated

code. In this way a 2 to 3 times faster runtime was obtained for

the NUMAL library.

*This was done, mainly for reference purposes, by the computing
centers of the Universities of Utrecht and Groningen.

154

Portability and User Convenience

If ALGOL 60 routines from NUMAL are nm on a particular machine,

parameters such as the relative machine accuracy have to be specified.

This and the complete absence of I/O are not very attractive to the

average user. This disadvantage can be overcome by a user interface,

i.e., a piece of software which establishes the connection between a

non-specialist user and the set of numerical routines. This program

(which itself could be machine independent to a certain extent), sets

the machine parameters, interprets perfonnance indicators and, possibly,

selects a particular numerical procedure from among those available. By

adding such a user interface on top of the numerical routines, we obtain

a structured library in 3 levels: (1) The user interface, (2) The nwnerical

routines consisting of algorithms coded for portability, and (3) a machine­

dependent speed-up part.

ALGOL 60 - ALGOL 68

Although the realization of a numerical library according to the

above mentioned criteria should be possible in any well-standardized

language in which algorithms can be expressed, we have concentrated

on languages of the ALGOL family. Our library in ALGOL 60 is

available for external use; program texts and descriptions are

distributed to subscribers and a version with a speed-up part,

adapted to the CDC ALGOL 60 version 3 compiler, is maintained.

At this moment we are considering the possible construction of

a software library, satisfying the described criteria, in the full

language ALGOL 68. This language provides a number of useful features

that are missing from ALGOL 60; e.g., multiple precision, file handling

155

and I/O routines. Other features, such as operation declarations,

allow for particularly clear and well-structured progrannning that is not

confused by opaque jtmiping or administrative details. In this way

ALGOL 68 programming could combine reasonably efficient coding with

a clear and realistic description of nlmlerical algorithms.

Acknowledgements

I am grateful to Walter Hoffmann for a ntmlber of valuable remarks.

We are aware of the fact that we made a ntmlber of critical remarks

about the performance of the ALGOL 60 features available on CDC; however,

in our opinion, CDC offers ALGOL facilities superior to those of other

major manufacturers which have not recognized ALGOL as an important

language.

'(I

Figure I

156

singular

value

matrix
transformations
- equilibration
- hessenberg form
- bidiag.form, etc.

The main lines of interdependence
between the different parts of the
1i bra r y NUMAL.

homogeneous-

underdetermined-
systems

pseudo inverse

157

REFERENCES

1. Dekker, T. J., A Floating-Point Technique for Extending the
Available Precision, Numer. Math. 18 (1971) 224-242.

2. Naur, P. , Ed. , Revised Report on the Algorithmic Language
ALGOL 60, A/S Regnecentralen, Copenhagen, 1964.

3. NUMAL, A Library of Numerical Procedures in ALGOL 60,
Mathematical Centre, 1974.

4. Wilkinson, J. H., and Reinsch, C., Handbook for Automatic
Computation, Vol. 2, Linear Algebra, Springer-Verlag,
Heidelberg, 1971.

