
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

61
I I

The Vienna Development Method:
The Meta-Language

I IIIII III

Edited by
D. Bjerner and C. B. Jones

Springer-Verlag
Berlin Heidelberg NewYork 1978

Editorial Board
P. Brinch Hansen
J. Stoer N. Wirth

D. Gries C. Moler G. SeegmL~ller

Editors
Dines Bjerner
Department of Computer Science
Building 343 and 344
Technical University of Denmark
DK-2800 Lyngby

Cliff B. Jones
IBM International Education Centre
Chaussee de Bruxelles 135
B-1310 La Hutpe

Library of Congress Cataloging in Publication Data
Main entry under title:

The Vienna development method.

(Lecture notes in computer science ; 61)
Bibliography: p.
Includes index.
1. Programming languages (Electronic computers)--

Addresses, essays, lectures. I. BJ~rner, Dines.
II. Jones, Cliff B.~ 1944- Ill. Title: Mata-
language. IV. Series.
QA76.7.V53 001.6'424 78-7232

AMS Subject Classifications (1970): 68-02, 68A05, 68A30
CR Subject Classifications (1974):

ISBN 3-540-08766-4 Springer-Verlag Berlin Heidelberg NewYork
ISBN 0-387-08766-4 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks. Under § 54 of the
German Copyright Law where copies are made for other than private use,
a fee is payable to the publisher, the amount of the fee to be determined by
agreement with the publisher.
© by Springer-Verlag Berlin Heidelberg 1978
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-5432

CONTENTS

Introduction

Acknowledgements

Addresses of All Authors

ON THE FORMALIZATION OF PROGRAMMING LANGUAGES:

EARLY HISTORY AND MAIN APPROACHES

Peter Luca8

PROGRAMMING IN THE META-LANGUAGE: A TUTORIAL

Dines Bj~rner

THE META-LANGUAGE: A REFERENCE MANUAL

Cliff B.Jones

DENOTATIONAL SEMANTICS OF GOTO: AN EXIT FORMULATION

AND ITS RELATION TO CONTINUATIONS

Cliff B.Jones

A FORMAL DEFINITION OF ALGOL 60 AS DESCRIBED

IN THE 1975 MODIFIED REPORT

Wolfgang Henhapl & Cliff B.Jone8

SOFTWARE ABSTRACTION PRINCIPLES:

-- Tutorial Examples of: An Operating System

Command Language Specification, and a PL/I-like

On-Condition Language Definition

Dines BjCrner

References & Bibliography

V

XVII

XIX

24

218

278

305

337

375

All papers lists their CONTENTS at their very beginning.

INTRODUCTION

The purpose of this volume is to provide a summary of a body of work

which has reached a relativeiy stable state. The work is, however, far

from complete (in the sense - even - that the authors whose work is

presented here feel that they have satisfactory solutions tO the prob~

lems they set out to solve.) Notwithstanding their own recognition of

difficulties and shortcomings in the current presentation, the authors

hope that what has been achieved may be of use to others. Furthermore,

a summary of the results of any significant effort may be hoped to

stimulate the work of researchworkers.

The purpose of this introduction is, of course, to introduce the vo-

lume. Firstly an outline is provided of the so-called "Vienna Develop-

ment Method" and some motivation offered of the meta-language which is

the part of the method of concern in this volume. Following this a re-

view is provided of other work done in the Vienna Laboratory, in order

to put what is presented here in context.

Vienna Development Method

Before entering into the description itself, it is perhaps worth spend-

ing a few moments on the name itself in the hope to avoid a misunder-

standing which could arise. The earlier work of the Vienna laboratory

developed a meta-language for definitions which became known as the

~'Vienna Definition Language" (VDL). The relationship between the work

presented in this volume and the VDL is discussed below. Of course,

the earlier meta-language had a large influence on the later one. But

even here there is a sharp difference between the two (technically,

VDL was designed for writing operational definitions whilst the meta-

language used in VDM is intended for the presentation of denotational

definitions). Moreover, as the name suggests, the Vienna Development

Method (abbreviated to VDM in this volume) is much more than just a

me~a-language.

Turning now to the content of VDM. The "method" is meant to be a sy-

stematic approach to the development of large computer software systems.

Strictly, there is nothing which restricts the application to software

but no attempts have been made to use the approach on hardware design.

The key proposals are simple and by no means unique to VDM. As indi-

cated in f~g. I, the first objective in getting any complex system

VI

i EQUIREMENTS

I FORMAL DEFINITION I)
i I

I DEVELOPMENT STEPS 1,2, n

I i i

Intuitive Step

Architectural
Model

Stepwise Refinement
and Decomposition

FIG. l: THE VIENNA DEVELOPMENT METHOD

under control is the construction of a formal definition of the re-

quired function. This specification is a reference point for the sub-

sequent development. For a large system there will follow a sequence

of development steps. The downward pointing arrows are suggestive of

a time sequence. Because it is often necessary to 'think ahead' in a

design process, it is more accurate to view the arrows as showing the

relationships between the final stages of the documentation. Thus, a

reader may understand the design of a system in a strictly top-down

way although this is an idealization of the actual (iterative) design

process.

The backward links in fig. I relate to another key point of VDM. At

each stage of development a justification is provided. Just as the

overall process begins with a specification, each intermediate develop-

ment step can be viewed as presenting a solution to a specification

(all that distinguishes the last 'implementation' phase is that instead

of generating new specifications, all of the required units are avail-

able). The aim of a justification is to document why the proposed so-

lution, is believed to fulfil its specification. Such justifications

can be presented at different levels of formality. But without enter-

ing here into a discussion of what level might be chosen in various cir-

VII

cumstances, it should be clear that justifications documented during

the development process are likely to be both much more intuitive and

of more use in early detection of design errors than any attempt to

construct a proof for a complete system after construction.

Decomposition and correctness arguments are two key points: a third is

the use of abstraction to handle complexity. In the papers in this vo-

lume it will be made clear how a specification can be viewed as an ab-

stract model of the system to be specified. Such an abstract model

will make extensive use of abstract data objects (see Bj~rner 78b): it

is the choice of appropriate abstractions which can make a short and

readable formal specification. The use of abstract objects during the

development process and their refinement to objects which are repre-

sentable in the eventual realization is discussed in Bj~rner 77a,

Jones 77a.

Whilst VDM was first envisaged for languages and the development of

their processors, the definition methods have subsequently been applied

to other "systems" - see Hansal 76, Nilsson 76, Madsen 77.

~he Meta-Language

Having employed an internal name ("Vienna Development Method") for the

first part of the title of this volume, the anonymous sub-title may

cause some surprise. In fact there is an internal name ("Meta-IV") for

the meta-language used in ZDM so its omission can be guessed to have

strong grounds. The point is that in defining and developing systems a

number of concepts have been used; it has of course been necessary to

use a notation to manipulate the concepts. It is, however, the concepts

which are important not the particular concrete syntax used for expres-

sions realizing these concepts. It was felt by the authors that making

wide use of a name for the meta-language might focus attention on the

wrong issues and so it has been avoided. Furthermore, it should be

made clear that the meta-language is not "closed" in that (well defined)

extensions can be made without fear of a 'standards committee'

The need for a meta-language should be clear. Decomposition has been

shown to be a part of VDM and this only makes sence if something is writ-

ten about each stage of development. If something is to be written it

must use some language. In view of the systematic approach being taken

Vtlt

to development and, in particular, the use of justifications, it should

be obvious that a formal notation is required. Given that abstract ob-

jects are required, choosing established notation (e.g. for sets) would

appear to be wise. Surprisingly, the decision to use 'standard' mathe-

matical notation for standard things has actually caused some people

to object: The clue is a concern, which is unfounded, that the use of

notation from a branch of mathematics implies that a deep knowledge

thereof is required.

Another influence on the meta-language has been programming languages.

Just as choosing understood mathematical objects can aid the reader,

the use of sequencing constructs from programming languages (e.g. ~_~

then else) can enhance the readability of a definition. Of course, all

such constructs employed must themselves be precisely defined - this

is tackled in Jones ?Sa.

The major inpetus towards denotational semantics has come from Oxford

University. There is, however, a striking difference in the appearance

of definitions created by Oxford or Vienna. This subject is returned

to later in the volume but it is important to remember the objectives

of the different groups in order to avoid (erroneously) seeking a "cor-

rect" choice. The Oxford group have been interested in the foundations

of their meta-language and its use on examples small enough to facili-

tate complete proofs; the Vienna group was forced to take a more engi-

neering approach when faced with languages like PL/I.

Several things have been deliberately excluded from this volume. First-

ly the subject of concrete syntax is well-documented elsewhere (e.g.

Uzgalis 79 and thus, whilst an important part of a system definition,it is

ignored. Secondly, there is no formal description of methods for de-

fining parallelism. Thirdly the relationship to other methods is only

discussed by P. Lucas: this is not a comment on the other authors' views

of, for example, axiomatic definitions.

IX

Relation to Earlier Vienna Work

The purpose of this section is to identify the main differences between

the work presented in this volume and that done earlier in the Vienna

Laboratory. For this objective a complete historical view would be un-

necessarily long and is not attempted. (This section fits, logically,

into the introduction, but the reader who is unfamiliar with the mate-

rial will find it more beneficial to first read both the more general

historical review - Lucas 78 - and one of the descriptions of the cur-

rent meta-language - Bj~rner 785 or Jones 78a.)

In order to have precise names for the two phases that are to be com-

pared, "FDL" and "FDM" will be used. "Vienna Definition Language"

(VDL) was a term coined and used most widely in North America and iden-

tifies the language definition notation developed and used in the Vien-

na Laboratory during the 1960's. The Vienna Development Method (VDM)

has been described above. It owes much to the earlier work but differs

in some inportant technical respects: these differences and their mo-

tivations are the subject here.

We begin by briefly reviewing some of the important documents relating

to the earlier work. The Vienna group had constructed a compiler for

ALGOL 60 and following this work was asked to undertake a formal de-

finition of the PL/I language. The acknowledged basis of this work was

the papers McCarthy 63a, Landin 647 Landin 65, Elgot 64 and the Baden

TC2 conference of 1964 (see Steel 66 - especially McCarthy 66). The

first "tentative steps" towards a style for "Universal Language Des-

cription" (ULD) are recorded in Bandat 65. It is worth quoting the

objective as described by P. Lucas:

"The result may serve as a vehicle for language design groups,

implementation groups, and as a useful background for educated

and sophisticated programmers It should be possible to for-

mulate and prove statements about the object language."

The first version of the PL/I definition did not cover the complete

language when printed in 1966. The 1968 version 2 was essentially com-

plete and became an internal control and reference tool for the e-

volving language. This evolution led to the requirement for a third

version and subsequent (extensive) revisions. It is interesting to

review the structure of this third version:

Compile Time Facilities

Concrete Syntax

Translation Concrete to Abstract

Abstract Syntax and Interpreter

Informal Introduction

Fleck 69

Urschler 69a

Urschler 69b

Walk 69

Alber 69

The VDL notation is a means of describing abstract interpreters (see

Lucas 78 for definition of this approach.) A very general view was

taken of objects and their manipulation (cf. the "~" function) and the

control component was made part of the state of the interpreter. This

meant that extremely "flexible" interpreters could be constructed which

may have been one of the reasons why VDL was quickly adopted by a num-

ber of groups both in and outside IBM. To give just a few references:

Lauer 68, Zimmermann 69, Lee 72, Moser 70a (this is one of several at-

tempts to use the meta-language for the descriptions of "systems").

The best overview of the VDL work is probably still Luoas 69 along with

Bekic 70b on the subject of storage models. Other reviews are available

in Wegner 72 and Ollengren 75. (Although this section is not a full his-

torical survey it would be remiss not to mention the guidance provided

by H. Zemanek - see, for example, Zemanek 66).

Rather than listing the users of VDL it will be more germane to con-

sider how such definitions were used in the justification of implemen-

tations of defined languages. Just as with the work on program develop-

ment, the initial work concentrated on proofs: once this basis was laid,

attention was turned to systematic development methods. Realizing his

earlier (quoted) hopes P. Lucas was able to demonstrate the use of a

VDL definition in proving an implementation correct in Lueas 68. A con-

siderable amount of work in this direction was then undertaken and is

reviewed in Jones 71. Much of this work was made more difficult than

one felt was necessary by the "flexibility" of the abstract interpre-

ters which could be written using VDL. In particular the ability to

explicitly change the control meant that inductive proofs over the

structure of (abstract) programs were not, in general, valid; and the

inclusion of objects like the environment in a "Grand State" complicat-

ed proofs. Although the proofs in Jones 71 avoided the former problem,

the latter led to some of the longest proofs in the paper. The attempts

to use VDL definitions as a basis for systematic development of imple-

mentations was, then, providing indications that a change of definition

style might be worthwhile.

XJ

Other important questions were being raised on the style of definition.

Of great importance were the observations in Beki~ 70a that a more

"Mathematical" style could avoid much unnecessary detail. One of the

problems which had caused the use of the control in VDL was providing

a model for goto statements. An alternative "exit approach" had been

described in Henhapl 70a. A "functional" definition of ALGOL 60 used

this approach in Allen 72. Furthermore, this definition had used a

"small state" in that the environment was made a separate argument to

the defining functions. This definition is not, however, "mathematical"

("denotational") and is unnecessarily complicated by the avoidance of

combinators for frequently recurring patterns. (Other work on the ques-

tion of "style" had, of course, been pursued - see, for example, Lauer

71, Hoare 69, Hoare 74).

The "denotational" approach is characterized in Lucas 78. The work of

the Oxford group is well documented in Scott 71~ Mosses 74, Stoy 74

(the most readable account) and Milne 76.

Towards the end of 1972 the Vienna group again turned their attention

to the problem of systematically developing a compiler from a language

definition. The overall approach adopted has been termed the "Vienna

Development Method". Based on the above comments it should be no sur-

prise that a "denotational" approach was adopted for the definition it-

self. (Using, however, the exit approach rather than "continuations" -

see Jones 78b). This change was, in fact, less drastic than some au-

thors choose to suggest. It is possible to read a denotational defini-

tion as an abstract interpreter. However, there is a denotational

"rule" which requires that the denotations of compound objects should

depend only on the denotations of their components: this rule leads

one to the construction of definitions which are much clearer and easier

to reason about. In fact the change from operational to denotational

style was further masked by a preservation of an overall Vienna "flay-

our". This flavour comes from the choice of appropriate abstractions

for source and semantic objects and a writing style which aims at read-

ability rather than conciseness.

The meta-language actually adopted ("Meta-IV") is used to define major

portions of PL/I (as given in ECMA 74 - interestingly a "formal" stand-

ards document written as an abstract interpreter) in Beki{ 74. The pro-

ject went on to consider how this definition would be used to construct

a compiler. An indication of the interface problem which results from

XII

using a typical "product oriented" front-end, is shown in WeissenbSck

75. A concern is often expressed as to how one can check that a formal

definition captures one's intuitive notion of a language. Since the

latter is inherently informal, the short answer is that one can not

so do. But certain consistency conditions can be established and this

is the subject of Izbicki 75. Although the project was not pursued to

the stage of a running compiler, the overall method used is described

in Jones 76a.

Again the meta-language developed for the FDM phase has been used by a

number of other groups. The only significant IBM publication is Hansal

76 which is interesting because it addresses the problem of relational

data bases. Externally, Nilsson 76 and many working documents of the

Technical University of Denmark have used "Meta-IV" (see also BjCrner

775).

There are still a number of open issues. The problem of defining arbi-

trary merging and/or parallelism was tackled in Bekic 74 but the tech-

nique used has not yet been defined in a satisfactorily "Mathematical"

way - see Bekic 71 and Milner 73. Another area of future research is

outlined in Mosses 77. In the general view of making definitions more

abstract, the rSle of the environment is questioned in Jones 70.

On the Definition of PL/I

Beki{ 74 contains a definition of most of the non-I/O parts of PL/I

as described in ECMA 74. (Some of the input-output statements were

defined by W. Pachl, but the work is not published). The ALGOL 60 de-

finition in this volume (Henhapl 78) has benefited from that work and

exhibits many of the formulations used earlier. There are, unfortunate-

ly, minor notational differences to be faced in reading the earlier

work. The significant differences, however, derive from the extra

"richness" of PL/I and the main aspects of the relevant formulations

are reviewed here. (Again, this section should be skipped at first

reading).

As mentioned above, some attempt was made in Beki6 74 to cover the

problem of arbitrary order. In particular the order of access to vari-

ables anywhere within expressions is not constrained. The "," combina-

tor was introduced to tackle this problem.

Xll l

Because PL/I offers a larger set of ways of building aggregates than

is available in ALGOL 60, a more implicit model of storage is used.

Furthermore, the normal way of governing the lifetime of variables in

ALGOL 60 becomes one of four ways available in PL/I: this normal way

is called AUTOMATIC~ the "own" variables of ALGOL 60 correspond rough-

ly to STATIC; in addition PL/I offers BASED and DEFINED storage classes.

With BASED variables explicit allocation statements must be executed

and there is no automatic freeing. There are a number of expressions

involved such as references to pointer variables and the main interest

is in showing when, in what environment and with what exception condi-

tions (see below) these various expressions are evaluated.

As well as parameters of type ENTRY (i.e. procedure) and LABEL, PL/I

permits variables of these types. Furthermore, their use is not stati-

cally constrained, as is the case in ALGOL 68, to prevent attempted

access to entities local to a block after the lifetime of that block.

Therefore, the problem of checking for "past activations" had to be

tackled in the PL/I definition.

Perhaps the most interesting extension is the use of "ON conditions"

and "condition built-in-functions/pseudo-variables". ON statements

ca be modelled as assignments to ENTRY variables (notice they are dy-

namically, not lexicographically, inherited). The effect of encounter-

ing a condition (whether SIGNALled or implicitly raised) can be model-

led by a call of the procedure which is currently assigned to the ap-

propriate variable. The pseudo-variables used for investigating and

returning values from these procedures behave like global variables.

For further details on the PL/I model, the reader is referred to the

"annotation" section of Beki6 74.

The Structure of this Volume

The papers of this volume can be grouped in four cateHories.

(I) The first paper:

On the Formalization of Programming Languages: Early History &

Main Approaches

XIV

by Peter Lucas sets the stage. It discusses the main approaches to

language definition, the intrinsic aspects of the problem area and

their origins. As such the paper provides a frame for the remainder of

the volume.

(II) The next two papers:

Programming in the Meta-Language: A Tutorial

by Dines Bj~rner, and:

The Meta-Language: A Reference Manual

by Cliff B. Jones give complementary descriptions of the meta-language.

The tutorial is a partly informal introduction to, partly comprehen-

sive primer for, the meta-language. The reference manual gives precise

semantics definitions of the more important meta-language constructs.

The tutorial is primarily aimed at persons new to formal definitions,

but with some background in (ALGOL-like) programming. The reference

manual, in contrast, is primarily aimed at people, familiar with the

basic ideas of denotational semantics, who wishes to understand the

meta-language. Comprehension of the tutorial is otherwise a sufficient

prerequisite for any other paper of this volume. The tutorial describes

constructs not formally covered by the reference manual. Any such con-

struct can, however, be simply reduced to simple combinations of con-

structs formally covered by the reference manual. It is in this sense

we say that the language described in the tutorial is 'larger' than

that defined by the reference manual.

(III) The fourth paper:

Denotational Semantics of Goto: An Exit Formulation and its Relation

to Continuations

by Cliff B. Jones, brings focus on a major factor distinguishing the

Oxford, Scott-Strachey, School of expressing Denotational Semantics,

from the current Vienna School. As such the paper contributes to a dee-

per understanding of the VDM meta-language by analyzing one of its

combinators, the exit construct.

XV

(IV) The last group of papers exhibits actual abstractions:

A Formal Definition of ALGOL 60 as Described in the 1975 Modified

Report

by Wolfgang Henhapl & Cliff B. Jones presents the latest in a number

of ALGOL 60 definitions. Over its only 32 pages of text and formulae

it demonstrates, we believe, the power of the abstractional techniques

used, and the meta-language tool described earlier, by giving a very

readable and neat denotational semantics definition. The last paper

of the volume:

Software Abstraction Principles: Tutorial Examples of an Operating

System Command Language Specification and a PL/l-like On-Condition

Language Definition.

by Dines Bj~rner summarizes a number of complementing & contrasting

abstract modeling techniques. The first example is chosen to indicate

the applicability of the software abstraction ideas to other than con-

ventional programming languages; the second in order to illustrate

various state modeling techniques & also the unusual On-Condition Lan=

guage construct.

The volume ends with a unified bibliography recording the literature

referred to in the various papers.

ACKNOWLEDGH~ENTS

The editors of this volume gratefully acknowledge the Computer Science

Department of The Technical University of Denmark and the European

Systems Research Institute of the IBM Corporation for their kind sup-

port, enabling us to prepare this volume.

The editors are especially happy to thank the co-authors: Wolfgang

Hanhapl & Peter Lucas, for their much appreciated contributions.

These latter actually stretches back over the many years the authors

were members of the IBM Vienna Laboratory. To all of our colleagues,

some of them still there, goes our most sincerely felt appreciation

for the seemingly never-ending source of inspiration they represent.

Very special, deep and fond thanks goes to Prof. Heinz Zemanek for

having created such unique working environments; and to Dr. Hans Beki~

for his unwavering high standards which kept us straight.

Finally all co-authors join the editors in expressing their indebtness

for the expert and untiring assistance of Mrs. Annie Rasmussen and

Mrs. Jytte S#llested.

Dines Bj#rner & Cliff B. Jones

Montpellier, France

January, 1978

