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Abstract: 

The recent work of the Vienna Laboratory on the sub= 

ject of semantic definitions has used the "denotational 

semantics" approach. Although this is a clear break 

with the earlier abstract interpreter approach, the 

newer meta-language has tried to preserve and even 

improve upon the readability of the earlier "VDL" no = 

tation. The meta-language described here has been used 

in the definitions of large programming languages and 

systems. This paper is not a tutorial; rather it pro = 

vides a reference document for the meta-language. 
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0. INTRODUCTION 
Q 

This paper is intended to provide a reference document which describes 

the meta-language used throughout this volume. It is equally important 

to appreciate which objectives are not being aimed for here. On the 

one hand this document is definitely not a tutorial, neither for de- 

notational semantics nor for the specific meta-language used. In much 

of this paper no motivation at all is provided, the reader who is not 

familiar with the general ideas is recommended to read Bj~rner 78b be- 

fore attempting to use this paper. On the other hand this document 

does not provide a formal "foundation" for the meta-language in the 

style of, say, Mosses 75. 

The aim of this "reference manual" is to provide a document where 

readers or writers of the meta-language can find a description of 

its constructs in terms of some other notation. As such, this document 

does not necessarily introduce all terms and notation in a strict left- 

to-right order. 

The notation to be introduced is primarily intended for the purpose of 

defining languages or systems using the approach known as "denotational 

semantics"; although it can also be used as a sort of programming lan- 

guage this is not its purpose. A general "denotational" approach can 

be expected to yield a definition which can be viewed in four parts: 

~) Abstract syntax of the language to be studied 

~) Context Conditions 

~) Semantic Objects 

~v) Meaning function(s) 

Before embarking on defining the meaning of a language it is obviously 

essential to fix what ("object") language is to be studied: this is 

the task of the first two parts of a definition. The abstract syntax 

defines a class of objects which are abstractions of the actual texts 

of the language. (The class of texts would be described by a concrete 

syntax: this subject is widely documented and in consequence need not 

occupy space here). The abstract syntax of a language is "context free" 

and it is thus impossible to restrict the class of abstract texts to 

those which are obviously meaningful. For example, in a programming 

language it is impossible to specify that all valid programs must use 

only declared identifiers. Rather than leave such checking to cloud 

the meaning functions, a separate section defines predicates over the 
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objects of the abstract syntax. Such predicates define a sub-set of 

the objects which are specified by the abstract syntax; those objects 

which satisfy the context conditions are said to be "well-formed". 

The meaning functions provide denotations only for well-formed objects. 

The third part of a definition defines sets of semantic objects. Both 

the denotations chosen for a language (e.g. continuous functions over 

states) and any auxiliary objects such as environments are described. 

In a sense, this part of a definition is unnecessary~ The abstract 

syntax is the only way in which the class of source objects is delimit- 

ed (unless a translator function from concrete syntax is written); the 

denotations and auxiliary objects which can be created by the meaning 

functions could, in fact, be deduced from those functions. However, 

the separate description of semantic objects is both an invaluable aid 

to the reader of a definition and an important tool to be used during 

the development of the meaning functions. 

The first three parts of a definition, then, have defined a class of 

well-formed abstract objects and a class of semantic objects: meaning 

is defined by a function mapping the former into the latter. This map- 

ping will be defined by a family of (recursive) functions. An objective 

of a denotational definition is that the meaning of a composite object 

should be created from the meanings of its components. Given this ob- 

jective there will normally be one semantic function for each sub-class 

of abstract objects. 

Having outlined the "denotational method" in general, a few comments 

can now be made on the spefic meta-language used in this volume. (The 

notation was referred to within the Vienna Lab as "Meta-IV"). It is 

important to appreciate that the authors do not regard the meta-lan- 

guage as any sort of fixed standard. Rather, it is offerred as a basis 

which has been shown to be adequate for a variety of definitions, and 

which can be expected to be adequate for defining other related systems. 

Even for such systems the existance of a body of notation does not eli- 

minate the difficulties of choosing suitable abstractions for use in 

their definition. Moreover, it must be realized that an attempt to ap- 

ply the ideas of denotational semantics to systems of an entirely dif- 

ferent nature will require the invention of suitable extensions to the 

notation presented here. There does, however, appear to be some virtue 

in a degree of standardisation in the basic notation. 



222 

The notation used by the Oxford University group (cf. Stoy 74) for de- 

notational semantics definitions is rather different in appearance 

from that presented here and it may be useful to speculate as to the 

cause. The Oxford group have been principally concerned with questions 

of foundations and have worked with relatively small languages. They 

have, in fact, chosen languages which illustrate the key problems with 

a minimum of unnecessary detail. In contrast, the Vienna group have 

tended to tackle larger (given) languages and systems. Furthermore, 

the languages have usually been defined "warts and all". For a defi- 

nition of a certain size it becomes virtually impossible to remember 

enough conventions to permit use of single character names, type clauses 

given implicitly by Greek letters chosen for parameters etc. Thus, for 

large languages a different style is adopted to provide a readable de- 

finition. For example, a syntax is employed which is as abstract as 

possible, (longer) function names are used in the hope that they are 

suggestive to the reader etc. It is interesting to compare the rela- 

tive merits of succinctness and readability on Mosses 74 and Henhapl 

78. 

The various topics are distributed throughout this paper as follows. 

Section 4 is concerned with the abstract syntax notation. The actual 

objects (and their operators) which have been found to be of use in 

earlier applications of this meta-language, are described in sections 

2 and 3. Sections 1 and 5 briefly outline the logic notation used. The 

heart of the meta-language is the means for defining and combining 

meaning functions: this is described in section 6. The subject of ar- 

bitrary order or merging of operations is completely omitted from 

this paper for reasons given in section 6. 

An outline concrete syntax for the meta-language is given in appendix 

I and appendix II lists some conventions which have been used in ear- 

lier definitions. Appendix III contains a definition of a small lan- 

guage, close study of which should provide the reader with a clear 

understanding of the use of the notation. 
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i. LOGIC NOTATION 

In defining any language something has to be taken as a basis. For the 

description of the operators of the meta-language, the first-order pre- 

dicate calculus with equality is chosen. There are two reasons for this 

choice. Firstly, a consistent and complete axiomatic definition can be 

provided (e.g. Kleene 67). Secondly, it is widely enough understood 

that the presentation here can be restricted to providing "readings" 

for the particular symbols chosen. 

Fig. I-! displays the notation adopted throughout this paper. The con- 

straints on bounded quantifiers are used in preference to implications 

(Thus: 

(Vx£NatO)(lis-prime(4.x)) , rather than 

(Vx)(x6Nat 0 ~ lis-prime(4ox)) ) 

in order to reduce the number of "undefined" operands° However, the 

problem of the meaning of the logical operators with undefined values 

must be faced and is discussed in section 5. The constraints on quanti- 

fiers may be omitted where the context makes them obvious. 

The (iota) description operator yields the unique object satisfying a 

predicate. It is an error to use the operator if no, or more than one, 

value satisfies the predicate. Thus: 

(B:XoEX)(P(Xo)) ~ p((~xEX)(p(x))) 

Here again, the constraint may be omitted if it is clear from the con- 

text. 
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Symbol Reading 

TRUE 

FALSE 

& 

V 

truth values 

and 

or 

implies 
equivalence 

not 

V 

3 

3" 

for all 

there exists 

there exists exactly one 

the unique object 

(¥x£X)(p(x)) 

(vxlc(x))(p(x)) 
for all members of set X, p(x) 

for all x satisfying c, p(x) 

similarly for other quantifier8 

fig. I-1: Logic notation 

2. ELEMENTARY OBJECTS 

In writing a definition it will normally be necessary to use objects 

which are structured (i.e. composite). Some types of composite objects, 

together with their operators, are described in section 3. A definition 

will, however, also have to employ certain basic objects whose struc- 

ture is of no interest for the system being defined. For example, many 

definitions will require natural numbers but will wish to treat them 

as elementary objects. 

Two standard objects, the truth values, have already been introduced: 
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TRUE, FALSE 

Another object which will be explained below (roughly, it is a place 

holder for an omitted branch in a tree) is: 

NIL 

An author may also enumerate any other objects required for his defi- 

nition in a notation explained in section 4. The only property which 

is assumed about elementary objects is that they are distinguishable. 

Thus two meaningful operators are the equality operators (=,#). Among 

the elementary objects to be enumerated for a definition are "refe- 

rences" (see section 6.1). 

In addition to those objects which can be enumerated, a definition 

will usually also require known objects like natural numbers, integers, 

reals etc. With such familiar sets one may also wish to adopt some of 

their standard operators (e.g. <,~,/). Any definition should include 

a list of such assumed objects and their operators. Section 3.1 lists 

some suggested names for sets of such objects. All definitions will be 

assumed to use the standard propositional connectives on the truth val- 

ues. 

3. COMPOSITE OBJECTS 

A definition will have to define a number of classes of objects, not 

least the texts of the language or system being defined. The style of 

defining classes of objects is described in section 4. This section 

will introduce a number of classes of objects which, are useful in 

building abstractions appropriate for most systems. The objects given 

here, in distinction to those discussed in section 2, have structure. 

Thus operations will be introduced for manipulating (building), decom- 

posing and interrogating the objects of each class. The test for e- 

quality is available for each class and will be defined. 

The objects are defined in the first place in terms of the logic no- 

tation introduced in section i; there is then a layer by layer con- 

struction of each more complex class of objects. Because of this con- 

struction, certain objects of different classes are formally identical: 
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in fact definitions will ensure that the types are not mixed. 

3.1 Sets 

Sets are characterized by the members they contain. Testing whether an 

object is a member of a set is achieved by a two place infix operator: 

e£S 

This is a propositional expression and thus yields TRUE or FALSE. 

Its converse is written: 

Fig. 3-I uses the test for membership to define the set operators. No- 

tice that the distributed union_ is defined only for sets of sets. 

Set Operator Definition 

S = T e£S~=~e£T 

S UT {xlxCS v x6T} 

unio n S {eI(Bs6S)(e6s)} 

s nT~ {xlx6s & x~T} 

s -~ {=Ix£s & xCT} 

ScT e6S ~ e6T 

scT Sc_T & S%T 

Fig. 3-I: Set operators 

The basic way of constructing sets is by implicitly defining, via a 

predicate, those elements of some other set which are to be included: 
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XoE{X£Sip(x)} ~ (Xo6O & p(Xo)) 

Where some set is clearly implied as the range by the context in which 

a formula appears, the "6S" can be omitted. 

It is possible to view the explicit enumeration of the elements of a 

(finite) set as an abbreviation: 

{Xl~X 2 ..... x n} = {xlx=x I vx=x~v.., vx=x n} 

In particular, for the empty set: 

Thus : 

"1( Bx o) ( Xo6 { }) 

For two integers a set of integers can be defined by the abbreviation: 

{i:j} A= {x£intli<x<j } 

Where context makes clear which variable(s) is (are) to be considered 

bound: 

{f(x) Ip(x)} ~- {zI(3x)(p(x) & z=f(x))} 

The number of elements in a finite set can be determined by: 

card {} = 0 

Xo~S ~ card (SU{Xo}) = card S + 1 

It is well known that an unconstrained view of sets will permit the 

possibility of paradoxical sets (e.g. {SIS(S} ) : starting from non-pa- 

radoxical sets and using the operators given here this danger does not 

exist. 

The following standard sets will be used: 

Bool = {TRUE, FALSE} 

Nat = {I, 2 .... } 



Nat 0 = {0, I, 3, o~.} 

Int = { .... -1, O, 1, ..o} 
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3.2 Pairs 

In building the subsequent notion of MAP it will be necessary to have 

a notation for ordered pairs: such a notation is introduced in this 

section but will not be used other than within section 3 (a general 

tuple notation is developed in section 3.4.) 

The objects considered here will be best understood as ordered pairs: 

pair(el, e~) £ PAIR 

They, and their operations, are defined via sets: 

pair(e I, e 2) = {el, {e I , e2}} 

Selection of elements is achieved by: 

first(pr) = (lel)(Be2)Cpr = {e I , {e I, e2}}) 

second(pr) = (~e2)(3el)CPr = {e 1, (e I, e2}}) 

Notice that it is an immediate consequence of the definition that: 

= ') ~=~ ~e I = e I ' & e 2 = e2') pair(e 1, e 2) pair(el', e 2 

3.3 Maps 

The Maps to be introduced here are a restiction of the general functions 

to be covered in section 3.6. The restriction is that the domain of a 

map is finite and constructable (i.e. every way of generating a map 

also shows how to compute the domain). The usefulness of this restrict- 

ed class of functions (along with its separate notation) comes from 

their use in a definition. 

The basic model is a set of pairs which pair a unique second element 

with any first element: 
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for m6Map: 

PI" P2 £m & first(Pl) = first(P2) ~ Pl = P2 

For some MAP m, the Operations of domain, application and range are 

defined in terms of the set model: 

domm = {dl(3pEm)(d = first(p))} 

m(d) = (Ir)(palr(d,r)Em) 

rn~m = {m(d) IdEdomm} 

The actual computation of the domain of a map can be shown for each of 

the map generating expressions below. (The range operation is also re- 

cursive because domain is). Notice that applying a map to an element 

outside its domain is undefined. 

The map constructors and operators are defined in fig. 3-2. The basic 

way of constructing maps is by implicitly defining the pairs they 

should comtain. Strictly, the set from which d is chosen should be spe- 

cified h~t this will be assumed to be given by the context. As with 

sets a finite enumeration of the elements in a map is regarded as an 

abbreviation. 

Notation Meaning Domain 

[c~r I p(d,r) ] {pair(d,r) Ip(d,r) } {d I (3r) (p(d,r) ) } 

[d F r I ..... dn~r n] [d~*rl (d=d I & r=rl)v... {d I ..... d n} 

{d=d n & r=r n) ] 

for: dommndomn = {} 
mUn jr m U n ~d°mm U domn 

m+n [c~rldEdomn & r=n(d)v domm U domn 

d£(domm-domn) & r--re(d) ] 

m}8 [~-~(d)  Id~(do~nns) ] d o ~  a s 

m\s [ d~m (d) [ dE (do....~-s) ] do___~ - s 

for: ~ g ~ _  o ~  ] 
rn'n ~ [&~m(n(d) ) IdEdomn] domn 

fig. 3-2: Maps 
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Notice that the union operator is defined between maps whose domains 

are disjoint. The normal (set) union symbol will be used because it 

is clear that maps are being combined. 

3.4 Tuples 

The objects described here will be familiar as unbounded (finite) lists, 

but following Reynolds 76 we yield in the face of the established use 

in computing of this term. (Although the term "list" will be used in 

informal discussions). 

Tuples are modelled on maps and are either empty or have a head and a 

tail component. The tail component of a tuple is always a tuple. Tuples 

are finite, that is after a finite number of selections of the tail 

component an empty tuple will be located. 

t6TUPLE ~ (domt = {} v 

domt = {H_DD, T L} & t(T_kL)6TUPLE) 

The tuple notation (including explicit enumeration) is defined in fig. 

3-3. Unlike sets, tuples provide an ordered access to their elements 

(by hd or indexing). For this reason care must be taken in the choice 

of an implicit list notation. In order to ensure that an order is de- 

fined for the created list, generation is defined only for (modifica- 

tion of) a sub-list of a given list. Thus: 

<f(tup(~))Ip(tup(i))> 

Notice that the distributed concatenation ("cone") is only defined for 

tuples of tuples. 
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Notation 

<> 

<ela...jen> 

for tup~<>: 

h_!d tup 

for tup~<>: 

t ltup 

lentup 

for 1&i~lentup:tup(i) 

tupl^tup2 

conc tt 

elemstup 

indstup 

Definition 

[] 

[HD~e I, 2L__~[ .... Tn~[~D+en,2n+[]]...]] 

tup(H~D) 

tup (T i) 

(HDEdomtup~O,T~lentltup+l) 

(i=1~h_ddtup, T~(t_~ltup)(i-1)) 

(I tup)(lentup = lentupl+lentup2 & 

(l<i<lentupl ~ tup(i)=tup1(i)) & 

(l<i<lentup2 ~ tup(i+lentupl)=tup2(i))) 

(tt=<> ~ <>, T~h_ddtt^conctltt) 

{tup(i)II~i<lentu p} 

{1:lentup} 

fig. 3-3: tuple notation 

3.5 Trees 

In order to define structures which correspond to (abstract forms of) 

programs etc., it will be necessary to have a way of combining instances 

of objects into new objects and these combinations must be recognis- 

able and decomposable. Such objects will be built by " aonstructor 

functions" the only essential property of which is their uniqueness. 

mk-a(xl,x 2 ..... x n) = mk-a'(x I ~,x 2' ..... Xn') 

~=~ (a=a' & Xl=X 1 ' & x2=x 2' & ... & Xn=Xn') 

(The names of constructor functions are always formed by the prefix 

"mk-" and the name of the relevant abstract syntax rule: for the re- 
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lation to abstract syntax see section 4). 

One technique for decomposing a constructed object will be to define 

"selector functions" in the constructor: 

mk-a(s-l:x I, 8-2:x 2, ..., s-n:x n) = a 

~-1(a) = x I & s-2(a) = x 2 & ... & s-n(a) = x n 

Notice that, although the selector functions do not play a part in the 

distinction between objects, the rules about object description (see 

section 4) prevent any confusion. A convenient intuitive view of the 

result of a constructor function is a labelled tree, thus: 

a 

• \ 
x I x 2 X n 

Apart from using selector functions, an object may be decomposed by 

writing the constructor in a defining position (e.g. parameter name, 

left-hand-side of a "let"). This achieves a complete decomposition in 

one step. Using the let construct of section 3.6: 

let mk-a(s-l:nl, s-2:n2, ..., s-m;n m) = a l let n I = s-1(a) 

let n 2. s-2(a) 

~let n s-m(a) 
m 

3.6 Functions 

We shall be interested in defining functions over defined domains which 

deliver results in defined ranges. This, so called type, information 

will be written: 

f:D~R 
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If the domain is, in fact, a cartesian product of sets, this is written 

(without ,,x,, symbols): 

f: D I D 2 ... D n ~, R 

Similar extensions hold for the range. (Strictly all functions take one 

argument which is a tuple, but the actual tupling and decomposition will 

be systematically omitted). 

The simpler functions to be defined will define a result for any value 

in their domain: they are total and the undecorated arrow will be used 

to separate the domain and range. Functions which may be undefined for 

some input values are said to be partial and will use the symbol ~, for 

example: 

It is assumed that the reader is familiar with the standard ways of 

writing and naming functions even where recursion is involved, thus: 

f(x) = o.. x ..o f ... 

A notation will be required which enables the creation of functions 

without having to provide names. A brief introduction to the lambda 

notation is given here, for further information consult Stoy 74. 

Instead of defining f by some expression in terms of its arguments 

(e.g. 

f(x) = e(x) ), 

the lambda notation provides a way of defining instances of functions 

in the form "~" followed by argument list followed by " " followed by 

defining expression, thus: 

~x.e(x9 

Named functions can be applied to arguments and a simple symbol sub- 

stitution for the parameters can be used to determine the value. In 

simple cases, the same rule will provide an evaluation mechanism for 

lambda expression application, thus: 
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(~x.5)(7) = 5 

(hx.x)(7) = 7 

(lx.(~y.x+y))(7) = ~y.7+y 

Notice that this last application yields a function as result. We can 

now define the identity function: 

I= lx.x 

The first operator to be considered for functions is functional compo- 

sition: 

f'g = ~x.f(g(x)) 

The "let" notation can now be introduced. The purpose of this notatio- 

nal device is to permit the introduction of local abbreviations which 

can then be used in an expression. Thus: 

or 

let x = ... in ¢(x) 
. . . . . . .  

let x = ... ~ (hx.e(x))(...) 

e (x) 

i.e. "in" can be dropped if a new line is used~ 

Beyond this basic use, the let notation will be used to introduce re- 

cursive definitions: 

let f = ... f ... 

with the meaning that f is to name the least fixed point (see Park 69) 

of the defining equation. 

Several notational devices will permit the specification of different 

ways of computing a result. The basic conditional expression form should 

be familiar: 

if p then e I else e 2 

A multiple (two or greater) split can be achieved by the case construct: 



235 

Gases V: 

V 1 ~ e 1 

V 2 ~ e 2 

Vn_ 1 ~ en_ I 
T ~e 

n 

"if v = v I then e I 

els____e_e if v = v 2 then e 2 

else if_ v = Vn_ I then en_ 1 

else e 
n 

Alternatively a multiple split can be achieved by the "McMarthy condi- 

tional expression" form: 

Pl ~ VI"P2 ~ V2"''''Pn-1 -~ Vn_1,T -~ v n 

"i-i~ Pl then v 1 

else i_f P2 then v 2 

else if 

else if Pn-1 then Vn_ 1 

else v 

In either the case construct or conditional expressions the "T" clause 

can be omitted if the preceding cases cover all possibilities. If, how- 

ever, none of the tests are satisfied the result is undefined. 

The subject functions, and their definition, is returned to in section 

6. 

3.7 Implicit Definition 

As has been pointed out earlier, the meta-language presented here 

should not be considered to be closed in any way. One particular way 

in which it is "open-ended" is in the ability to use objects whose 

characterisation is implicit. 

Such definitions are usually difficult (see Beki6 70b) and in languages 

where they can be avoided a constructive form is preferred (cf. appen- 

dix III and Henhapl 78). For general approaches to. the problem of im- 

plicit definition see Guttag or Liskov 75. 
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4. OBJECT DESCRIPTION 

If a definition consisted solely of functions creating objects, the 

only use for describing classes of objects would be as a comment for 

the reader. This is, in fact, the case for many objects and, for exam- 

ple, one could deduce from a definition the class of possible states 

which could be generated. There is, however, another use for object 

descriptions which amounts to a necessity. When a definition is to be 

presented, one must have a way of defining the exact class of objects 

which is to be considered. Such a definition will not normally be prac- 

tical via its generation function and it is then a requirement to have 

a notation for describing classes of objects. 

In a simple language it would be possible to associate meaning direct- 

ly with concrete forms of the object language texts. Some languages 

offer a "rich" choice of representations which are semantically equi- 

valent. An abstract syntax not only offers a way of defining some "nor- 

mal form" for such expressions, it also omits the details which are 

present only to ensure unambiguous parsing. Judicious choice of objects 

used (e.g. sets of declarations) can also shorten the semantic descrip- 

tions. 

Objects will be described by an abstract syntax. (cf. concrete syntaxes 

which define a set of strings). The members of the set of rules compri- 

sing an abstract syntax will each define and name a set of objects. 

Each abstract syntax class will be defined as follows: 

flAME {=1::}RULE 

By convention the first character of a NAME is an upper case character. 

The choice between the "::" and "=" definition symbols and the form of 

the RULE dictate the set of objects which is to be associated with NAME. 

The majority of this section is concerned with defining the sets given 

by the various possibilities. Before embarking on this we note that a 

predicate which tests for membership of a particular class of objects 

is implicitly defined for each NAME. Thus 

i s - e ( t )  # tee 

where @ is a NAME defined within an abstract syntax. 
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A RULE consists of one or more TERMS separated by vertical bars (i.e. 

"I", read as "or"). 

TERMS are built up by juxtaposed ITEMS. Unless a term contains exactly 

one item it is considered to be bracketed. ITEMS are either NAMEs, mo- 

dified NAMES, lists of underscored symbols, or bracketed TERMs. 

Within a TERM, the meaning of a NAME is the set of objects defined by 

its rule; that of a modified NAME is explained later; that of a list 

of underscored symbols is the unit set containing an elementary object 

distinct from that denoted by any other string of underscored charac- 

ters; a bracketed TERM denotes a constructed (i.e. tree-like) object. 

This last case requires more explanation. Section 3.5 has introduced 

constructor functions and the possibility to view them as trees. A 

bracketed term denotes the set of objects obtained by applying a con- 

structor to elements of the cartesian product of the sets denoted by 

the ITEMS within the brackets. If the term occurs alone to the right 

of a "::" symbol, the name of the constructor is the NAME, found on the 

left hand side of the "::" symbol, preceded by "mk-". Thus: 

N :: N 1N 2 ... N m 

defines 

N = {mk-n(nl,n 2 .... ,nm) In16N 1 ~ n26N 2 & ... & nmENm} 

The other contexts in which a bracketed TERM has been allowed above 

are as an option (separated by "or" form other TERMS) or as an ITEM 

within a TERM. In either of these cases the name of the constructor is 

"mk-a" (i.e. a is a name not used for any rule). Notice that this can 

introduce (sub-)classes of objects which are not distinguishable. 

The set of objects denoted by an "=rule" (which contains zero or more 

"or"s) is the union of the sets denoted by the TERMS (which are sepa- 

rated by the "or"s). Fig. 4-1 provides some examples of rules and the 

set of objects satisfying them. 
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Rule set of objects 

A=B B 

A::B {mk-a(b)Ib£B} 

A=BIC BUC 

A=(BC) ID {mk-~(b,c) Ib6B & c6C} U D 

A::CID not defined 

A=BI(CID) erroneous 

fiE. 4-I: examples of rules 

"Modified names" and the sets of objects they denote are given in fig. 

4-2. 

Modified Name Set denoted 

N-set 

N • 

N + 

Is] 
B~a  
B ~ C 

m 
B ~ C  

B ~ a  

power N 

{l£TUPLEll<i<lenl ~ l(i)6N} 

{l£N~llenl>l} 

BU{NIL} 

{m6MAPIdomm c B & rngm c C} 

{m£(B~C) Im(dl)=m(d 2) ~ dl=d 2} 

continuous functions 

partial functions 

where: N, B and C can be TERMS (bracketed by implication) 

fig. 4-2: Meaning of modified names 
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There are occasions where a class of map objects is to be defined in 

terms of other map types. If the new map is defined over the union of 

the domains a freedom is introduced which may be unwanted. This can be 

avoided by using: 

M = M1 U M2 

which defines M to be a set of maps: 

{mEMAPldomm = domMl U domM2 & 

rngm = rngM1 U r n~M2 & 

(a£domM1 ~ m(a)6rngM1) & 

(aEdQmM2 ~ m(a)Ern~M2)} 

A used constructor can be compared with abstract syntax rules when the 

syntax described is of internal (semantic) objects. Because construc- 

tors can also be used to decompose texts of the object language, a comparison 

is also possible between the abstract syntax of the texts being defined 

and their use in the semantic rules. In all cases where such a compari- 

son is possible the used constructors, their selectors and their argu- 

ments must conform to the rules describing the class of objects. 

5. THE ROLE OF "UNDEFINED" 

The treatment of logic in section 2 is somewhat over-simplified in that 

(in common with most text books) the possibility that expressions might 

be undefined has been ignored. Although the frequency has been reduced 

by the use of bounded quantifiers, expressions like: 

dEdomm & m(d)Ee 

x = 0 v y/x>10 

will be found. For such expressions the "conditional expression" forms 

(cf. Walk 69) are assumed. For example: 

a & b ~ if a then b else FALSE 

This minimizes the danger of expressions being made undefined by their 

operands. (Notice that Jones ?2 and Dijkstra 76 adopt separate symbols 
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6. DEFINING SEMANTICS 

As explained in the introduction, the general approach to defining the 

semantics of a language is to define a function which maps its (well- 

formed) elements to some class of understood denotations. For the lan- 

guages which are most commonly considered interesting these denotations 

will have to be functions. Because most computer languages embody some 

form of assignment operation the functions will normally be state trans- 

formations (functions from states to states). In languages which have 

a procedure concept in its full generality the state transformations 

will, in fact, have to be very general functions which can be applied 

to functions (even themselves) and yield functions as results. If such 

general functions were permitted without restriction, it would be pos- 

sible to generate the sort of paradoxes which Russell observed in set 

theory. However, it has been shown (cf. Scott 71) that the restriction 

to monotone and continuous constructions ensures that a model can be 

constructed and thus guarantees that inconsistencies are avoided. As 

this result is both of considerable importance and difficulty, it would 

be inappropriate to repeat that work here (for an excellent tutorial 

see Stoy 74). This paper will nOt, then, provide a complete treatment 

of the foundations of the meta-language. Rather, the approach taken 

here is to accept (gratefully) that models of the lambda calculus exist 

and to define meta-language expressions by specifying the closed larmb- 

da expressions into which an object program is mapped. In fact, a few 

extra combinators are adopted from Stoy 74: these are discussed in 

section 6.4. 

The meaning function, then, is a way of mapping the object language to 

lambda expressions which, in turn, denote functions. For an infinite 

language (i.e. one with a recursive syntax) this function can obvious- 

ly not be given extensionally. It is, indeed, very important to con- 

struct the meaning function in a way which associates (functional) de- 

notations with parts of the constructs of the object language. Further- 

more, the meaning of compound constructs of the object language should 

depend only on the meaning of the components of such compounds. This 

approach provides a natural way of categorising the meta-language con- 

structs used in defining the meaning functions. Those parts of the 
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meta-!anguage discussed in section 6.2 can be viewed as a macro-expan- 

sion scheme for (abstract) programs of the object language. What is 

created from this expansion is an expression in an enriched ("sugared") 

lambda notation. Section 6.3 explains most of the extra notation which 

is used to aid readability in terms of pure lambda notation plus two 

combinators which are discussed in section 6.4. The basic ideas of 

states and state transition functions are reviewed in the first sub- 

section below. 

The whole treatment of arbitrary order has been excised from this vo- 

lume. This problem had been tackled in the framework of abstract inter- 

preters (see Walk 69) and was recognised in Beki~ 74. The general prob- 

lem of how to define the merging of co-operating processes using a de- 

notational sematics approach is, however, very complex and still to 

some extent "open". In view of the aim of this volume to present a 

safe basis for definition work it was decided that the problems involv- 

ed in merging should be dropped. There is some discussion of apparently 

unordered constructs in section 6.5. 

6.1 States and State Transitions 

Most language definitions use a basic semantic object which is a state. 

Such a state is a mapping from some class of names or their surrogates 

(e.g. locations) to whatever values can be manipulated. Such a state 

provides the vehicle for defining the denotations of names. Constructs 

which have an assignment nature (nearly all interesting languages con- 

tain some) will naturally be granted denotations which are functions 

from states to states. Such functions are usually called state transi- 

tions. Thus for some class of constructs e: 

m-@: @ -~ Tr 

Tr=2~2 

The notation specific to states and transitions can now be introduced. 

It will normally be necessary to have some structure within states (e.g. 

one component for storage, one for files). This is reflected by intro- 

ducing a class of elementary objects called references. References can be 

explicitly enumerated by writing them as strings of underlined upper- 



242 

case characters. The only operators defined over references are the 

tests for (in)equality. A state will be a mapping from such references 

to any sort of objects, thus: 

= REF ~ OBJECT 
m 

The basic way of defining a new state is by specifying a difference 

from an existing state. A state transition is specified by writing a 

meta-language assignment statement which uses the reference (which is 

to have a different value) on the left and a value on the right. Thus 

the meta-language assignment defines a transition: 

N 

(r := V): Z ~ 

and is defined as: 

A 
r := v = ~cr.c~+[r~v] 

Unlike most programming languages, a reference always denotes itself 

(rather than its value) even if it is written on the right-hand-side 

of an assignment. If the value is required the contents Operator "~" 

must be used (see section 6.3 for further details). 

If a semantic function maps elements of some class @ into transforma- 

tions, the type will be specified as: 

m-O: O ~  

with the meaning: 

m-O: 0 ~ (~  ~ ~) 

Further, with value returning transformations (see below): 

m - O : O ~ R  

stands for : 

m-O: @ ~ (~ ~ Z R) 
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Having introduced the ideas of states and state transitions, it would 

be possible to build up ways of describing increasingly more complex 

transitions. This is not the approach taken here. Rather, transitions 

have been introduced only to provide motivation for the succeeding 

three sub-sections. The treatment is now top-down in that the means of 

creating extended expressions precedes the description of the extended 

expressions in terms of basic combinators, so that only in section 6.4 

is the treatment back to the level of lambda expressions. 

6.2 A Macro-expansion Process 

The assignment concept in the meta-language together with the combina- 

tors to be introduced in subsequent sub-sections provide ways of writ- 

ing complex tranformations. Given some object language it is not dif- 

ficult to write for any particular program a corresponding meta-language 

expression which denotes the function which captures the meaning of 

that particular program. Since the task in hand is defining whole lan- 

guages, a way must be provided for generating the corresponding meta- 

language expressions for any (well-formed) program. The generation it- 

self, which is the subject of this sub-section, can best be understood 

as a macro-expansion process. By this is meant that the parts of the 

meta-language described in this section rely on the text and environ- 

ment alone. This expansion is rather obvious and will be explained 

with a minimum of formalism. 

In a definition there will be (notionally) for each defined class of 

the abstract syntax one semantic rule. This semantic rule maps objects 

of the class to their denotations. The most basic part of the macro- 

expansion process is the application of the relevant rules to the text 

components. The qualification "notionally" has been added above for two 

reasons. Partly, it would be unfortunate to apply any rule which dic- 

tated a structure on the semantic functions. Thus very short semantic 

functions may be better conbined with that corresponding to the syntax 

class which uses them. More importantly, syntax rules which simply list 

options would have corresponding semantic rules which were simply case 

distinctions selecting other semantic rules. These "splitting" (or 
,| 

routing " rules) are omitted and only syntax rules which define con- 

structors (i.e. "::rules") will normally have corresponding semantic 

rules. 
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The syntax for an infinite language will be recursive. In consequence 

the corresponding semantic rules must also be a family of mutually re- 

sursive functions. However, it was pointed out in the discussion of 

objects that valid tree objects will always be finite. This guarantees 

that the macro-expansion process envisaged will terminate. 

A trivial language can be used to illustrate this basic expansion. The 

language to be considered is that of binary numerals. It is, of course, 

so simple that the corresponding denotations are not transformations 

but the natural numbers. The syntax of the language is: 

Bin-digit = ~I~ 

Bin-numeral = [Bin-numeral] Bin-digit 

Given the choice of denotations semantic functions are required of 

types: 

m-d: Bin-digit ~ Nat 0 

m-n: Bin-numeral ~ Nat 0 

Appropriate functions might be: 

m-d(d) = if d=O then 0 else I 

m-n(mk-bin-numeral(n,d)) = if n=NIL then m-d(d) 

else 2.m-n(n)+m-d(d) 

For any element of the object language (Bin-numeral) the meaning func- 

tion will create a finite expression. In this simple language the ex- 

pression will contain only arithmetic objects and it can be simplified 

by the laws of arithmetic to a natural number (the required denotation). 

A number of points have, however, been illustrated. It was observed in 

section 3.5 that objects can be decomposed by writing the constructor 

"on the left of a let": the use of the constructor in the parameter 

position of m-n is a further application of this idea and is equivalent 

to: 

m-n(nm) = (let mk-bin-numeral(n,d) = nm 

..o) 

Furthermore the conditional statement used in the definition of m-n is 

entirely dependent on the text being analyzed and is a part ofthe macro- 

expansion process. 
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Of the three forms of conditional expression in the meta-language, 

case is always dependant on the text alone, "McCarthy" conditionals 

are always dependant on dynamic values and /f then else can be used 

in either way. The tests which depend on dynamic values are discussed 

in sub-section 6.3. The meaning of the text-dependant /_~ then else 

should be obvious: either one or the other expansion is chosen depend- 

ing on the result of the test. The need for the case construct has been 

reduced somewhat by the adoption, in large definitions, of the practice 

of omitting semantic rules for syntax classes which are lists of op- 

tions° But an artificial example can be constructed for the syntax: 

A = BtcI  

B :: X 

C::XY 

D :: X Y Z 

The definition: 

fn-a(a) = cases a: 

mk-b(x) ~ f(x) 

mk-c(x,y) ~ g(x,y) 

mk-d(x,y,z) ~ h(x,y,z) 

has the meaning: 

fn-a(a) = 

i_~ (3x)(mk-b(x)=a) then (let mk-b(x)=a in f(x)) 

else i~ (3x, y)(mk-c(x,y)=a) then (let mk-c(x,y)=a in g(x,y)) 

else i~ (Bx, y,z)(mk-dCx, y,z)=a) then (let mk-d(x,y,z)=a ~_~n h(x,y,z)) 

A case clause with a final "T~" clause will use this last option if 

none of the preceding predicates were true. If no such clause is pre- 

sent it is an error for none of the predicates to be satisfied. 

A similar static expansion from the text is given by the for construct. 

If a textual object which is a list is to be given a meaning, the se- 

mantic rule is likely to be formed from a for construct, thus: 

i=l t__oo u d_~o f(list(i)) 
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this can be statically expanded into: 

f(list(1));f(list(l+l));...;f(list(u)) 

where the ";" combinator between transformations is that explained in 

section 6.3. Similarly a value returning transformation can be used to 

define a list to be created from the list in the text by: 

let vl: <vt(list(i))ll~i~u> 

with the meaning (again expressed in terms of combinators to be defined 

in the next sub-section): 

let vll : vt(list(1)); 

let vlsl : vt(list(l+IJ); 

. . °  

let vlu : vt(list(u)); 

let vl = <vll,vlsl,...,vlu> 

Definitions of programming languages have universally adopted the con- 

cept of an environment to handle the problems related to block struc- 

ture. Construction of explicit environments is achieved by standard 

use of the meta-language; the rSle of the explicit environment in the 

macro-expansion process is discussed at the end of this sub-section. 

There is, however, another topic to be discussed first and that is the 

exit mechanism of the meta-language. 

The exit-mechanism is discussed in detail elsewhere in this volume 

(Jones 78b) and a step-by-step motivation of the approach has been pre- 

sented in Jones 75. Here, only a brief review of the idea is given. 

For a simple language (i.e. one without constructs which cause abnor- 

mal termination) the transformations to be used as denotations will be: 

T = ~ Z  

The exit approach to languages which permit abnormal termination is to 

use denotations which are transformations of the type: 

E = Z "~ Z [Abn] 

Here, just as Z is chosen to fit the particular language, the class 
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Abn is a set of objects which can be used for the language in question 

to indicate what sort of abnormal termination has occured. Of impor- 

tance for the meta-language is only the distinction between NIL (Abn 

omitted) and an actual Abn value. A particular element of E which 

takes an element of Z into a pair which contains a (possibly different) 

element of Z and NIL is a "normal" transition. In other words no ab- 

normal situation is to be resolved. On the other hand, if the second 

element of the output pair is not NIL , it provides not only the know- 

ledge that an abnormal situation is to be resolved, but also some in- 

formation which aids resolution. In a simple language with goto state- 

ments, for example, the set Abn might be identical with label identi- 

fiers. An unresolved goto is then denoted by an element of E which 

yields the label as the second component of the result. It is "resolu- 

tion" which is of concern in this section because it employs a sort 

of implicit environment. The exit and normal successor (i.e. ";") com- 

binators are defined in the next sub-section; the technique for resolv- 

ing exits plays a part in the macro-expansion scheme. Firstly, however, 

the definitions are provided. 

The basic construct to be used is written: 

tixe [a~tl(a) Ip(a)] i_nn t 2 

Intuitively this requires that the basic tranformation (in E) to be 

used is t2; if for a particular ~£Z this results in a NIL Abn compo- 

nent then that element of t 2 is also an element of the overall trans- 

formation; if, however, an abnormal component is returned which satis- 

fies the predicate p then transformation t I is used to attempt to re- 

solve the abnormality; if an abnormal result is delivered by t2, but 

this value does not satisfy p, then the same abnormal result is deliver- 

ed by the overall construct. To define this formally the types are 

given first, suppose: 

t I : Abn ~ E 

t 2 : E 

p : [Abn] ~ Bool 

E = ~ ~ ~ [Abn] 

then the type of the construct is: 

(tixe [a~tl(a) Ip(a)] i_~n t2): E 
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and the definition is: 

(tixe [a~t1(a) jp(a)] in t 2) 

(let e = [a~tl(a) Jp(a)] 

let r(s,a) = (a6dome~r'e(a)(~),T~<~,a>) 

r t 2) 

Notice that r in the above expansion is used recursively. Thus if a- 

nother abnormal situation results which still satisfies p, the effect 

defined in e will again be used. This recursive form fits the problem 

of goto handling (see the definition in appendix III) very well. In 

earlier definitions a non-recursive "trap" was used with which it was 

then necessary to construct the required recursion in the semantic 

functions. For: 

t I : Abn ~ E 

t 2 : E 

the type of the trap construct is: 

(trap(a) with tl(a);t2): E 

and the definition is: 

trap(a) ~,ith tl(a);t ~ 

(let h(~,a) = (a~NIL~tI(a)(a),T~<~,NIL>) 

h't 2) 

Returning to the "tixe" construct, it is necessary to explain its role 

in the macro-expansion. Firstly, it could be argued that, for a concept 

which is used very few times in a definition (cf. Henhapl 78 in this 

volume), it is not worth providing a special meta-language construct. 

The justification for so doing is precisely to provide a framework for 

the resolution of exits which does fit with a macro-expansion view of 

the text. The key point is the use of a mapping in the tixe construct. 

The finiteness criteria of mappings is met because, for finite texts, 

the predicate p must yield a finite number of abnormal conditions to 

be resolved. In order for the overall tixe construct to yield a deno- 

tation for a text, both the t I and t 2 semantic functions should only 

be used on sub-parts of the overall text being defined. Referring to 

the semantic function "i-named-stmt-l~st" in the definition in appen- 

dix III, it will be seen that the role of the tixe construct is essen- 
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tially to generate a static environment the elements of which are mu- 

tually dependant on one another. (The discussion of this sort of re- 

cursion is given under the general topic of environments). 

The remaining topic to be explained with regard to the macro-expansion 

is the r61e of the environment object (Env). In a language without 

block structure it would be possible to write semantic functions for 

each class (0) of abstract syntax objects. 

m-O: @ ~ (2 ~ ~) 

In a language which permits redefinition of identifiers at different 

levels of the block structure, an environment is introduced, so that 

most semantic functions are of type: 

m-O: 0 Env -~ (2 ~ 2) 

The highest (program) construct of the language has a corresponding 

semantic rule which creates an empty environment and this semantic 

rule is thus still of type: 

m-program: Program ~ (2 ~ 2) 

If the language to be defined permits recursion (e.g. recursive pro- 

cedures in Algol 60) the equations for creating environments will 

themselves be recursive. This recursion must, of course, be understood 

for the whole definition to be sound. 

If the definition were in fact to be treated as though it were an ab- 

stract interpreter, it would be fairly easy to clarify the recursive 

equations on environments by adopting an appropriate mode for para- 

meter passing. One way of ensuring that a denotational view was sound 

would be to set up an ordering over environments. Such an ordering 

could be defined pointwise over the transformations to be held as val- 

ues in the environments. Here an alternative view is taken. Essentially 

the environment is viewed as a way of avoiding a name creation process 

for the denotations to be stored therein. The motivation for introduc- 

ing this "linguistic level '~ can best be given by, initially, restrict- 

ing the discussion to a language which only has local variables (i.e. 

no procedures). For any particular program in the language, it is easy 

to write an associated extended lambda expression. Thus: 
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begin integer a,b; .o. end 

might have a denotation like: 

(let la:get-loc(a) ; let lb:get-loc(b) ; ...) 

AS has been stated repeatedly, the problem that must be solved is to 

provide a way of generating denotations for any program. The possibili- 

ty of using an elipses notation was excluded, but the environment can 

be seen precisely as a way of taking away the need for such a notation 

for the creation of names for the location. Thus for a program: 

be~in integer s,d; ... c:=d+e; ... end 

the environment might be such that the denotation of the body is creat- 

ed by: 

i-body((...c:=d+c;..°), [c~Ic, d~ld]) 

The definition of i-body will be such that this expands to: 

° . .  

let vd : aontents(Id); 

let vc : contents(lc); 

assign (l c,(vd+vc)); 

In other words, the environment itself disappears entirely during the 

macro-expansion process. The functions defining the meaning of blocks 

will create new locations for locally declared identifiers. For block 

structured languages the outer environment is updated with a pairing 

of the local names with the new locations. This modified environment 

has two uses: for local uses of identifiers the location is obtained 

from the environment; for nested blocks it is the basis for generating 

further environments. In order to exhibit the denoted expression, it 

is necessary to create (arbitrary) names for the locations. 

It is now necessary to show how such an explanation can be extended to 

cover the more interesting case of languages which permit recursive 

procedures. For a program: 
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begin pl:prog ... p2 ...; 

p2:~roc ... pl ... p2 ...; 

pl 

end 

the definition will generate a denotation for the block via: 

let nenv = env+[pl~e-proc-den((...pl...),nenv), 

p2~e-proc-den((,..pl...p2...),nenv)] 

i-body((...pl...),nenv) 

Introducing names for the procedure denotations, this expands to: 

let pdenl = ... pden2 ... 

let pden2 = ... pdenl ... pden2 ... 

... pdenl ... 

This time the disappearance of nenv is doubly welcome: with it has gone 

the recursion whose least fixed point could only be discussed in terms 

of an ordering. A different recursion (that in terms of procedure de- 

notations) has become visible but for one thing it was there anyway 

and for another it is precisely the recursion over transformations 

which has to be explained below. 

This section, then, has shown how a definition can be viewed as a se- 

ries of macros which expand objects of the language to be defined into 

expressions in an extended lambda notation. At the expense of introduc- 

ing the concept of names for locations and procedure denotations, the 

explanation of these extended expressions below will not be burdened 

with the concept of environments. 

6,3 Simplifying Extended Expressions 

The previous sub-section has shown how a definition of the type given 

in appendix III can be used to create (by macro-expansion) an expres- 

sion which is the denotation of the given object language text. This 

expression itself denotes a transformation. However, the expression 

is not yet in pure lambda notation and the purpose of this sub-section 
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will be to explain those combinators which can be regarded simply as 

"synSactic sugar" for making the generated result more readable. 

It will be easier to comprehend the full combinator definitions if the 

idea is first explained with a simplified problem. Suppose the denota- 

tion of some compound object: 

a£A where 

A=BC 

is sought. Given two functions: 

m-b : B ~ (~ ~ ~) 

there are many possible ways of combining them to create a transforma- 

tion. Given the objective that the denotations of compound objects 

should depend only on the denotations of their components, one of the 

most pleasing combinations is a composition of the two created func- 

tions. Thus: 

m-a(mk-a(b,c)) = m-c(c)'m-b(b) 

= hs.(m-c(c)(m-b(b)(~))) 

One objective of introducing combinators (like composition) is to a- 

void having to write out many "l"'s and "~"'s. In addition to a "a- 

free" style, a much more natural definition can be achieved by the 

use of well chosen combinators. In this case we can define a "semico- 

lon" combinator: 

for : t I : ~  

t 2 "E~2 

the type is: (tl;t2) : ~ ~ 

and the definition: tl;t 2 ~ t2"t I 

and then rewrite the above example: 

m-aCmk-a(b,c)) = m-bCb); 

m-c(c) 
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In a simple language definition, the meaning of a sequence of state- 

ments is likely to be the composition of the meanings of the single 

statements. Since, in the concrete syntax of such an object language, 

the elements of the sequence are likely to be separated by ";", a 

pleasing symmetry has been created. Notice, however, that the meta- 

language semicolon operator has been formally defined and there is no 

element of circularity in such a link between object and meta-l~nguage. 

It would be useful to define a few other combinators (e.g. ~, while) 

on these simple transformations. This is not done here since the lan- 

guages which are of general interest require slightly more complex de- 

notations. Since the combinators given below can be specialized very 

easily to those for the simple transformations, attention is now turned 

to the more general versions. 

The object language features which demand richer denotations are those 

which manifest an "abnormal exit" behaviour. The archetypal statement 

is "goto", but also much error handling can best be dealt with in the 

same way. One approach to this problem is to use transformations which 

create states and optional abnormal indications. 

The type of a transformation now becomes: 

E = ~ ~ Z [Abn] 

where Abn is chosen for a particular definition. The intuitive meaning 

of such a (partial) function is that it maps state values into pairs 

whose first element is always a (possibly different) state value; in 

the case that the computation was "normal", the second component will 

be the elementary object NIL; if termination was abnormal, the second 

component will be other than NI___~L and its actual value will provide in- 

formation about the encountered exception. 

The notation introduced for type clauses must now be extended. Rather 

than write: 

m-9: (9 Env -~ (~ ~ ~ [Abn]) 

such function types will be written: 

m~8: 8 Env ==~ 
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and for value returning transformations: 

m-8: @ Env ~ (Z ~ Z {Abn] Val) 

is written: 

m-8: 0 Env =~ Val 

It is now necessary to define the combinators which are used to com- 

bine transformations of type E. Firstly if a simple transformation 

N 

t:Z~Z 

is written in a context where a transformation of type E is required, 

it is interpreted as: 

t ~ I~.<t(~),NIL> 

that is, viewing 

t:E 

it is ensured that it always has a normal termination. Notice, in par 

ticular "I" the identity over E gives: 

I ~ I~.<~,NIL> 

The full semicolon combinator can now be introduced. Intuitively its 

purpose is to avoid applying the second transformation if the first 

results in abnormal termination. Formally, given transformations with 

types: 

t I : E 

t 2 : E 

then the type of the result is: 

(tl;t 2) : E 

and its definition: 

(tl;t 2) ~ (l~,a.a=NIL~t2(~),T~<~,a>)'t I 
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In order to signal, with some given value v (in Abn), that an abnormal 

exit is to occur, the exit combinator is used, its type is: 

(exit(v)) : E 

and its definition: 

(exi~(v)) ~ lo.<s,v> 

The error construct of the meta-language is used to indicate that no 

defined result is given. Thus the value of error anywhere in the deno- 

tation is to show an abnormal result for the whole text. To achieve 

this, the exit can be used with the rule that no tixe covers the 

ERROR case; thus: 

A 
error = exit (ERROR) 

The tixe combinator, which was explained as part of the macro-scheme, 

and the semicolon combinator have provided two ways of conditionally 

applying subsequent transformations. A combinator which causes appli- 

cation of a second transformation in both normal and abnormal cases 

is "always". Given: 

N 

e : E 

then the type is: 

(always t in e) : E 

and the definition: 

(always t in e) 

(ls,a.<t(s)~a>)'e 

If t is, in fact, of type E then it is an error if a non-NIL second 

component is ever returned. 

(There are occasions where an exit or error construct is required also 

with pure functions. It is straightforward to redefine composition in 

a way analogous to the semicolon combinator. Having done so, of course, 

semicolon is defined in terms of (the revised) composition). 
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This concludes the combinators which are especially designed for build- 

ing up expressions from (expressions denoting) transformations of type 

E. Attention is now turned to value returning transformations of type: 

R = Z : Z [Abn] V 

The most basic way of generating such a transformation is by the return 

combinator. Thus: 

for vEV, (return(v)) : R 

is defined: 

(return(V)) ~ I~.<S,NIL,v> 

A transformation of type R may be placed after one of type E (separat- 

ed by ";") and make the whole of type R. Thus given: 

t:E 

r : R 

then: 

(t;r) : R 

is defined: 

(t;r) ~ (ls,a.(a=NIL~r(~),T~<q,a,~>)) "t 

Notice that as a consequence of this definition abnormal exit results 

in returning an undefined (here ~) result. 

The value generated by a value returning transformation can be used in 

a following transformation in a way which is analogous to the simple 

let shown below. Given: 

r:R 

t : V~E 

then: 

(let v:r;t(v)) : E 



257 

is defined: 

(let v:r;t(v)) 

(le, a,v.(a=NIL~t(v)(s),T~<e,a>))'r 

To reduce the number of separate cases to be distinguished, the con- 

tents operator (S) is considered to be a value returning transformation. 

Thus: 

c : REF ~ R 

and : 

c_r = la.<o,~(r)> 

The contents operator, or any other value returning transformation,can 

occur in contexts where the construct is defined only for values. The 

meaning is: 

A 
... r ... = (let v:r; ... v ...) 

In the case of the while combinator this rule must be interpreted as: 

(while r d__oo t) ~ (let w = (le__~t v:r; if v then (t;w) else I) in w) 

The recursive let on the right hand side defines that w should be the 

minimal fixed-point of the equation. 

The remaining items of syntactic sugar to be defined are more basic 

(i.e. are not specialized to particular sorts of transformations.) In 

its simplest form let provides an abbreviation: 

(let v : el in e2(v)) ~ (IV.e2Cv))(el) 

The recursive form of let: 

(let v = el in e2(v)) ~ (Iv~.e2(v'))(Ylv.el(v)) 

defines v to be be the minimal fixed point of expression el. 

Functional composition is straightforward: 



(f'g) = (~x.f(g(x))) 
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The dynamic conditional is defined in terms of a combinator discussed 

in the next section: 

(if V then t I else t 2) ~ cond(tl,t2)(v) 

6.4 Basic Combinators 

A definition as viewed in section 6.2 is a way of generating, for any 

object text whose meaning is sought, an expression in an extended lamb- 

da notation. The length of such expressions is reduced and the reada- 

bility much increased by the use of various combinators. Section 6.3 

has shown how these can be eliminated in a way which yields a much 

longer expression whose structure corresponds much less closely to 

that of the original text. The advantage of this expression is how- 

ever, that it is almost in pure lambda notation and it is now only 

necessary to discuss the meaning of two remaining combinators. 

In fact all that is done at this point is to rely on the work of others. 

Thus along with the models of the lambda calculus in Stoy 74, the mini- 

mal fixed point operator (Y) and the "doubly strict" conditional are 

adopted: 

cond(tl,t2)(T) = X 

cond(tl,t2)(TRUE) = t 1 

cond(tl,t~)(FALSE) = t 2. 

cond(tl,t2)(±) = ± 

The adequacy of the doubly strict functions comes from the explicit 

treatment of errors in the meta-language. 

6.5 Other Issues 

The question of how to define arbitrary order of evaluation in a lan- 

guage has been omitted for reasons explained elsewhere. There are, how- 

ever, some points where it appears to occur in the definitions given 
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in this volume. Consider the use of: 

let l£Sc-loc be 8.t. l~dom a R-STG 

R-STG := C R-STG U [l~?] 

Clearly, this intends to show a freedom of choice which would be lost 

by pre-defining an order over elements of So-lot and always choosing 

the "next" free location. Equally clearly, it would be unnecessarily 

complex to use some general treatment for non-determinism (e.g. all 

functions are Z~Z-8et) in order to provide a formal definition of this 

construct. Essentially, it is clear that the particular choice makes 

no difference and it is no more worthwhile to prove this claim than 

it is to over-define (see Jones 77c) and then prove what properties 

of the definition are irrelevant. 

It must, however, be clear that the "let be s.t." construct could be 

used unwisely and each use should really be accompanied by its own ar- 

gument of well-foundedness. 

Similarly, the simple rule that value returning transformations can 

be written in positions where values are required presents a danger. 

The expansion given in section 6.3 that they should be extracted and 

formed into a preceding let is only clear if either there is only 

one such value returning transformation or if their order will have 

no effect on the result. This latter is the case in: 

l#t nenv : env+([gdoe-type(dclm(id),env)lid£do_~mdclm ] U ...) 

Finally the topic of errors in the definition should be mentioned. At 

a number of points it has been indicated that something is simply con- 

sidered to be a wrong use of the meta-language (e.g. an incomplete 

case construct). In such a case, just as with: 

(~i)(?<i<3) or J'ABC' 

nothing is defined. This is in distinction to the use of error which 

shows that the object text is defined by the definition to be in error. 

In this case it is permitted for a (valid) implementation to produce 

any result (although a diagnostic is, of course, the most useful re- 

sult:) 
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APPEND I X ~: Concrete S£ntax of the Meta-lan~uage 

The rules given below are an outline of a concrete syntax in the nota- 

tion of Walk 69. Basically, the rules are context-free, but sub-classes 

of expressions are used in order to indicate the types of permitted ar- 

guments to operators. 

Written definitions use a number of relaxations on this syntax which 

are not formally defined. 

a) Brackets around blocks and cond-stmts as well as commas and "in" are 

omitted where indentation or line breaks make the result unambiguous. 

b) Comments, enclosed in "/~/" may be used freely. 

c) Where an expression occurs at the end of an expr-ld, "result is" 

can be used. 

d) The order of precedence of operators (standard) is modified by use 

of blanks and line-breaks in order to avoid excessive bracketing. 

defn 

tr-defn 

tr-id 

defs 

def 

construcor 

block 

exit-spec 

let-el 

expr-block 

::= {.{fn-defnltr-defn}...} 

:: tr-id{(defs)} .... block 

usually begins with "i-" or "e-" 

::= [,.def...] 

::= v-idlconstructor 

"mk-" followed by name of abstract syntax class 

(possibly followed by defs in parenthesis) 

::= ([exit-spec][let-cl]{;.stmt..,}) 

::= tixe map-expr in 

::= let def:expr; 

as block but is value returning 

strut : ~= stmt ~b lock I cond-stmtliter-stmtI~Tat-ldlassign-stmtl 

int-stmtlreturn-stmtll l exit-stmtlerror 
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cond-stmt ::= i_ff expr then stmt [else stmt] I 

({,.{expr~stmt}...}[,T~stmt]I 

(cases expr: {,.{expr~stmt}...}[,T~stmt]) 

iter-stmt ::= for v-id=expr to expr do stmt I 

while expr do stmt 

8tmt-ld ::= (Idl;stmt) 

assign-stmt ::= v-id:=expr 

int-stmt ::= tr-id~(args)}o.. 

return-stmt ::= return(expr) 

exit-stmt ::= exit(args) 

fn-defn ::= fn-id(defs) = pure-expr 

expr ::= prefix-exprlinfix-exprlquant-exprlconstlfn-refleval-stmt 

var-refl(expr)Icond-exprlexpr-blocklexpr-ld 

fn-ref ::= fn-id(args) 

eval-stmt ::= eval-id{(args)}... 

args ::= [,.expr...] 

var-ref 

cond-expr 

expr- ld 

Idl 

ld 

::= [£] v-id[~args !] 

::= if expr then expr else expr I 

({,.{expr~expr}...}E,T~expr])I 

(cases expr:{,.~expr~expr}...}[,T~expr]) 

::= (ldl;expr) 

::= {;.ld...} 

::= let {deflfn-id(defs)} = expr i__nn 

pure-expr as expr but does not (directly) contain: 

expr-block, ~, eval-stmt 

@eneral expressions 

prefix-expr ::= h_!d tuple-expr 

dessr-expr :: (ideffEset-expr])(log-expr) 

see also selectors and constructors of abstract syntax. 
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arith-ex~r 

prefix-expr ::= len tuple-exprlcard set-expr 

see also operators on any standard sets. 

log-expr 

prefix-expr ::= llog-expr 

infix-expr ::= log-expr {&Ivl~l~}log-exprl 

expr68et-expr 1 

set-expr {clc}8et-expr 

expr {=l#}expr 

quant-expr ::= ({VIBIBf}def[6set-expr])(log-expr) 

const ::= TRUEIFALSE 

see also operators (e.g. relational) on standard sets and "is-" pre- 

fixed to abstract syntax class names. 

set-expr 

prefix-expr ::= {unionLRower}set-expr 1 

{domlrn~}map-expr I 

{~ndslelems}tuple-expr 

infix-expr ::= 8et-expr{UInl-}set-expr 

const ::= ~[,.expr..~]~ I 

~exprllog-expr~l 

iarith-expr:arith-expr~ 

see also standard set names: Bool, Nat, Nat', Int 



tuple-expr 

prefix-expr 

infix-expr 

const 
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::= {tllconc}tuple-expr 

::= tuple-expr^tuple-expr 

::= <[,.expr...]> I 

<tuple-expr~log-expr> 

map-expr 

infix-expr 

const 

::= map-expr{+IUl'}map-expr 

map-expr{\I~}set-expr 

::= k~,.{expr~expr}...}~I 

kexpr~expr~log-expr~ 
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APPENDIX If: Conventions 

Apart from notation which is strictly part of the described meta-lan- 

guage, a number of conventions have developed in its use. k~ile changes 

to the notation should be reflected in a revised definition of the me- 

ta-language, the conventions can be ignored with impunity. 

This appendix liSts some possible naming conventions: 

usage example 

keyword ofo_r 

operators dom 

variables val 

of list type intl 

of set type cas 

of map type dclm 

class names Program 

elementary objects INT 

references R-STG 

context conditions is-wf-expr 

selector names s-bdl 

convention 

underlined sequence 

of lower case (1.c.) 

sequence of 1.c. 

last letter "l" 

last letter "8" 

last .letter "m" 

first u.c., rest 1.c. 

underlined sequence of u.c. 

first letter "R" 

predicate names 

begins "is-w f-" 

begins "s-" 
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APPENDIX III: E~ample Definition 

This appendix presents an example whose study will considerably in- 

crease the reader's understanding of the metavlanguage. The definition 

itself is divided into abstract syntax, context conditions, semantic 

objects and semantic function parts. Before these are presented a few 

points of explanation will be offered. (In addition Bj~rner 78b has 

taken examples from this definition and thus provided a useful intro- 

duction). 

The abstract syntax should present no difficulties. 

The context conditions are also straightforward, but note that in ad- 

dition to the convention for dropping formulae corresponding to "split- 

ting rules", an obvious extension permits equations for rules of the 

form: 

A :: BCD 

to be omitted if they are of exactly the form: 

is-wf-a(mk-a(b,c,d),env) = 

is-wf-b(bjenv) & is-wf-c(c, env) & is-wf-d(djenv) 

Notice that the context condition is-wf-block shows that recursive 

calls of procedures are allowed while references to locally declared 

identifiers within the definitions of variables (i.e. bound lists) are 

prohibited. It can also be observed that is-wf-for shows that the con- 

trol variable of a for construct is strictly local to the body of the 

for. 

The description of the semantic objects yields most insight into the 

language. The state is divided into three components of which the most 

important is storage; this is defined as a disjoint union of two types 

of mapping. The environment auxiliary object provides denotations for 

the identifiers. In the simple case for variables, these denotations 

are locations} for arrays the locations are themselves (one-one) map- 

pings. For control variable identifiers the denotation is simply an 

integer because no assignment to such variable is allowed (cf. i-for, 

e-con-var-ref). Procedure denotations are functions from argument lists 

(and Aid-set) to transformations (cf. e-proc-den, which is a function 
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rather than a transformation, and i-call). The basic model for goto 

definition is discussed in Jones 78b. Here, because procedures can be 

passed as arguments, there is an additional problem of locating the 

proper generation of a label. This problem is handled by activation 

identifiers. For a more detailed description of this approach see 

Jones 75. 

Given an understanding of the semantic objects an examination of the 

"type" clauses of the semantic functions should give an overview of 

the whole definition. Notice that i-program is the only function which 

does not create a (value returning) transformation. The function i- 

block defines nenv recursively to create the appropriate procedure de- 

notations (see section 6.2). The handling of exits is simplified in 

this language (cf. i-named-stmt-list) since no compound statement is 

available. 

ABSTRACT SYNTAX 

Program :: 

Stmt = 

Block :: 

Type :: 

Proc :: 

Parm :: 

Named-stmt :: 

If :: 

For :: 

Call :: 

Goto :: 

Assign :: 

In :: 

Out :: 

Expr = 

Infix-expr :: 

Rhs-ref :: 

Var-ref :: 

Con-var-ref :: 

Const = 

Op = 

Stmt 

BlocklIflForlCalllGotoIAssignIInIOutINULL 

s-dcls:(Id~Type) Proc-set Named-stmt • 

8-sc-type: Scalar-type s-bds:[(Exprl~) +] 

8-nm: Id Parm • Stmt 

s-id: Id s-attr:(TypelPROC) 

s-nm:[Id] s-stmt: Stmt 

s-b: Expr s-th: Stmt s-el: Stmt 

s-con-var:Ids-init: Expr s-step: Expr s-limit: Expr Stmt 

s-pn: Id s-args:(Var-refIId)~ 

Id 

s-lhs: Var-ref s-rhs: Expr 

Var-ref 

Expr 

Infix-exprlRhs-reflCo~-var-reflConst 

Expr Op Expr 

Var-ref 

Id s-sscs:[Expr +] 

Id 

Int-constIBool-const disjoint 

Int-opIBool-opIComp-o p disjoint 

Scalar-type = INTIBOOL 
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CONTEXT CONDITIONS 

Env-static = Id ~ (Type I PROC, I LABEL I CON-VAR) 

is-wf-program(mk-program(t)) = is-wf-stmt(t,[]) 

i8-wf-block(mk-block(dclm,procs,nsl),env) = 

let II = <s-nm(nsl(i)) I l<i<len nsl & is-id(s-nm(nsl(i)))> 

let pnm8 = {8-nm(p) [ pEproc8} 

is-unique-id8(ll) & 

(plEproc8 & p26procs & p1~p2 ~ s-nm(pl)~s-nm(p2)) & 

is-disjoint(<dom dclm, pnms, elems ll>) & 

aet renv = env \ (dom dclm U pnm8 U elemsll) 

let nenv = renv U 

[id ~ star(dclm(id)) Iid 6 dom dclm] U 

[id ~ PROC Iid £ pnms] U 

[id ~ LABEL I idE elems ll] 

(dcl£rng dclm ~ is-wf-type-dcl(dcl,renv)) & 

(prEprocs ~ i8-wf-proc(pr,nenv)) & 

(l<i<len nsl ~ is-wf-stmt(s-stmt(nsl(i)),nenv)) 

) 

is-wf-type-del(mk-type(sctp, bdl),env) = 

is-wf-type(mk-type(sctp,bdl),env) & 

(bdl=NIL v 

is-expr-list(bdl) & (l<i<lenbdl ~ ex-tp(bdl(i),env)=INT)) 

is-wf-proc(mk-proc(nm,parml, st), env) = 

is-unique-ids(<8-id(parml(i)) I l<i<len parml>) & 

(let nenv = env + 

[s-id(parml(i)) ~ s-attr(parml(i)) I i£[1:len parml}] 

is-wf-stmt(st,nenv) ) 
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is-wf-parm(mk-parm(id, attr),env) = 

attr=PROC v s-bds(attr)=NIL v i8-~-list(s-bda(attr)) 

i8-wf-if(mk-if(b, , ),env) = ex-tp(b,env)=BOOL 

ia-wf-for~mk-for(id, init,atep, limit, st),env) = 

let nenv = env + [id ~ CON-VAR] 

ex-tp(init, env) = ex-tp(step, env) = ex-tp(limit, env) 

is-wf-stmt(st,nenv) 

= INT & 

is-wf-call(mk-call(pn, al),env) = 

pn E dom env & env(pn)=PROC & 

(l<i<len al ~ is-wf-var-ref(al(i),env) v env(al(iJ)=PROC) 

is-wf-goto(mk-goto(id),env) = idEdom env & env(id)=LABEL 

ia-wf-assign(mk-assign(lhs,rhs),env) = 

is-acalar(lhs,env) & 

ex-tp(rha,env) = var-ref-tp(lhs,env) 

is-wf-in(mk-in(vr),env) = is-scalar(vr, env) 

ia-wf-infix-expr(mk-infix-expr(el,op, e2),env) = 

is-int-op(op) & ex-tp(el,env)=ex-tp(e2, env)=IN T v 

ia-bool-op(op) & ex-tp(el,env)=ex-tp(e2,env)=BOOL v 

is-eomp-op(op) & ex-tp(el,env)=ex-tp(e2, env)=INT 

is-wf-rhs-ref(mk-rhs-ref(r),env) = is-scalar(r, env) 
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is-wf-var-ref(mk-var-ref(id, el),env) = 

idEdom env & is-type(env(id)) & 

(el=NIL v (s-bds(env(id))~NI k & 

fen el = len s-bds(env(id)) & 

(1<i<len el ~ ex-tp(ei(i),env)=INT))) 

is-scalar(mk-var-ref(id, sscl),env) = 

sscl=NIL ~ s-bds(env(id))=NIL 

is-wf-con-var-ref(mk-con-var-ref(id),env) = 

idEdom env & env(id)=CON-VAR 

ex-tp(e,env) = 

cases e: 

mk-infix-expr(el,op, e2) 

(is-int-op(op) ~ INT 

is-bool-op(op) ~ BOOL 

is-comp-op(op) ~ BOOL) 

mk-rhs-ref(vr) ~ var-ref-tp(vr,env) 

mk-con-var-ref(id) ~ INT. 

T ~ (is-int-const(e) ~ INT 

is-bool-const(e) ~ BOOL) 

Car-ref-tp(mk-var-ref(id, ),env) = s-sc-type(envCid)) 

is-unique-ids(idl) = /~ true iff no duplicates */ 

type: Id ~ ~ Hool 

star(t) = /~ all bounds changed to ~ ~/ 

type: Type ~ Type 

is-disjoint(el) = /~ teste set8 pairwise disjoint ~/ 

type: Set ~ ~ Bool 
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is-scalar-type(t) = is-type(t) & s-bds(t)=NIL 

is-array-type(t) = id-type(t) & s-bds(t)#NIL 

SEMANTIC OBJECTS 

State 

Storage 

Value = 

Env = 

Loc 

Array-lot : 

Scalar-loc = 

Con-var-den = 

Label-den :: 

Aid 

Proc-den :: 

Tr = 

Abn = 

Int-loc } 

Bool-loc 

(R-STG~Storage) U (R-IN~ Value ~) U (R-OUT~ Value ~) 

(Bool-loc ~ (Bool I k )) ~ (Int-loc ~ (Int I k )) 

Int I Bool 

Id ~ (Loc i Con-var-den I Label-den Proc-den) 

Array-loc I Scalar-lot 

(Int + ~ Bool-loc) I (Int+ ~ Int-loc) 

constraint: l£Array-loc ~ (3il6Nat+)(dom 1 =rect(il)) 

Bool-loc I Int-loc 

Int 

Aid Id 

is an infinite set 

((Loc I Proc-den)~ Aid-set ~ Tr) 
N 

State ~ State Abn 

[Label-den] 

infinite sets s.t. Bool-loc N Int-loc ={} 

FUNCTIONS 

i-program(mk-program(t)J(inl) = 

(let in-state = 

[R-STG~[], R-IN~inl, R-OUT~<>] 

let fln-state = i-stmt(t,[],{})(in-state) 

fin-state(R-OUT) 

) 

type: Program ~ (Value • ~ Value ~) 

i-stmt: Stmt Env Aid-set -~ 
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i-block(mk-blockCdclm, procs~nsl),env, cas) = 

(let aidEAid be s.t. aidEcas 

let nenv: env + 

([id ~ mk-label-den(aid, id) I is-cont(id, nsl)] U 

lid ~ e-type(delm(id),env) I idEdomdclm] U 

[s-nm(p) ~ e-proc(p,neno) I pEprocs]); 

always 

(let locs= {nenv(id) I idEdomdclm~ 

let sclocs = {lElocs I is-scalar-loc(1)} U 

uni°n{rgnl I 1Elocs & lis-scalar-loc(1)} 

R-STG := ~ R-STG~sclocs 

) 

i__nn i-named-stmt-list(nsl,nenv, aasU{aid},aid) 

) 

e-type(mk-type(sctp~bdl),env) = 

i_~ bdl=NIL then 

(let 1EScalar-loc be s.t. 

is-tp-scalar-loc(sctp, 1) & 1Edom c R-STG 

R-STG := c R-STG U [1 ~ ~]; 

return(1) 

) 

else 

(let ebdl: <e-expr(bdl(i),env) I l<i<lenbdl>; 

i_~ (3iE~l:lenbdl~)(ebdl(i)<l) then error; 

let 1EArray-loc be s.t. 

sclErng 1 ~ is-tp-scalar-loc(sctp, scl)& 

dom 1 = rect(ebdl) & 

rng 1 n domc R-STG = ~} 

R-STG := ~ R__-STGU[scl~ ~ I sclErn~ 1]; 

return(l) 

) 

type: Type Env ~ Loc 
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e-proc(mk-proc(,parml,st),env) = 

let f(denl, cas) = 

(if lendenl~lenparml v 

(3iE{l:lenparml~J(~is-pmatch(denl(i),s-attr(parml(i))) 

then error; 

let lenv = env + 

[8-id(parml(i)) ~ denl(i) I i E {l:len parml}] 

i-etmt(st, lenv, cas) 

) 

mk-proc-den(f) 

type: Proc Env ~ Proc-den 

i-named-stmt-list(nsl, env, cas,a~d) = 

tixe [mk-label-den(a~d, tid)~it-named-stmt-list(tno, nsl, env, aas. 

I 1~tno~lennsl & s-nm(nsl(tno))=tid#NIL] 

i__nn it-named-stmt-list(1,nsl, env, cas) 

type: Named-stmt • Env Aid-set Aid 

it-named-stmt-liet(i,nsl,env, cas) = 

for j = i to fen nsl do i-stmt(s-stmt(nsl(j)),env~cae) 

type: Nat Named-stmt~ Env Aid-set 

i-if(mk-~f(be, th, elJ,env, cas) = 

(let by: e-expr(be, env); 

if by then i-stmt(th,env, cas) 

else i-etmt(el,env, cae) 
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i-for(mk-for(cv, ie,se, le,st),env,cas) = 

(let i: e-expr(ie, env); 

let s: e-expr(se, env); 

let l: e-expr(le, env); 

l_~et f(x) = if (s>O ~ x~l, s<O ~ x~l, s=O ~ TRUE) 

then (i-etmt(et, env+[cv~x],cae);f(x+s)) 

f(i) 
) 

i-aall(mk-call(pldjal),envjcas) = 

(let mk-proc-den(f) = env(pid) 

let dl: <is-var-ref(al(i)) ~ e-var-ref(al(i),env), 

T ~ env(al(i)) i 1<~<len al>; 

f(dl, cas) 

) 

i-goto(mk-goto(id),env) = 

exit(env(id)) 

i-assign(mk-assign(vr, e),env) = 

(let l: e-var-ref(vr, env); 

let v: e-expr(e,env); 

assign(1,vJ 

i-in(mk-in(vr)jenv) = 

(if c R-IN = <> then error; 

let l: e-var-ref(vr, env); 

let v: hd e R-IN; 

if lie-vmatch(v,var-ref-tp(vr)) 

else 

(R-IN := tl c R-IN; 

assign(1,v) 

then error 
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i-out(mk-out(e),env) = 

(let v: e-expr(e,env); 

R-OUT := c R-OUT ^ <v> 

) 

e-expr: Expr Env ~ Value • 

e-infix-expr(mk-infix-expr(el,op, e2),env) x 

(let v1: e-expr(el,env); 

let v2: e-expr(e2, env); 

let v: apply-op(vl,op, v2); 

return(v) 

) 

e-rhs-ref(mk-rhs-ref(vr),env) = 

(let l: e-var-ref(vr, env); 

content,(l) 

) 

e-var-ref(mk-var-ref(id, sscl),env) = 

if sscl=NIL then return(~nv(id)) 

else 

(let aloc= env(id) 

let esscl: <e-expr(sscl(i),envJ 

if esecIEdom aloc then error; 

return(aloc(esscl))) 

I 1<i<lensscl>; 

type: Var-ref Env ~ Loc 

e-con-var-ref(mk-con-var-ref(id),env) = return(env(id)) 

e-aonst(e,) = /~ return a Value corresponding to the Constant ~/ 
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apply-op(vl,op,v2) = /* Returns an appropriate Value */ 

type: Value Op Value ~ Value 

assign(l,vJ = 

R-STG := c R-STG + [l ~ v~ 

type: Scalar-Ice Value 

pre: ICdo~ c R-STG, is-lmatch(l,v) 

contents(l) = 

let v: c R-ST@(IJ; 

if V=? then error; 

else return(v) 

type: Scalar-loc ~ Value 

pre: IEdom c R-STG 

rect(il) = /* generates a dense rectangle of integers */ 

type: Int + ~ (Int+)-set 

pre: 1<i< fen il ~ il(i)~l 

is-lmatch(1,v) = /* ,checks location and value are of same scalar type */ 

type: Scalar-loc Value ~ Bool 

is-vmatch(v, tJ = /* checks value is of scalar type */ 

type: Value Scalar-type ~ Bool 

is-pmatch(d,s) = /* checks the argument matchs parameter specification *~ 

type: (Loc i Proc-den) (Type i PROa) ~ Bool 
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is-tp-scalar-loc(tp, l) = 

tp=BOOL ~ is-bool-loc(1) 

tp=INT ~ is-int-loc(1) 

type: Scalar-type Scalar-lot ~ Bool 

is-cont(id, nsl) = (3iE{l:~ennsl~)(~d=s-nm(nsl(i)) 

type: Id Named-stmt ~ ~ Bool 


