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SOFTWARE ABSTRACTION PRINCIPLES: 

TUTORIAL EXAMPLES OF AN OPERATING SYSTEM COMMAND 

LANGUAGE SPECIFICATION AND A PL/I-LIKE ON-CONDI = 

TION LANGUAGE DEFINITION 

Dines Bj@rner 

Abstract: 

Four groups of two, either complementing or contrasting 

abstraction principles are isolated: REPRESENTATIONAL and 

OPERATIONAL abstraction; CONFIGURATIONAL versus HIERAR= 

CHICAL abstraction; STATE-MACHINE- versus REFERENTIALLY 

TRANSPARENT, FUNCTIONAL- abstraction; and DENOTATIONAL 

versus MECHANICAL specification. Tools, techniques and 

examples are presented for, respectively of, each of the 

eight principles. 
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1. INTRODUCTION 

The problem to be solved by the methods outlined in this paper is ulti- 

mately the construction of correctly functioning, well-understood, 

pleasing, yet complex software. It is our thesis that one way of achiev- 

ing this is to use a systematic software development method which 

provides a formalized structure for stepwise, increasingly more detail- 

ed arguments of correctness -- a method based on systematically deriv- 

ing abstractions into concrete realizations; i.e. on a-priori, synthe- 

tic, constructive proofs rather than a-posteriori, analytic proofs. 

Thus we see our methodology as starting with an abstract specification 

of the desired software item. This paper then is concerned with some 

of the techniques used in achieving such definitions. In [Bj~rner 77c] 

we cover the problems of mapping abstractions into concretizations. 

We are there in particular concerned with the systematic derivation- 

and proof techniques. 

The objectives of an abstract software specification are basically two- 

fold: that the resulting document serve as the basis from which an im- 

plementation take place formally, and with respect to which correctness 

criteria be stated, and a proof given. Hence we require that the spe- 

cification (or: meta-) language be formal. Also: that the document, and 

it alone, be the specification from which we develop user's reference 

(and other) manuals~ 

The objectives of the abstraction principles explicitly expounded in 

this paper are several: That the specifications be precise, non-contra- 

dictory and complete; that they be short, well-organized and comprehen- 

sible; that the described systems be well-conceived, free from mis-con- 

ceptions, conceptually clean, lean and with an optimum of semantically 

relevant notions; that their properties be well understood, possesing 

desirable properties and with a minimum of ad-hoc ideas. We find [Li- 

skov 75] to give a fine discussion of the above points. 

O nnAbstraction Techniques 

Before going on to exemplify uses of the meta-language let us first 

also summarize the principles used in applying constructs of this language. 

One thing is the notation: its syntax & semantics. Another thing is 

the intent with which it was to be applied; its pragmatics. Any notation 

can be used against its will, even a good one. 
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If you consider META-IV as an ultra-high-level programming language, 

i.e. one which although it is intended only to specify software actu- 

ally results in programs which can be considered implementations, al- 

beit on a very abstract, and in most cases not mechanizable, level, then 

which are the programming disciplines around which the meta-language 

evolved, and whose application exploits its capabilities to the fullest? 

We consider these to be the pre-dominant abstraction techniques: repre- 

sentational- & operational- abstraction; configurational vs. hierarchi- 

cal abstraction; referential transparency vs. abstract state machine 

modeling; and mechanical- vs. denotational abstraction. 

At each design step and at each specification stage we carefully review 

the appropriateness of each abstraction choice: its level when consider- 

ing e.g. representational- & operational; and mechanical- vs. denota- 

tional abstractions; its mixture or blend of configuration and hierac- 

chy, i.e. bottom-up synthetic vs. top-down analytic features; respect- 

ively of referential transparency or applicativeness vs. abstract state 

machine imperativeness; and finally also its balance of explicitness 

vs. implicitness. 

Before going into a brief characterization of each of the eight abstrac- 

tion principles, an outline is first given of the basic parts that make 

up our specification document. A rationale is given for their inclusion. 

The software 'function' to be modelled normally accepts inputs, emits 

outputs, achieves the desired transformations of inputs into outputs 

by means of internal data structures, and specifies transformations in 

terms of function definitions (procedures, process descriptions, opera- 

tions). Our model hence consists of two basically distinct parts: one 

containing the descriptions of the input/output and internal domains 

-- subsequently referred to as syntactic-, respectively semantic domains. 

Another part containing a number of elaboration- (and auxiliary-) func- 

tion definitions which to combinations of input- and semantic- domain 

objects ascribes their meaning, in terms of either semantic domain ob- 

ject transformations or these latter combined with output domain objects. 

In the next paragraphs we now treat the abstraction principles indivi- 

dually. 



341 

By REPRESENTATIONAL ABSTRACTION we understand the specification of ob- 

jects irrespective of their implementation, and such that the chosen 

abstractions as closely as possible only reflect relevant and intrin- 

sic properties. 

Representational abstraction of classes of objects is here expressed 

in terms of so-called abstract syntax. Individual instances of objects 

can be abstracted by corresponding expressions of the meta-language. 

Representational abstraction is applie d in the definition of both syn- 

tactic- and semantic- domains and domain objects. 

By OPERATIONAL ABSTRACTION we understand the specification of functions 

in extension. That is: we are primarily interested in the properties of 

the functions we define, notably in the properties of that which our 

defined functions define (be they functions themselves), i.e. in what 

they Compute; less -- if at all -- interested in how results are com- 

puted, i.e. not in functions in extension. 

Operational abstrection is here expressed primarily in the form of func- 

tion definitions. We express these either by a pair of pre- and post- 

conditions on the functions sought, or by a constructive function de- 

finition. The former kind are thus usually more implicit, i.e. abstract, 

than the latter kind (of more explicit definitions). This latter form 

is normally still abstract, in that it usually internally employs ope- 

rational abstraction on representationally abstract objects. Operational 

abstraction is used in the definition of the elaboration functions, as 

well as functions of our model auxiliary to these, and to (~8-w~-O) 

well-~ormedness- context, static condition and dynamic constraint-, pre- 

dicates 'narrowing' the (~-) domains otherwise defined by abstract syn- 

taxes. 

By CONFIGURATIONAL ABSTRACTION we understand the step-wise definition 

and realization of a model, or major model components, which proceeds 

in a synthetic manner in conceiving and documenting the desired system 

-- from the bottom-up -- by building layers of abstraction upon more 

concrete bases. From 'physical machines' we create (the illusion of) 

'virtual machines': changing raw capabilities into sophisticated con- 

cepts. Configurational abstraction composes low-level abstractions (or 

rather 'mechanizations') into higher-level abstractions. 

Configurational abstraction, in its inner, foundational steps, is usu- 

ally expresse d in rather concrete representational- and operational 
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forms. In its outer, so-called 'abstract' layers, expressional means 

are normally tied to those of the procedure, module-, and class- like 

'abstractions'. Configurational abstraction -- as a specification tech- 

nique -- is brought into play whereever uncertainties concerning either 

desired functions, and/or efficient realizability dominate our under- 

standing of what system we are in fact aiming at. 

The resulting design: its abstraction & implementation can usually, and 

to great advantage however, be hierarchically documented. 

By HIERARCHICAL ABSTRACTIO N we understand the stepwlse definition of a 

model which proceeds in conceiving and documenting, in an analytical 

fashion -- from the top down -- the desired system (components) by 

decomposing basic overall dominating concepts and transformations into 

constituent ones. 

Hierarchical abstraction techniques can fully exploit the representa- 

tional and operational abstraction techniques descussed and elsewhere 

illustrated in this paper. And hierarchical abstraction is applied where 

a sufficiently deep understanding of our system has eventually trans- 

pired. 

Configurational abstraction have been used extensively in operat- 

ing systems designs [Dijkstra 68; Hansen 73] - Hierarchical abstraction 

mostly in e.g. programming language semantics [e.g. Beki{ 74~ Henhapl 

78] and relational data base (system and query language) formalization 

[Hansal 76, Nilsson 76]. 

Any one abstraction, and almost any actual, conventional program al- 

gorithm, usually exhibits some mixture of both. Only when the choice 

between configurational- and hierarchical abstraction has been made as 

the consequence of a careful study, and only when the resulting docu- 

mentation (respectively program code) is clear, does the specification 

appear transparent. The subject of choosing a bottom-up versus a top- 

down abstract, and/or algorithmic design idea programming strategy is, 

however, a seriously undeveloped one and we shall unfortunately not 

contribute much to a clarification in this paper. It is our hope, though, 

to return later to a study of their duality. Step-wise refinement, i.e. 

top-down, hierarchical abstraction in program algorithm and data struc- 

ture design is extensively convered in [Wirth 71,75,76]. 
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By a DENOTATIONAL SPECIFICATION [Scott 71,72; Tennent 75,76; Mosses 

75; Milne 76] we understand a definition which ascribes meaning to 

(composite) syntactic domain objects by functionally composing mean- 

ings of proper constituent parts. Thus denotational abstraction almost 

invariably calls for 'homomorphic' programming [Burstall 69, Morris 73~ 

Reynolds 74, ADJ 77], i.e. referential transparency together with syn- 

tactic object 'driven' function specifications. And denotational defi- 

nitions achieve their characteristics by employing semantic domain ob- 

jects of high, functional order. Thus the meaning of a program (con- 

struct) is generally seen as a state transformation function, a state 

transformer, independent of program (input) data. 

By a MECHANICAL ABSTRACTION (which may hardly be an abstraction at ail~) 

we understand a description which assigns meaning to a program (con- 

struct) by explicitly prescribing computation (i.e. state-) sequences 

given input data, thus computing result values. The meaning then be- 

comes the state transition sequence, not the function from begin states 

to end states. A mechanical definition is said to be so (or to be ope- 

rational) since its direct realization is immediate (and programmable 

in most languages). 

Examples 

We now illustrate some of the abstraction techniques through two exam- 

ples. The software item to be specified in section 2 is a command 

language for an operating system -- naturally: of hypothetical, illu- 

strative nature. In section 3 we give the denotational semantics of a 

non-trivial language with PL/I-like On-Conditions. The abstraction 

principles examplified are these: representational- and operational 

abstraction; functional, referentially transparent abstraction in sec- 

tion 2, and abstract machine/state programming featuring both local and 

global states, and local semantic domain objects in section 3. Finally, 

and almost exclusively: denotational semantics, whereby the model is 

almost invariably forced to be hierarchically specified. 

It is, however, an alltogether not un-important aim also to convince 

you of the utility of abstractly specifying software in general, and 

-- to take the first choice as an example, to suggest that future, 

professional paper proposals for e.g. command- and data base query lan- 

guages be formally, hence precisely stated. 
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The presentations are both according to our basic principle: formulae 

first, and then their national/natural language explication immediate- 

ly subsequent. No introduction smoothly 'tricking' you into a subse- 

quent formalism -- as if to excuse this latter! 

2. EXAMPLE I: An Abstract Processor for an Interactive, 

Operating S~ste m Command Languag e 

A. Syntactic Domains 

1 Cmd = ~n I c~g I Dl 

2 In :: (InputlSourceILink) Id 

3 : c l cL I cLc i L J l 
4 C :: Cid (SoureeIId) [Id] 

5 CL :: Cid (SourceIId) [Id] (LinkIId) [Id] 

6 CLG :: aid (SourceIId) [Id] (LinklId) [Id] (InputlId) 

7 L :: Id (LinkIId) [Id] 

8 LG :: Id (LinklId [Id] (InputlId) 

9 @ :: Id (InputlId) 

i0 Dl :: Id 

Annotation 

1 A job control Command is either a file Input data command, or (I) 

a (partial or complete) Compile-link-go command, or it is a Delete 

file command. 

2 An Input command has two parts: the data part containing either 

Input, Source or Link data itself, and the part which Identifies 

the file name to ~e given to this data. 

3 A Compile-link-go command is either a COMPILE, a COMPILE-LINK, a 

COMPILE-LINK-GO, a LINK, a LINK-GO or just a GO command. 

4 A COMPILE con~nand has three parts: one part Identifies a Compiler, 

another either directly contains the Source text or Identifies such 

a text (in the FILE state component, see below), and a third, optio- 

nal ([]) part Identifies the name to be given to the object (module) 

res~iting from compilation and to be optionally stored in the FILE. 
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A CL@ command additionally has a component which is either the Link 

data itself or Identifies such a link data file, a component which 

optionally Identifies a file name for the linked load (module) r and 

a component which either is the Input data for the executing load 

module, or Identifies such an input data file. 

Comments concerning Abstraction Principles 

Observe that we have attempted only to describe syntactically essential 

components of commands -- and then only abstractly, irrespective of 

their possible written forms: 

"ALGOL" c o m P i l e  "SID" w i t h  l i n k  ["FID" ~ "PRINT"] 

and e x e c u t e  w i t h  "DID" 

Thus we have as far as possible avoided any mention of what the commands 

effect, i.e. their meaning. Of course, your previous technical know- 

ledge may already have initiated some personal 'feel' for what they 

might stand for. This is because I have chosen suggestive mnemonics. 

I could as well have chosen x's, y's and z's, and still obtained exactly 

the same domains of mathematical objects. Only when I deal with con- 

cepts for which there either is no previous familiarity or which may 

be ambiguously understood when applying only an intuitive understand- 

ing, i.e. when not reading the entire model, shall I have to take extra- 

ordinary care in my annotations, and in judiciously keeping these and 

the discussion within purely syntactic domain, purely semantic domain, 

respectively purely semantic Elaboration function subject boundaries. 

The commands have been representationally abstracted. There is no word 

here about positional parameters, mnemonic keywords nor of default such, 

no talk of delimiters or other syntactic 'sugar'. The objects denoted 

by this abstract syntax (for a definition of Id, Cid, Input, Source 

and Link, see below) are in fact mathematical, not characterstrings. 

We use the same kind of abstract syntax definitional facility for spe- 

cifying both syntactic and semantic domain objects, as well as their 

definiens logical type expressions are used in type definitions for 

Elaboration- and Auxiliary functions. 
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The presentational structure of this abstract syntax is basically hier- 

archical. 

B. Semantic Domains 

1 ~ :: FILE SYS UTIL 

2 FILE = Id ~ Data 

3 SYS = Cid ~ Comp 

4 UTIL = Uid ~ (Data I QUOT~) 

5 Data = 

6 Input = 

7 Source = 

8 Object = 

9 Link = 

i0 Load = 

ii Output = 

12 Comp = 

13 Cid = 

14 Uid = 

15 Text = ... 

16 Id = TOKEN 

Input I Source I Object Link I Load 

. ° .  

Link ~ Load 

Id ~ (Id I Con~t) 

Input ~ (~ ~ (~ Output) 

o , .  

Source ~ (Object I Text) 

FORTRA~ I ALOOL I COBOL ~d~ i ''~ 

Annotations 

In order to explain the meaning of our operating system job command 

and control language we introduce an abstract state space Z. A state, 

~£Z, has three components: a FILE-, a SYStem programs-, and a UTILity 

object. 

2 A FILE object is a finite domain (= ...) map from Identifiers (i.e. 

file names) to Data (-sets). 

The SYStem object is a ... map from (here only:) Compiler identifier 

names to the Compilers themselves. (Subsequently we might contem- 

plate adding other systems programs to SYS: sort-, copy-, merge-, 

etc..) 

The UTILity component is a ..o map from identifications of Utilities 

to either Data or lists (~) of QUOTations (objects which you may 

wish to think of as characterstrings). 
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5 Besides Input-, Source- and Link- Da~a (which can be directly in- 

serted into the FILE by the command language user) Object- and 

Load can be filed (as the result of successfully executing one of 

the Commands C, CL, CLG respectively CL, CLG, L, LG). 

An Object (module) is a map from Link to Load. (That is: the result 

of a compilation is to be an object of type Object. The free identi- 

fiers of the (compiled) Source text have not yet been bound to their 

meaning -- which are to be those of Identified (names of) filed Data 

or Constants.) 

9 Link is a ... map from (free) Identifiers (of (compiler) texts) to 

Identifiers (of filed Data) or Constants. 

I0 A Load (module) is a function from Input to s t a t e  transforming func- 
t ions  y ie ld ing  Output. 

12 A(ny) Compiler is a (pure, i.e. not state, ~6Z, dependent) function 

from Source to the union (I) domain of Object and Text (-- the former 

are to be the result of successful compilation the latter of a syn- 

tactically, and otherwise erroneous, text (instead yielding diagnos- 

tics Text)). 

13 Suggests possible compilers~ 

14 The UTILity components are here primarily intended to 'store' tem- 

porary results in/between the C-L-G steps; for details see the Elab- 

clg, compile and bind function definitions below. 

16 Identifiers are further unspecified TOKENs. 
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Comments on Abstraction Principles 

Suggests or relies on a configurative abstraction: from the more 

primitive components is built a more sophisticated. The user -- we 

conjecture -- need think only of ~, and does, as far as conceptual 

understanding goes, not need to know of its decomposition. 

8-10,12 Suggests not only a hierarchical decomposition, but relies on 

Comp and Load objects as primitives. These are representationally 

highly abstracted. 

Discussion of Abstraction Choices 

The crucial abstractions are these: Comp and Object. That of Load -- 

and to an even lesser degree that of Link -- we consider almost trivial. 

Anticipating subsequent semantic Elaboration function descriptions -- 

which, of course, really were developed in 'parallel' with the above 

semantic domain definitions -- we hinge our model on the ability of the 

Compiler to produce exactly a function of the logical type Object (dis- 

regarding here diagnostic Texts). With the types we have ascribed to 

Object, and in particular to Load, it can be shown that the Compiler 

in fact is the function denoted by an appropriate mathematical- or de- 

notational semantics definition, ~, of the Source language. ~ is to 

take the Sburce text and produce a function which permits an act of 

binding. Binding is a function which takes an Object module and some 

Link Data and produces some Load module. ~ creates this function by 

letting the free Identifiers of the Source text be mappable to a varie- 

ty of Constants or FILE Data Identifiers: 

Example: 

Lp.::kn 
i I I 

~ idl idl 

LPi "dn 

fid-i l~ 
fid-i2 1 

fid-inJ 

fid-j l 7 
lid-j2 1 
rid-SnJ 

obj-k 6 Object 

load-i load-i 6 Load 

pid... 6 Id 

fid... 6 Id 

load-j 

end example. 
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In fact, we can impose varying degrees of easily formalizable, hence 

tersely expressible constraints on Object's and Link's: 

C. Semantic Doma~in Consistency constraints 

Simple, Lax Version: 

1.0 is-wf-~(mk-~(f,s,u))= 

.i (Yo£rn~ f) 

.2 (is-Object(o) = (Vl1~12 £ dom o)(dom ll = dom 12)) 

Restrictive Version: 

2.0 is-wf-Z(mk-Z(f,s,u))= 

.i (vo£rn~ f) 

.2 (is-Object(o) D (¥11,12 £ dom o) 

.3 ((dom 11 = dom l~) 

.4 ^Crng ll~Const c dom f))) 

.5 ^(V16rn~ f) 

.6 (is-Link(1) D (rn~ l~Const c dom f)) 

Annotations: 

(1.0-1.2 ~ 2.0-2.3) 

2.1-2.4 For each Object, o, in fILE it must be the case that all of its 

domain links have the same domain of (free Source text) Iden- 

tifiers -- since, naturally, that object, o, is the result of 

just one compilation of exactly one Source text. (But: binding 

these free Identifiers to different fiLEd Data and Constants 

should certainly create distinct Load modules, cf. example 

above.) 

2.4 -- And range Identifiers of Object module Link's must (in this 

restrictive version) already have been defined (i.e. fiLEd 

Data. 

2.5-2.6 -- Similar for fiLEd Data. 
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Comments on Abstraction Principles 

The domain consistency (inspection) functions are operationally ab- 

stracted in terms of applicative, referentially transparent expressions 

exploying quantified predicates, i.e. staying aloof of order of inspec- 

tion~ 

D. Dynamic Command-State Cpnsistency/Cpnstraint Relations 

1 0 pre- Elab-cmd(<cmd, ~>)= 

1 

2 

3 

4 

5 

(let mk-~(f,,) = . ~  i__nn 

cases cmd: 

(mk-In(,id) -~ id N6 domf , 

mk-Dl(id) -~ id 6 dom f , 

T -~ pre-Elab-clg(<cmd, s>)) 
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2.0 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

.Ii 

.12 

.13 

.14 

.15 

.16 

.17 

.18 

.19 

• 20 

.21 

.22 

.23 

.24 

.25 

.26 

.27 

pre- Elab-c lg(<clg, ~>)= 

(le__~t mk-2(file, sys,) = s in 

oase8 o~: 

(mk-C (k, 8, o) 

mk-CL (k, s, o, l, e) 

mk-CLG (k, s, o, l, e, i) 

mk-L (o, l, e) 

mk-LG(o, l, e, i) 

mk-G(e,i) 

( (k 6 ,dora sys) A 

( is-IdCs) ~ ( (s 6,,dom file) A 

is-Scarce (file (s) ) ) ) A 

((o~nil) D o~ dora file)), 

(pre-Elab-clg(<mk-C(k,s,o) , ~> ) A 

(is-Id(1) ~ ((1Edomfile) ^ 

is-Link (file (l) ) ^ 

(rng(file (1) )~Const c dom file) ), 

T ~ (rn~ l~Constcdo__~mfile)) A 

((e~n,il) ~ e~domfile)), 

(pre-Elab~-clg(<mk-CL(k,s,o, l,e) , o>) ^ 

(is,-Id(i) ~ ((i Edomfile) ^ 

is-Input(file (i) ) ) ) ), 

( (o E ~m file) ^ is-Object(file(o)) ^ 

(is-Id(1) ~ (1 E d_~_~ file) ^ 

is-Link(file(1)) ^ 

(~(fi le (l) )~Const c dom file) ), 

T ~ (rng l~Constc_domfile)) A 

((e#nil) ~ (e~do_mmfile))), 

(pre- Elab-c Ig (~mk-L (o, l, e ), a>) A 

(is-Id(i) ~ ((i E domfile) A 

is-lnput(file(i))))), 

((e Edomfile) A is-Load(file(e)) A 

(is-Id(i) D ((i 6,dom file) A 

is-Input (file (i))) ) ) )) 
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Annotation: 

Successful Elaboration of commands depend on basically three aspects: 

(i) one is checkable without actually applying the functions implied 

(e.g.: Compile, Link and Go), but depends on the relation between the 

static command and the dynamic state, 0£Z. (2) The other can only be 

known by actually applying the implied (C,L,G) functions. In this exam- 

ple there are no, (0), static context conditions imposable on commands 

only, as is e.g. the case with the definition and use of (variable, 

procedure and label) identifiers in block-structured procedure-oriented 

programming languages with a fixed, strong type system, pre-Elab-cmd 

and pre-Elab-clg deals with (i). The Auxiliary functions compile and 

bind invoked by the Elab-el~ functions takes care of (2). 

1.3 The Identifier naming Data to be fiLEd must not already be used, 

i.e. be 'defined'. 

2.5 

2.6 

The fiLEd Source text Identifier must identify a Data object 

of type Sourae. 

If an identifier, o, is specified (for the thus implied filing 

of the Object module to result from Compilation) then o must 

not already be defined. 

. . °  

2.10,19 If only C.1 (not C.2) is specified, then this is the last 

'time'/opportunity to 'catch' the equivalent of C.2.4. 

(Notice that we have not checked Input Link Data in D.I.3!) 

Comments on Abstraction Principles 

Again the functions are operational abstractly specified. The structure 

of the function definition follows that of the abstract syntax defini- 

tion of (primarily) Commands and (secondarily) Z. 
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E. Elaboration Function Types 

N N 

1 ty,~,,e: Elab-cmd: Cmd ~ (~ ~ ~) 

2 Elab-clg: Clg ~ (Z ~ ~) 

Annotation: 

Given a command the Elaborate-command function ascribes to it, as its 

semantics, a state transformer, i.e. a function from (Operating System) 

states to states. This is the denotational semantics viewpoint. Thus, 

when a specific command, which denotes the function, say ~, is executed 

in a state a, ~6~, then a new state ~, ~'6~, will arise: 

let ~ = Elab-cmd(cmd) 

(~) = ~' 

Comments on Abstraction Principle: 

We choose this level of abstraction, in contrast to a mechanical seman- 

tics definition, since we have not yet decided on which machine, and/or 

how we specifically intend, to implement our command language. 

Also the choice concerning the operational characterstics has been li- 

mited to the denotational ones since we anyway have decided not yet to 

consider how e.g. Compilers are to be realized, only that they perform 

some function, and the type of this function. 



354 

F. Elaboration Function Definitions 

1.0 

.i 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.I0 

.ii 

~lab-cmd(cmd) = 

if pre-~lab-cmd(cmd)o 

then 

(let mk-2(f,s,u) = ~ i_~n 

cases cmd: 

(mk-Id(d,i) ~ mk-2(fU[i~d],s, 

u + [MSG -~ u (M_S_G_)'~<FILED> ] ), 

mk-Dl(id) ~ mk-2(f~{id},s, 

u + [MS_G_ -~ u(MS_G_)"<DELETED>]), 

Elab-clg(cmd)a)) T 

else 

error 

.0 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

.Ii 

.12 

.13 

.14 

.15 

.16 

E lab-c lg ( c lg )a = 

(let mk-2(f,s,u) = ~ i_nn 

(trap exit(~) with ~ in 

cases clg: 

(mk-C(k, t, o) 

mk-CL (k, t, o, l, e) 

compile (k, t, o)c, 

(let o' = compile(k,t,o)~ i_n_n 

bind(1,e)a'), 

mk-CLG(k,t,o,l,e,i) ~ (let ~' = compile(k,t,o)o in 

let c" = blnd(l,e)o' i_nn 

execute (i) o"), 

mk-L(o,l,e) ~ (let s' = mk-7.(f,s,u+[OBJ~f(o)]) i_nn 

bind(1,e)~') , 

mk-LG(o,l,e,i) ~ (let s' = mk-~(f,s,u+[OBJ~f(o)]) i_nn 

let c"-- bind(l,e)s' ~_~n 

execute ( i )a") , 

mk-G(e,i) ~ (let ~' = mk-2(f,s,u+[LOAD~f(e) ]) i_~n 

execute(i)c ') ) ) 
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Annotation: 

I.i Execution of a cmd depends on it satisfying the function inde- 

pendent, syntactic- and semantic domain dependent consistency 

constraints specified by pre-Elab-cmd (and detailed there and 

in pre-~lab-clg). 

1.6,8 MeSsaGes concerning successful completion states (status's) are 

'posted' in the UTILity MesSaGe component. 

2.2 Erroneous, execution-time checkable only, execution of the com- 

pile or bind functions shall lead to exits being trapped here 

-- aborting further execution of steps in the CL, CLG, LG commands. 

(Abnormal termination in the C, L cases are of course also tr__rq~- 

ped here with the same effect as if not abnormally terminated 

through an exit~) 

2.4 To Compile is to compile. 

2.7 To Compile-Link-Go is to compile (in one state, ~), then (;) to 

bind in the state, ~', resulting from compilation; and to execute 

in the state, ~", resulting from binding. 

2.10 The bind operation expects the UTILity 0BJect component to con- 

tain the named (o) Object module (from the file). 

2.5,7 Thus the compile operation deposits a successfully compiled 

Object in the UTILity pB~ect component. 

2.15 like 2.10 but now for execute and LOAD, 

2.8,13 -- like 2.5,7, but now for the objects mentioned above~ 

2.7-9 These three lines could be written: 

execute(i) (bindC1, e) (compile (k, t,o)s) ) 

and so could lines 2.5-6 and 2.13-14, in their form. 
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Discussion of Abstraction Choices: 

The restriction that a CLG command must have not only its "C-", but 

also its "L-" and "G-" (syntactic) components agreeing with certain 

state components in order that Elaboration of any part of the CLG com- 

mand may be commenced, may seem rather limiting. We have, however, 

brought this semantics only for the purposes of exemplifying modelling 

techniques -- not in order to advocate the virtues of one particular 

command language over those of another. Only when we master our speci- 

fication tools do we feel ready to seriously, and sensibly, embark on 

'architectural' designs. Thus it is relatively easy, to 'chop' the pre- 

condition specfication up into separate parts, and merge these (or 

'calls' thereon) with the constructive parts of the present £1aboration 

functions, thus permitting partial ~laboration of e.g. CLG commands. 

Comments on Abstraction Principles: 

The semantics assignment has been part implicitly-, part explicitly 

specified: one could replace Elab-cmd with a post-Elab-emd specifica- 

tion: 

3.0 

1 

2 

3 

4 

5 

6 

post-E lab-cmd ( <cmd, a> , ~ ~ ) = 

(let mk-2(f,,) = ~, 

mk-2(f', ) = a' ~n 

cases cmd: 

(mk-In(d,i) ~ f' = fUCi~d], 

mk-Dl(id) ~ f' = f~{id}, 

T ~ post- lab-clg(<cmd,~>,~ t) 

which, together with pre-Elab-cmd, uniquely determines Elab-cmd. (Pro- 

vided of course we either specify Elab-clg accordingly through its 

post-, or imply the post-Elab-clg defined by 2 above~) 

In general, if: 

type: F: A ~ B 

then: 

type: pre-F: A ~ BOOL 

type: post-F: (A B) ~ BOOL 
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with : 

pre-F(a) ~ (B!b 6 B)(F(a) = b) 

pre-F(a) ^ F(a) = b D post-F(a,b). 

The definition of the Elab-olg proceeded on the basis of an iterative 

stepwise refinement: existence of compile, bind and execute was postu- 

lated after the crucial issue of their logical types were first settled 

-- see G below~ The iteration from the internal specification of the 

first two of these functions occured as the result of first planning 

that there be an exit within them, and then actually fixing the places 

of these exits and the type of the value(s) (Z) being "returned". 

2" Auxiliary Function Types 

I type: compile: aid (Source IId) [Id] ~ (~ ~ ~) 

2 bind: (Link IId) [Id] ~ (~ ~ ~) 

3 execute: (Input IId) ~ (~ ~ ~) 

Discussion/Comments: 

There is an unfortunate asymmetry between these functions: compile re- 

ceives all the information it requires through its three arguments, but 

both bind and execute are not explicitly passed information about the 

Object module to be linked, respectively the Load module to be executed 

-- instead these objects are to be looked up in the UTILity components: 

OBJ, respectively LOAD; a fact which is hidden. This abstraction choice 

was made after some (trivial) experiments with explicit passing: the 

present solution was found not only to balance the needs better between 

on one hand the CL and CLG commands, and those of the LG and G commands 

on the other hand, but also to be in some accord with actual operating 

system practice (SYSLINK, ...). 
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H. Auxiliary Function Definitions 

• 0 compile(k,t,o)~= 

.I (let mk-Z(f,s,u) = ~ in 

• 2 let souree= if is-Id(t) then f(t) else t i_nn 

.3 let obj = (s(k)) (source) i~n 

• 4 if is-Text(obj) 

• 5 then exit (mk-~ (f, s, u+ [MSG ~ u (MSG)~<obj> ] ) ) 

• 6 else (let u ' = u+[OBJ ~ obj,MS~G ~ u(MS___G)"<COk~ILED>] in 

• 7 if o=nil 

• 8 then mk-~(f, s,u ') 

• 9 else mk-~(fU[o-~bj],s,u'))) 

.0 bind(1,e)a= 

.i (let mk-Z(f,s,uU[OBJ~obj]) = ~ i_~n 

.2 let Ink = if i8-Id(1) then f(19 else 1 i_nn 

• 3 ~lnk £ dom obj 

.4 then (let u' = u+[LOAD ~ obj(lnk),MSG ~ u(MSG)~<LINKED>] in 

• 6 then mk-Z(f,s,u ') 

.7 else mk-~(fO[e-~bj(lnk) ],s,u'+[MSG-~(MSG)~ILED>]) 

.8 else exit (mk-Z {f, s,u+[MSG ~ u (MSG)~<ERRONEOUS-LINK> ]) ) ) 

3 • 0 execute (i)~= 

.i (let mk-~(f,s,uU[LOAD~ load]) = s inn 

.2 let input = i~ is-Id(i) then f(i) else i i_~n 

.3 let (mk-~(f',s,u'),output) = load(input) inn 

• 4 mk-7(f', s,u '+[OUTPUT ~ output]) ) 

Comments on Abstraction Principles 

It is especially in this specification step that the real 'power' of 

our abstraction appears to yield their maximum return• 
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Annotations: 

1.3 Recalling that the logical type of the Compiler, s(k), is 

Source ~ (Object I Text) and that that of source is Source, we 

see that that of obj is either Object or Text -- concerning which 

we assume disjointness of domains, although that has not yet been 

imposed. 

1.9 If o was specified, then the Object obj is to be filed. 

1.6 In any case a successfull compile leaves obj in the UTILity under 

OBJ. 

2.3 A bind is only successful if the right Link information is pro- 

vided. 

3.3 The logical type of Load is (see B.10) Input ~ (Z ~ ~ Output) 

permitting executing (user) programs to access (Z ~ ...) and up- 

date (... ~ ~) e.g. files, thus changing the state. 

Discussion of F & H, Functional versus Machine State Programming: 

The specification of Elab-cmd has been kept completely functional, thus 

referentially transparent. The meaning of a command is the simple func- 

tional composition of the meanings of the command components -- and the 

overall meaning remains unchanged if we alter any syntactic component 

to another, syntactically different one (Id for Source, or: Id for Link, 

or: Id for Input H.I.2, H.2.2. respectively H.3.3) having the same con- 

stituent meaning. 
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3. EXAMPLE I_~I: A PL/I-like On-Condition Language 

We begin by listing and annotating formulae. Then we end by discussing 

abstraction principles. 

A. Syntactic Domains 

Progr 

Block 

Proc 

Stmt 

Call 

= Block 

:: Id-set (Id~Proc) Stmt + 

:: s-pml:(s-Id:Id s-Tp:(LOCIPROC))* Block 

= E1-Stmt I Call I On-Unit I Signal I Revert 

:: Id Expr* 

On-Unit :: Cid Proc 

Signal :: Cid Id* 

Revert :: Cid 

Expr = Id I Const I Infix 

Const :: INTG 

Infix :: Expr Op Expr 

Id m TOKEN ~ Id U Lbl = {} 

Lbl m TOKEN ] 

aid : ~ I ~ I ~ I ... 

Annotations 

A Program is a Block. A Block has three parts: a set of variable Iden- 

tifiers, a set of uniquely Identified Procedures (hence abstracted as 

a map), and a list of Statements. A Procedure has a parameter list and 

a Block. The parameter list consists of pairs of formal parameter Iden- 

tifiers and their corresponding LOCation or PROCedure type. A State- 

ment is either an Elelentary Statement, a subroutine Call, an On-Unit, 

a Signal, or a ReVert statement. An Expression is either a variable or 

a formal parameter Identification, a Constant, or an Infix expression. 

An Infix expression has three parts: a left- and a right operand Expres- 

sion, and an Operator. 
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B. Static Context Condition Function Type s 

i t~Fe : 

2 

3 

4 

5 

is-wf-Progr: Progr ~ BOOL 

is-wf-Block: Block ~ DICT ~ BOOL 

i8-wf-Procedure: Id Proc ~ DICT ~ BOOL 

i8-wf-Stmt: Stmt ~ DICT ~ BOOL 

i8-wf-Expr: Expr ~ DICT ~ BOOL 

C. Auxiliary Text Function Ty~ 

6 type: e-tp: Expr ~ DICT ~ Type 

D. Static (Compile-time) Domains: 

DICT = (Id ~ Type) 

Type = LO,,,C I PROC I (Id (LOCIPROC))* 

E. Static Context Conditions: 

1 is-wf-Progr(p) = 

i8-wf-Block(p)[] 

A Program is well-formed if its Block is well-formed. 

2 is-wf-Block(mk-Block(ids,pm, stl))dict = 

.1 

.2 

3 

4 

5 

(let diet' = diet + {[id~LOC I idEide] 

U[id~s-pml(pm(~d)) I ~d6dompm]) {_~n 

(ids N dompm = {}) ^ 

(¥id E ,dompm)(is-wf-Procedure(id,pm(id))dict') ^ 

(Vstmt 6 r n~ stl) (i8-wf-Stmt(stmt)idct')) 

A Block is well-formed if: 

2.3 No Identifier is defined both as a variable and as a Procedure 

name, and 
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2.4 all Procedures are well-formed in the lexicographically embracing 

scope, diet', defined up till now, and 

2-5 all Statements are well-formed, also in the context so far defined. 

diet' (2.1-2) is the association (DICT) which to any variable name 

binds the fact, L OC, that it is a variable, and to any Procedure name 

that it is a PROCedure -- in particular it then binds defined Proce- 

dures to the formal parameter list with its type indications. 

3 ie-wf-Procedure(id, mk-Proc(pml, bl))dict = 

.I (id 16 {pml[i,1]liEindpml}) A 

.2 (vi,jEindpml)(s-Id(pml[i])=~-Id(pml[j]) ~ i=j ^ 

.3 (let dict' = dict +[s-Id(pml[i])~S-Tp(pml[i])li6ind____pml] in 

• 4 is-wf-Block(bl)dict') 

A Procedure i8 well-formed, in the context d~ct, if 

3.1 the procedure name, id, is not also that of a formal parameter 

name, and 

3.2 no two formal parameters have the same name, and 

3.3 otherwise the body, bl, of the procedure is well-formed in the 

context, diet', which to diet additionally binds formal parameter 

Identifiers to their type indicator. 

4 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

.ll 

.12 

.13 

ie-wf-Stmt(s)dict = 

da8e8 8: 

(mk-aall(id, el) ((id E domdict) A 

(re E rngel)(is-wf-Expr(e)dict) ^ 

((dict(id) = PROG) v 

(LOC • dict(id)) 

(let pml = dict(id); 

(l_pml = ~el) A 

(Vi E indel) 

(v-tp(el[i])dict ~ LOC ~ s-Tp(pml[i]))))), 

mk-On-Unit(cid, p) ~ is-wf-Procedure(cid, p)dict, 

mk-Signal(cid, idl) ~ (rn_~idl E domdict), 

mk-Revert(cid) ~ true, 

T is-wf-El-Stmt(s)dict) /~ not written ~/ 
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The well-formedness of a Statement, in the context diet, depends on 

which kind of (what case of) Statement it is: 

4.2-9 In a subroutine Call statement, which consists of a Procedure 

identifier and an expression list: 

4.2 The Procedure identifier must be known, 

4.4 and must be that of a PROCedure, 

4.3 and all expressions of the actual argument expression list 

must be well-formed. 

4.5 If the procedure identifier is that of an actually defined, 

i.e. not formal, procedure, 

4.6 then: 

4.7 the length of the formal parameter list and the actual ar- 

gument expression list must be the same, 

4.8 and all corresponding (non-formal procedure) 

4.9 argument expressions and formal parameter must have assign- 

able value types. 

4 .i0 In an On-Unit statement, which consists of a condition identi- 

fier and a procedure body this combination, since it semanti- 

cally corresponds very much to a procedure, must be a well-form- 

ed Procedure in the defining dictionary context. 

4.11 In a Signal statement, which consists of a condition identifier 

and an argument list of identifiers, these latter must be known 

in the dictionary context -- it is not possible, due to the dy- 

namic inheritance of associated On-Units, to check, as it was 

in 4.4-4.9, that the type of these arguments 'match' the type 

of the intended On-Unit 'procedure' parameter /ist~ 

4.12 A Revert on any condition identifier is always OK~ 

is-wf-Expr(e)dict = 

• 1 cas es : 

• 2 (mk-Infix (el, op, e2)~(is-wf-Expr (el) diet ^ 

.3 is-wf-Expr(e2)diet ^ 

.4 (e-tp(el)diet = LOC = e-tp(e2)dict)), 

.5 mk-Const (i) ~true 

.6 T ~(e 6 domdiet) ) 
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F. Auxiliary Text Functions 

e-tp(e)dict = 

.i ca8~8 ~: 

.2 (mk-Infix(el,op, e2)~(op 6 {EQ, NEQ}) ~ BOOL, 

.3 T ~ LOt), 

.4 mk-Const(i) ~LOC, 

.5 T ~dict(e)) 

G. Semantic Domains 

STG = LOC ~ NUM 
m 

OE = Cid ~ ECT 
m 

ENV = Id ~ DEN 
m 

DEN = LOC I FCT 

FCT = DEN~ ~ (OE ~ (~ ~ ~)) 

LOC c TOKEN 

VAL = NUM I BOOL 

= (STG ~ STG) U (ref OE ~ OE) 
~ N  m -- m 

Annotations: 

A SToraGe is a finite domain map from LOCations to assignable values, 

these are the retional NUMbers. An ~n Establishment is a finite domain 

map from Condition identifiers to the FunCTions they denote. 

To model the concept of scope we use the ENVironment abstraction. An 

ENVironment is a finite domain from Program text Identifiers to their 

DENotations. The DENotation of a Program text Identifier is either that 

of a LOCation (if the Identifier names a variable), or that of a 

FunCTion (if it names a Procedure). A FunCTion is a (mathematical) func- 

tion from a list of DENotations (i.e. argument values) to functions 

from 0n Establishments to functions from states to states! that is: 

given an On-Unit or a Procedure it denotes a function. In the case of 

the former the argument list is usually predefined, whereas in the lat- 

ter it is programmer definable. Both denote FunCTions which can be con- 

sidered evaluated in the dynamic context of the defininq ENVironment, 
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but the callin s On Establishment. Since they are all subroutines, no 

values are returned, but side-effects, i.e. state transformations, are 

effected. 

A LOCation is an otherwise un-analyzed elementary object. The auxilia- 

ry category, VAL, stands for the union of rational NUMber and BOOLean 

values. 

The state space, Z, omitting input/output, is a map from one S~Tora~e 

reference to SToraGes, and a multitude of zero, one, or more re[erences 

to On Establishments to 0n Establishments. 

H. Global State Initialization: 

dc___il ST~ :: [] t~pe STG 

I. Elaboration Function Types: 

! tzpe: int-Progr: Progr 

2 int-Block: Block 

3 int-Stl: Stmt ~ 

4 int-Stmt: Stmt 

5 £nt-Call: Call 

6 eval-Proc: Proc 

7 eval-arg: Expr 

8 eval-Expr: Expr 

Z (2 Z z) 

ENV ~ OE ~ (Z ~ 2) 

: E~V Z : EaT 

: E~V : OE % {~ Z 2 {ECT I 

: ENV : OE : (Z ~ Z VAL) 

LOC)) 

~. Auxiliary Function Types 

i0 free-locs: Id-set ENV ~(2 ~ 2) 

ii type-chk: DEN ~ (Id (LOCIPROC)) • ~BOOL 

12 free-dummy-locs: DEN* Expr • ~(~ ~ ~) 
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K. Semantic Elaboration Function Definitions 

1 int-Progr(p) = 

int-Block(p ) ([ ]) ([ ]) 

To interpret a Program is the same as interpreting the Block it is in 

an empty ENVironment and an empty On-Establishment. 

2 int-Block(mk-Biock(ids,pm, stl, stl)) (env) (boe) = 

.i (let env' : env + ([id ~ get-lot() I i6ids] 

.2 U[id ~ eval-proc(pm(id))(env') I id£dompm]); 

.3 dcl lee := boe; 

.4 int-stl(stl)(env)((boe,£oe)); 

.5 free-locs(ids,env')) 

In&erpreting a Block whose locally defined variables are represented 

by ids, locally defined procedures by pm, and statement list by stl, is: 

2.1 first to associate with each variable identifier a fresh LOCation, 

and 

2.2 with each procedure identifier the FunCTion it is, the latter in 

the, thus circularly defined, defining environment ('). 

2.3 Then to establish a local on establishment which inherits the value 

of the embracing blocks' on establishment, 

2.4 whereupon actual execution, after these prologue actions, can take 

place of the statement list. 

2.5 Storage allocated in 2.1 is freed here. 

9 get-lee() = 

.i (let I 6 LOC be s.t. 1 ~E dom(~STG); 

. 2  sj,,2G : =  ~ST.~G u [~unde f in~d ] ;  

.3 return(1)) 

This function allocates and 'initializes' to undefined, S~Tora~e on a 

per-location basis. 
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i0 free-locs(ids,env) = 

This is block termination S~ora~e freeing epilogue action. 

eval-proc(mk-Proc(pml,bl))(env) = 

.1 (let f(a~(oe) = 

.2 (i_~ Ntype-match(al,pml) 

.3 then error 

.4 else (let env'=env+[~-Id(pml[i])~al[i]li6indal] ; 

.5 int-block(bl)(env')(oe))) in 

f) 

12 type-match(al,pml) = 

.i ((~al = l_pml) ^ 

.2 (Vi£indal)(is-~G_(al[~]) =- s-Tp(pml[i]) = LOG_)) 

The meaning of a Procedure is the function it denotes. This function 

is implicitly defined by what happens if it is Called. Then: 

7.4 the defining environment is augmented with the bindings between 

formal parameter list identifiers and the passed actual argument 

list DENotations, 

7.5 whereupon the block of the Procedure (the 'body') is elaborated 

in the callling state, but essentially the defining environment~ 

Since the calling state involves the on-establishment, and since 

each Block potentially defines its own 'copy' which may be dynami- 

cally updated, one needs to pass the value of the current blocks' 

local on establishment to the invocation of the Procedure denota- 

tion; hence, in line : 

7.1 the functional dependency on the calling states' on establishment. 

7.2 The type-check is statically decidable for ordinary procedures, 

but not for On-Un~t procedures. 

.i 

int-Stl(stl)(env)(oep) = 

~or i=1 do lenstl d_~o int-Stmt(stl[i])(env)(oep) 
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TO interpret a list is the same as interpreting each of its Statements 

in the order listed. 

int-Stmt(s)(env)((boev,leer)) = 

.1 cases s: 

2 (mk-Call(id, el)~ 

3 (let al : <eval-arg(el[i])(env)(~lo~)li6indel>; 

4 let f = env(id) in 

5 f(al)(~loe~); 

6 free-dummy-locs(al,el)), 

7 mk-On-Unit(cid, p)~ 

8 (let f = eval-proc(p)(env) i_~n 

9 10£r := cloer + [cid~f]), 

i0 mk-Signal(cid,idl)~ 

ii (let al = <env(idl[i])li6indidl> in 

12 i_~ cid 6 dom(cleer) 

13 then (let f : (cloe~)(cid); 

14 f(al)(c£o£~)) 

15 else error), 

16 mk-Revert(cid)~ 

17 i_ff cid ~6 domboev 

18 then Ze~r := c£oe~cid} 

19 else Ze~r := c£o£r + [cid~boev(cid)], 

20 T ~int-E1-Stmt(s)(env)(cZoe~)) 

4. 

4.2-6 

To interpret a Statement is a function of what statement it is: 

interpreting a subroutine Call statement consists of the follow- 

ing sequence of actions: 

4.3 Each expression of the Argument list is evaluated, 

4.4 and the procedure (i.e. -identifier) denotation retrieved 

from the scope, 

4.5 whereupon it is being applied to the evaluated argument 

~ist and the value (i.e. contents) of the current, local 

on establishment. 

4.6 The locations allocated during Argument evaluation -- see 

13 below -- are freed. 
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4.7-9 interpreting an On-Unit results in the update of the local on 

establishment (known by reference) with the function denoted by 

the On-Unit procedure body in the position known as cid, i.e. 

for that on condition identifier. 

4.10-15 interpreting a Signal statement is like Calling a subroutine, 

but there are some significant differences. 

4 .ll First all expressions of the argument list must all be 

identifiers, whereby their denotation can be extracted 

right from the calling (i.e. Signalling) environment. 

4.12 If the designated (cid) On-Unit has not been defined (by 

some On-Unit of the embracing scope) then 

4.15 an error situation has arisen, 

4.13 otherwise the function denoted by the specifically Signal- 

led (i.e. identified) condition On-Unit 

4.14 is applied to the argument list concocted in line 4.11° 

ObserVe that no environment is supplied, but that the con- 

tents of the current, the local 0n establishment is. The 

former is 'embedded' in the function denotation, the latter 

part of its functionality. 

4.16-19 interpreting a Revert statement has the effect of letting the 

current, the local on establishment henceforth associate the de- 

notation of the condition identifier with its value in the on 

establishment of the embracing block. 

... etcetera. 



370 

8 eval-arg(e)(env)(loev) = 

.i 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

0a888 e: 

(mk-Infix(,,) ~ (let v : eval-expr(e)(env)(loev), 

l 6 LOO be s.t. 1-E dom(cSTG); 

ST G :~ cST_~G U [l~v]; 

return(1)), 

mk-Const(i) ~ (let l E LOC be s,t. 1NE dom(cSTG); 

STG := cSTG U [l~i]; 

return(l)), 

T ~ return(env(e))) 

evaluating a subroutine Call argument proceeds according to the fol- 

lowing basic scheme. The exemplified language has Call-by-LOCation for 

objects other than procedures. Thus: 

8.2.5 Infix argument expressions are evaluated, a fresh S~ora~e pseu- 

do location is 'fetched', and S~ora~e initialized to the argu- 

ment expression value, with the new location being returned. 

8.6-8 Likewise for Constant expressions. 

8.9 All other expressions, i.e. variable- and Procedure identifiers 

result directly in their denotation being retrieved from the 

scope. 

Thus Procedure denotations is passed by-worth~ 

13 free-dummy-locs(al, el) = 

.i (let Ices = {al[i] I Nis-Id(el[i]) ^ i£indel}; 

.2 STG := cSTG~locs) 
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9 eval-expr(e)(env)(oe) = 

.i cases e: 

.2 (mk-Infix(el,op, e~) 

.3 ~ (let v I : eval-expr(el)(env)(oe), 

.4 v 2 : eval-expr(e2)(env)(oe); 

.5 cases op: 

.6 (ADD ~ ((Vl+V 2 ~ 2+64) 

.7 ~ (if OFL E domoe 

.8 then (dclr := v1+v2; 

.9 (oe(OFL))(r); 

i0 return(cr)) 

ii else return(2+64)), 

12 (VI+V ~ < -2+64) 

13 ~ ( i f  UF~ E domoe 

14 . . . ) ,  

15 T ~ return(vl+v2)), 

16 SUB ~ ... 

17 ... 

.18 E_QQ ~ return(v1=v 2) 

.19 ...)), 

.20 mk-Oonst(i) 

.21 ~ return(d), 

.22 T ~ (e_~S!~G)(env(id))) 

We concentrate on lines 9.6-9.11. 

If evaluation of an arithmetic expression leads to overflow (9.6), then 

either of two situations occur. 

Either there is defined, by the programmer, an On-Unit, in the current 

On Establishment, for handling OverFLow, and then this unit is called 

(9.9) passing to it -- as a hypothetical example -- reference to a meta • 

variable initialized to the overflow value. The value of the expression 

becomes the contents of this variable (9.10) after execution of the de- 

fined On Unit procedure (9.9). Thus we expect the programmer to define 

the ~ on-units with one formal parameter of type ~ation. We do not 

show a static test for this -- but could have. 

Or: the programmer has not defined an appropriate OF_L On-Unit in which 

case the SYSTEM action is to return, say the maximum arithmetic-value 

(9 .ii) '. 
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Comment 

From the definition we can informally derive the following informal, 

technical english, users programming reference manual-like, description 

of the 0n-Condition concept. 

On-Units are like assignment statements. The target reference is one, 

of a limited variety, of condition codes (cid). The right-hand side 

expression is restricted to be a procedure (4.7-9). 

To Signal is to invoke the most recently 'assigned' On-Unit of the name 

(cid) signalled. Thus a Signal is hike a Call. 

To Revert is to locally re-assign the On-Unit most recently 'assign- 

ed' in the immediately, dynamically containing block. 

Further: To each block activation we let there correspond an associa- 

tion of cids to On-Unit procedure values called an 0n-Establishment 

(2.3). A block activation inherits the value of this association in the 

invoking block (respectively calling procedure) (2.3 from 4.5 + 7.5). 

'Falling' back to the interpretation of an invoking block brings us 

back to the on-establishment of this latter block current when this 

block invoked the block just terminated. 

Finally: Procedures are elaborated in the defining environment (2.2 

7.4-5), but in the calling on-establishment (4.5 ~ 7.1-5). 

Discussion 

We shall only discuss the local/global state modeling chosen in our 

conceptualization of the source language On Condition-, respectively 

Variable constructs. Our first example illustrated that model compo- 

nents, like the state (Z), which are transformable by any syntactic 

construct, can indeed be an explicit parameter to functions elaborat- 

ing these constructs, provided, of course, that the possibly changed 

state is likewise explicitly yielded as part, or all, of the result. 

This is the rule followed in all of the Oxford models; many examples 

in [Bj~rner ?Sb] also exemplified this specification style. For block- 

structured imperative programming languages it soon, however, becomes 

rather cumbersome to write, and read, all these explicit passings and 
returns of such all-pervasive, components. 
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Hence itwas decided, as a concession to readability, as well as to engi- 

neering, to permit variables in the meta-language. The point is now 

to use variables sparingly, and to have their introduction, the fact 

whether they are local or global, and their manipulation, reflect the 

very essence of the concept they are intended to model. Therefore: 

Since source-language variables, declared at any (source-language-) 

block- & procedure level, can be cha~ged at any other, "inner" and 

"outer" level, the storage component of the state was chosen to be 

modeled by a single, global meta-variable. (That sl-variables can be 

updated on levels outside their scope is due to the by-~ation para- 

meter passing capability.) 

And: since On-Units correspond to assignments to variables (names in 

Cid) of type procedure- (or, as in PL/I, entry-) value, the model com- 

ponent (on-establishment), keeping track of current Cid to procedure 

value associations, was also chosen to be a meta-variable. Further: 

since such 'assignments' in one block (£0£a) are not to disturb the 

associations recorded in any containing block (boe), we introduce one 

such meta-variable, loe, per block activation. To shield the boe, which 

is needed in a directly contained block due to Reverts, it is passed 

by value, i.e. its content (4.5 ~ 7.5 ~ 2.0 ~ 2.4); whereas the £ocal 

0e is passed by r e~erence (loer £ ~ef OE) (2.3 ~ 2.4 ~ 4.0 ~ 4.9,4.18, 

4.19) . 

Modeling on-establishments by locally declared meta-language variables 

shifts the burden of 'stacking ~ embracing on-establishments from the 

definer, and of understanding these usually rather mechanical descrip- 

tions away from the reader, and onto the meta-language: its semantics, 

respectively the readers understanding of, in this case, recursion. 
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