
PROGRAMMING IN THE META-LANGUAGE: A TUTORIAL 

Dines Bj@rner 

Abstract: 

This paper provides an informal introduction to the 

"art" of abstractly specifying software architectures 

using the VDM meta-language ~. A formal treatment of 

the semantics, as well as a BNF-like concrete syntax, 

of a large subset of the meta-language is given in 

[Jones 78a] following this paper. 

colloquially known as: META-IV 
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PART I: PRELUDE 

Section 0 frames the subjectr and gives an extensively annotated exam= 

ple. This example illustrates many of the important aspects of the me= 

ta-language. The particular abstraction choices made are, however, not 

commented upon, nor explicitly singled out. 

Section 1 forms an overview of the various meta-language constructs. 

Although this primer is almost 200 pages (long), the meta-language, as 

it transpires from section i, is not 'big'~ Certain meta-language no= 

tions are considered so common, or simple, that they are not treated 

beyond section i. We think here, in particular on sections 1.5- 1.7. 
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0. INTRODUCTION 

This tutorial teaches you the meta-language. The primary aim is to ren- 

der you fluent in the notation and its meaning, both as a reader and 

as a writer. That is: both as a user of software architectures abstract- 

ly specified by other people, and as a producer of such documents one- 

self. The secondary aim is to make you use the meta-language as per its 

intentions, i.e. in good style. We wish that you be able to produce 

suitable software abstractions. Thus we emphasize giving a rather com- 

plete, yet informal coverage of the syntax & semantics of the meta-lan- 

guage. We refrain however, from presenting a comprehensive introduc- 

tion to the kind of abstraction principles and techniques which the meta- 

language is especially designed to facilitate and express. The tutorial 

contains an extensive set of examples. A careful study of these is in- 

tended to give you a rather complete overview of the fundamentals of 

abstract modeling -- as we see this activity. See also [Bj~rner 78c]. 

The meta-language, as already mentioned in the introduction to this vo- 

lume, evolved in the course of documenting a readable, denotational se- 

mantics of a PL/I subset [Beki6 7h]. It has subsequently, in addition to 

denotational semantics definitions of other languages, been applied to 

similarly abstracted, formal definitions of relational data base systems 

[Hansal 76, Nilsson 76],components of operating systems and their com- 

mand & (job) control languages [Bj~rner 78a, Madsen 77], as well as more 

applications oriented software. These all exemplify, or imply, large com- 

plexes of software, with many, and intricate facilities. Individual 

examples of this tutorial, will, however, also illustrate applications 

to basic algorithmic functions . 

The examples of this tutorial can be grouped according to either of two 

criteria: free-standing examples (illustrating an isolated software con- 

cept); versus examples strung together over several sections (usually 

illustrating systems software). The latter can (furthermore) be grouped 

according to the kind of systems software being abstracted. The follow- 

ing is a reference guide to these: ~ 

Programming Language Constructs: 

Examples: 30-34, 36-38, 40, 42-43, 47, 49-62, 64-68. 

(Most of these examples are mere transcriptions and annotations of 

parts of the mini-language definition of appendix III [Jones 78a].) 
..................................................................................... 

see pages 213-217 for a complete, annotated index to all examples. 
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File System Concepts 

Examples: 3-8, 12-13, 17-18, 20-25, 27-28, 35. 

(Operating or File System) Catalogues/Directories 

Examples: 19, 29, 63. 

Usually major sections will start with a large example illustrating all 

the main notions introduced by the section. The examples interspersed 

in the text outlining the individual language constructs are usually 

far simpler than the more encompassing introductory example. Finally, 

many sections are trailed by yet additional, larger examples. If you 

find difficulties in comprehending the introductory examples you may 

wish to skip these intially. If you find difficulty in understanding 

the interspersed examples this tutorial will have failed: 

(We mention, in passing, that no examples will be given of concurrent 

system architectures: the subject meta-language was not designed to 

cater for this [sadly neglected] area.) Finally some examples will be 

of a rather formal, or schematized nature; not illustrating 'practical' 

notions, but paraphrasing principal, or 'theoretical', aspects of the 

meta-!anguage. 

We stress here, as was stressed in the introduction to this volume, that 

the meta-language is to be used, not for solving algorithmic problems 

(on a computer), but for specifying, in an implementation-independent 

way, the architecture (or models) of software. Instead of using inform- 

mal English mixed with technical jargon, we offer you a very-high-level 

'programming' language. We do not offer an interpreter or compiler for 

this meta-language. And we have absolutely no intention of ever wasting 

our time trying to mechanize this meta-language. We wish, as we have 

done in the past, and as we intend to continue doing in the future, to 

further develop the notation and to express notions in ways for which 

no mechanical interpreter system can ever be provided. Given a terse 

and readable abstract model of some software item, and as e.g. expressed 

in this meta-language, we see it as the foremost and almost solely dis- 

tinguishing task of programming to carefully turn the abstraction, in 

stages of, at most semi-automated, development, into an efficient rea- 

lization. Once such an implementation has been reached we let the entire, 

possibly annotated, documentation: the abstract model, as well as all 

intermediate development stages, serve as the only documentation of the 

realized software. 

To give you a flavor of the meta-language, but not really the kind of 

software we primarily intend it aimed at, we now give you a rather com- 

prehensive example. 
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We will present this example completely formally: first the abstract 

model, then the annotations. Other than these annotations, which repre- 

sent a mere reading of the formulae, we do not here explain the formu- 

lae. Thus the example is brought to give you, from the very start, a 

capsule view of core aspects of the meta-language; as well as an idea 

about what a model is: its parts, their purpose and interrelations. 

Semantic Domains 

1 GROCER :: SHELVES STORE CASH CATALOGUE 

2 SHELVES = Wno ~ N 1 

3 STORE = Wno ~ N 1 

4 CASH = N O 

5 CATALOGUE = Who ~ Description 

6 Description :: Price Minimum Maximum Size 

7 Price = N I 

8 Minimum = N 1 

9 Maximum = N 1 

10 Size = N 1 

-- annotations: 

The model is concerned with rather self-contained fragments of a groce- 

ry: its inventory, cash and catalogue subsystem. The model describes a 

domain of such groceries and exemplifies a few of the manipulations that 

groceries are subject to: customer purchases, and inventory/cash control. 

The reader is, throughout this primer, well-adviced in reading the anno- 

tations with a finger following the formulae and trying, otherwise, to 

establish the connection~ 

A grocery is here selectively abstracted by abstractions of its 

shelves and store, i.e. inventory, its cash register, and its 

catalogue. 

The shelves display a finite, non-zero number of items of a 

finite variety of merchandise. Merchandise presently being ab- 

stracted by ware number codes. 



etc.. 

$5 

In the store-room is similarly kept a finite, non-zero number 

of boxed quantities of items of a finite selection of wares. 

The cash register is simply abstracted by the cash it contains. 

The grocers' catalogue lists a description of each sort of mer- 

chandise. 

Such a description here consists of the unit (item) sales price; 

the minimum and maximum (lower- & upper-bound) numbers of items, 

of the described merchandise, which ought, respectively may be 

placed on the shelves; and finally the size of a stored box, 

measured in terms of the number of merchandise items it contains° 

Prices are measured in integer (positive number) units of cur- 

rency. 

Comments 

The above description 'read' the formulae as describing a grocery. The 

formulae, in fact, defines a whole domain (i.e. class) of such. 

The formulae (1-10), and (12-15) below, constitute an abstract syntax 

(abstract syntaxes). Each line (i, 2, ..., i0) is an abstract syntax 

rule. The rules all have their left-hand sides being identifiers. The 

right-hand sides are so-called domain-expressions. 

The described domains are said to constitute the semantic domains. Se- 

mantic domains are "whst the whole thing is about". Syntactic domains, 

described below in formulae 12-14, are (just the) objects which denote 

manipulations of semantic objects. 



36 

Well-Formedness Constraints 

ii. 0 is-w f-GROCER (Ink-GROCER (she l ves , 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

store, cash, catalogue))= 

(dom store c dom shelves c domcatalogue) 

^(Vwno 6 domcatalogue) 

(let mk-Description(price,min, max, size)= catalogue(wno) inn 

(0 < size < max-m~n) 

^((WHO 6 dom shelves) 

~(let items = shelves(who) in 

((wno 6 dom store) ~ (min < items < max), 

T ~ items < max))) 

-- annotations : 

The domain descriptions captured the essence of how we abstractly view 

groceries, but the defined domains contain objects, i.e. groceries, 

which do not satisfy natural constraints: 

ii.0 

ll.l 

i1.2 

11.3 

i1.4 

11.5 

11.6 

For a grocery (which consists of shelves, a store room, the cash 

register, and a catalogue) to be well-formed, the following con- 

straints must be satisfied: 

There cannot be merchandise in the store room which is not also 

displayed on the shelves; and any merchandise on the shelves 

must be described in the catalogue. Furthermore: 

For each type of merchandise described in the catalogue, 

look-up the price, minimum & maximum shelf-, and box size quan- 

tities for that ware in the catalogue: 

Now the maximum must be higher than or equal to the minimum, and 

their difference (in that order) must be lower hhan or equal to 

the box size. (This is a pragmatic constraint. It permits the 

update of shelves with the full contents of boxes, without viola- 

ting (min, max) constraints.) 

If, in addition, the ware is also, actually displayed on a shelf, 

then: 

Let us call the number of items of that ware on the shelves for 

items. Now: 

ii. If the ware additionally is further stored in the back room, then 

the number of items on the shelves must actually fall between the 
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minimum, lower and maximum, upper bounds; otherwise 

there can be no more items on the shelves than is maximally per- 

mitted. 

Comment: 

The is-wf- function is defined relative to some named domain, here the 

class of all GROCERies. In the f611owing we shall understand by GROCER 

the class of those objects which satisfy the predicate (ii). In fact, 

any manipulation, i.e. any transformation of, or process on, a grocery, 

shall leave us a(nother) grocery also satisfying the well-formedness 

constraint. Thus the predicate (ii) is also seen as forming a major 

part of the invariant according to which we 'program' our manipula- 

tions -- whether on the abstract, or concrete level. 

Syntactic Domains 

12 Transaction = Purchase 

13 Purchase :: WhO + 

14 Control :: Wno-set 

15 ... 

I Control I 

-- annotations: 

The grocer sees a customer purchase, his own daily check on the availa- 

bility of certain wares, etc., as transactions. These are operations on 

the grocery. Syntactically speaking: 

12 

13 

14 

A transaction is either a customer purchase, a clerk control, or 

something else - presently undefined: 

A customer purchase is presented at the check-out counter as a 

sequence of not necessarily distinct wares. In this sequence 

groups of items of the same kind need not occur together. 

A store clerk control consists of a set of distinct ware types 

(for which their inventory amounts are asked). 
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Comment: 

Observe that only the last parenthesized phrase above invoked semantic 

notions. That is: we have totally separated syntactic descriptions from 

those of their semantics. 

Dynamic Consistency Constraints 

16.0 

1 

2 

3 

4 

5 

6 

is-well-formed-purchase(purchase, grocery) = 

(let mk-Purchase(wl) = purchase 

mk-GROCER(shelves, , , ) = grocery in 

let mini-shelf = make-shelf(wl)([]) in 

(dom mini-shelf c domshelves) 

^(Vwno 6 dommini-shelf) 

(mini-shelf(wno) ~ shelves(wno)) 

-- annotations : 

The customer can select merchandise only from the shelves, and in 

quantities bounded by what is displayed: 

16.0 

16.1 

16.2 

16.3 

16.4 

For the combination: a purchase and a grocery to be consistent, 

we must therefore require that 

the ware list of which the purchase is made up, and 

the shelves (from which the wares were selected satisfy the 

constraints given in lines 16.4-16.6. 

To express those constraints let us compute for each ware type, 

in the purchase, the number of times it occurs in the purchase. 

Since this corresponds, in the way we abstracted shelves, to an 

object of SHELVES~ we call it mini-shelf. That is: mini-shelf 

displays, as do shelves, a functional association between ware 

codes and numbers of (shelves, mini-shelf) items of that ware. 

The function make-shelf, which takes the ware-list of the pur- 

chase and computes this association, is activated with an empty 

shelf. The function definition is given below (17). 

Now to the constraints themselves: 

The kind of wares purchased must form a (not necessarily proper) 

subset of the merchandise displayed on the shelves. 
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And : 

16.5 

16.6 

For each ware purchased 

the number of items purchased must be less than or equal to the 

number of wares of that kind on the shelves. 

Comment 

The abstraction given is not as elegant and transparent as we would 

have hoped. Thus we find the introduction of the make-shelf auxiliary 

function somewhat of a resort to an operational description of the con- 

straint. 

Auxiliary Function 

17 

3 

4 

5 

.6 

.7 

make-shelf(wl)(shelf)= 

/Zwl = <> 

then shelf 

else (let WhO = hdwl in 

let shelf' = ((WHO 6 dom shelf) 

shelf+[wno~(shelf(wno)+1)], 

T~ shelfU [wno~l]) in 

make-shelf(tl wl) (shelf')) 

type: Wno+ ~ ~HELVES ~ SHELVES ) 

-- annotations : 

The function takes, as arguments, a tuple (or list) of wares and a 

shelf (really: an object of SHELVES) and yields, as result, a SHELVES 

object. The type clause expresses this. The form after the type colon 

is a so-called domain expression. The function is recursively defined, 

cf. line 17.7. It performs its function by treating each item (wno) in 

the ware list separately: 17.3-17.6. That is: by 'chopping' off the list 

from its front, or head, leaving treatment of the rest, i.e. tail, of 

the list, till another recursion (17.7), passing it the shelves object 

(shelf') so far computed. Thus: 

17.1 If the (tail of the) ware list is the null tup!e, 

17.2 then the accumulated shelf computed up till now is delivered 

as the result. 



17.3 

17.4 

17.5 

17.6 
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Otherwise: Let us call the first item of the remaining ware list 

for wno. 

And then update the shelf so far computed. If the item under in- 

spection (being "tallied'9 has already occurred in the ware list, 

then the updated shelf has one added to the number of items, of 

the same kind, so far purchased. 

Otherwise, this is a first occurrence of this particular ware, 

and the shelf is augmented by the initialization of its tally 

count to I. 

Semantic Functions 

18.0 

.i 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

.ii 

.12 

.13 

.14 

.15 

.16 

.17 

.18 

.19 

.20 

.21 

Elab-Purchase 

N 

type: Purchase GROCER 

Elab-Purchase(mk-Purchase(wl), grocer)= 

!Z wl = <> 

then grocer 

else (let mk-GROCER(shs, sto, cash, cat) = grocer, 

mk-Description(p,min, max, size)= cat(h_ddwl), 

wno = hd wl in 

let cash' = cash+p, 

(shs',sto') = 

(let items = shs(wno), 

stored= ((WHO 6 dom sto) ~ sto(wno), 

T ~ O) in 

i_~ ((items=min)^(stored>O)) 

then 

(shs + [wno~items-l+size], 

((stored=l) ~ sto~{wno}, 

T ~ sto+[wno~stored-1])) 

else 

(((items=l) ~ shs~{wno 

T ~ shs+[wno~items-1]), 

sto)) in 

(mk-Purchase(tlwl), 

mk-GROCER(shs',sto',cash',cat))) 

GROCER 

-- annotations: 

To purchase a ware is to take a grocery store and deliver another. In 
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the resulting grocery store the shelf count for the purchased ware 

(wno) is diminished by 1 (18.13 & 18.18), and if the shelf display 

goes under minimum and there are supplies stored (18.11) then the shelf 

is replenished by size items (18.13). To the cash register is added 

the purchase price of the ware (18.6). 

The Purchase Elaboration, as did the above auxiliary function, works 

by updating the grocery store, once completely for each item in the 

purchase (18.3-18.19). That is: 

18.1 

18.2 

18.17 

18.14 

18.20 

18.21 

If the purchase has been completely serviced, 

then the result is the ~input' grocery. 

If the shelf display of the purchased ware would go to zero, 

cognizance of this ware is deleted from the shelf. Likewise: 

If by replenishing the shelves from the store the supplies go 

to zero, this ware is deleted from the store room. 

The rest of the purchase is elaborated. 

with the updated grocery. 

19.0 Elab-Control(mk-Control(wno),grocer)= 

Tabulate(wno,grocer)([]) 

type: Control GROCER ~ (WhO ~ N O ) 

-- annotations : 

To control the grocery for the quantities available of each of a given 

set of ware categories is to tabulate these, starting with an empty 

table. 

The tabulate function is auxiliary. The resulting table associates to 

each ware category the possibly zero quantity on hand, on the shelves 

as well as in the supply. 
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Auxiliary Function 

20.0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.10 

.ii 

Tabulate(wnos,grocer)(table)= 

~wnos={} 
then table 

else (let mk-GROCER(shs, sto, ,cat) = grocer, 

WhO 6 wnos in 

let items =((wno 6 dom shs) ~ shs(wno), 

T ~ 0), 

stored= ((WHO £ dom sto) ~ sto(wno), 

T ~ 0), 

size = s-Size(cat(whO)) in 

let sum = items + (stored~size) in 

Tabulate(wnos~{wno},grocer)(tableU[wno~sum] 

t~: Who-set GROCER ~ ((Who ~ N O ) ~ (Who ~ NO)) 

-- annotations : 

are left to the reader! 
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1. OVERVIEW OF META-LANGUAGE 

In this section we briefly survey the meta-language.The overview of 

sections 1.1-1.3 emphasizes only syntactic aspects. The aim of sections 

1.1-1.3 is to give you a rather comprehensive feeling for the composi- 

tion and extent of the meta-language. 

1.1 Abstract Data Types 

The elementary data types (except for booleans) of the meta-language 

are not fixed. For a suggestion of suitable base types we refer to 

section 13. 

The composite, very-high level abstraction-facilitating, data types are: 

Sets: 

Domains: 

ConstructOrs 

Operations 

A-set 

{.o.} 

U, N, \, ~_, c, E, card, power, =, , 

Tuples: 

Domains: 

Constructors: 

Operations: 

* A + A , 

<..~> 

hd, tl, len, ind, elems, ~, [.3, cone, =, , 

Maps: 

Domains: 

Constructors: 

Operations: 

A~B 
m 

[ ..... ] 

domj rng, (.), U, +, ~, j ----, 

Functions: 

Domains: 

Constructors: 

Operations: 

A-~B~ A~B 

~..~@o,. 

(.) 
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Trees: 

Domains: A :: B I B 2 ... Bn, 

Constructors: mk-Aj mk, (...) 

Operations: s-Bi, =, % 

(C I C 2 ... C n) 

The 'domains' lines above exemplify the expression of domains of objects 

of the subject type. A, B, B~ and C i are given (or defined) domains. The 

constructors hint at the following typical object construction expres- 

sions: 

(a 1, a 2, • . ., a n ), 

<a I, a 2, • . ., an>, 

[a l~b 1, a2~b 2, • . . , an~b n], 

{ F ( d )  I P ( d )  } ,  

< F ( i )  f P ( i )  ^ m < i < n  > 

[ F(o) ~ G(o) I P(o)] 

representing respectively explicit & implicit set, tuple and map object 

denoting expressions. Also: 

hid. clause 

abstracts the meta-language expression or statement clause into the 

function of id that clause is. Finally: 

mk-A(bl,b2,...,bn), mk(Cl,C 2 ..... c n) and (Cl,C 2 ..... a n ) 

denote trees. 

1.2 Combinators: Statements and Structured Expressions 

Declaration: 

Assignment: 

Identity: 

Contents expressions: 

Conditional Clauses: 

dcl Va~ := expr type D, 

Va~ := expr, 

I 

c V a t  

i~ expr then clause I else clause 2 

(expr I ~ clause1, 

expr 2 ~ clause2, 

. * °  

expr n ~ clause n) 

(null statement) 

is the classical McCarthy conditional clause, with: 
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cases eXPro: 

(expr I ~ clausel, 

expr 2 ~ clause2, 

o . o  

expr n ~ clause n) 

being a variant of the Hoare/Wirth cases clause. 

while expr do stmt, 

for all id 6 set d~o stmt, and: 

for i = m to n do strut 

are the (conventional) iteration statements. Compound statements use the 

semicolon operator: (stmtl; stmt2;... ; stmt n) -- where stmt are statements. 

Statement- & expression blocks may occur anywhere a statement, respec- 

tively expression, may occur: 

and: 

(let def = expr in clause), 

(let def : expr; clause) 

illustrate the two block forms: the former basically of the applicative 

kind, the latter of the imperative kind. 

Function definitions are written: 

fid(idl,id2,...,idn)= 

clause 

type: D I D 2 ... D n D 

-- or in some such form. The language has no gotos, but provides both 

imperative and applicative variants of a ~hrase-structured, block-orien- 

ted, un-labelled exit mechanism~ 

and: 

(tra P exit(id) with F(id) in clause) 

(tixe [ G(o) ~ F(o) I P(o) ] in clause) 

with: 
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exit, exit(expr) 

being the exit causing constructs. 

1'.3 Abstract Syntax 

Abstract syntaxes are used in defining named domains of objects: 

A 0 = B 1 I B 2 l ... i B n union 

A 1 = B-set sets 

A 2 = B ~ tuples 

A 3 = B + tuples 

A 4 = B~C maps 

A 5 = B~C functions 

A 6 = B~C partial functions 

trees A 7 :: B I B 2 ... B n 

are typical rules. Objects, o, in the domains defined by some such rule 

satisfy: 

is-A • { ~.o.. 
z 

l" 4 Logic 

Only one elementary data type is assumed: 

BOOL 

consisting of the two truth valued objects: 

true, fa!s ~ 

to which the following non-commutative operations apply: 

A t V t 

as well as: 

(and, or, implication) 

(negation, identity). 



47 

Quantified ExDressions 

Predicates asserting truth properties: 

(I) (Vo 6 setJ(P(o)) 

(2) (30 6 set)(P(o)) 

(3) (3" o £ setJ(P(o)) 

read as follows: 

(i) for all objects [in the set] the predicate (P) holds. 

(2) there exists an object [in the set] for which the predicate (P) holds. 

(3) there exists a unique object [in the set] for which the predicate (P) 

holds. 

1.5 Descripto ~ Expression 

This subsection will be the only place in which the descriptor expres- 

sion is treated. 

(1o)(P(o)), (Ao)(P(o)j 

i (iota) and A (delta) are offered as alternate forms of representing 

the descriptor operator. The forms above denote (and read): 

the unique object satisfying the predicate (P). 

1.6 Undefined & Erroneous Situations 

The form: 

undefined 

is offered as a notation expressing some further unspecified undefined 

object. Applying operations outside their domain is (likewise) said to 

yield undefined results. Similarly for descriptor expressions. 

The form: 

B r r o r  
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is offered as a notation for stating situations for which there are no 

clear definitions. 

In this primer we consistently use undefined to denote undefined (non- 

state) objects, i.e. in basically applicative contexts. We consistently 

use error to denote undefined state transitions, i.e. in basically 

imperative contexts. Thus we consider undefined to be an expression; 

error, a statement: 

1.7 User-Defined Identifiers 

The meta-language sets no spelling standard for identifiers naming ob- 

jects (defined functions, variables, parameters, etc.) or domains (as 

in abstract syntaxes). 

The following outlines the conventions basically followed in this primer. 

Identifiers are either single Greek letters or sequences of one or more 

Roman letters and Arabic digits. Identifiers might contain proper infix 

hyphens, and possibly be decorated with (simple) subscripts (digits and 

letters) and/or single, double, triple ..... (superscript) primes. 

The choice between Greek letters and other identifier forms is basically 

governed by these informal, enumerative rules: 

(So-called) State Domain 

State Object Names: 

(So-called) Environment Domain 

Environment Object Names: 

(So-called) Continuation Domain 

Continuation Object Names: 

Names: 

Names: 

Names 

~, or 

~, respectively 

ENV 

env, or p 

C 

0 

The criterium on when to use upper and lower case letters is basically 

this: 

(So-called) Semantic Domain Names: 

Sequences of one or usually more UPPER CASE LETTERS, possibly 

trailed by a digit. 



49 

(So-called) Syntactic Domain Names: 

UPPER case letter followed by one or more lower case letters, 

possibly trailed by a digit. 

Object Names: 

Lower case counterparts of corresponding domain names, usually 

amounting to prefixes of such, and quite often decorated. 

Assignable Variable Names: 

-- in this primer usually written in script and underlined with 

tildes. When variable is global, first letter is upper case; 

otherwise lower-case. 

Other conventions are: 

Function Names: 

Elaboration functions primarily applicable to objects of domain 

Xyz have names: 

elab-Xyz 

E-Xyz 

int-Xyz 

I-Xyz 

ev~l-Xyz 

V-Xyz 

(for imperatively stated) respectively: 

for (applicatively expressed) elaboration functions~ 

(for imperatively stated) respectively: 

for (applicatively expressed) interpretation func- 

tions; 

(for imperatively stated) respectively: 

for (applicatively expressed) evaluation functions. 

(Elaboration is a term comprising both interpretation and evaluation. 

Interpretation implies elaboration of constructs basically for the sake 

of their side-effects. EValuation implies elaboration of constructs 

basically for the sake of values explicitly yielded.) 

Other Function Names: 

Let A be some domain name, then 

is-A, s-A, mk-A, is-wf-A, 

are reserved names, is-A was explained in section 1.3. 8-A and 

mk-A in i.i. i8-wf-A is to be the name for any static context 
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condition predicate function applicable to all A objects and 

yielding true only for those A objects one actually intends 

the definition of A to cover! s-A and mk-A may not actually 

be defined by some abstract syntax. The above reservation 

then intends to prevent confusion. 

1.8 Structure of Tutorial 

The structure of this primer is as follows. 

In part II we cover data types: sets, tuples, maps, trees, functions 

and the notion of abstract syntax. Respectively sections 2,3,4,5,6 & 7. 

The language features covered enable us to express domains, objects 

and primitive operations on these -- in particular operator/operand 

expressions. Examples of earlier sections will necessarily employ meta- 

language notions only formally introduced in later sections. Insofar 

as this is the case we rely on your good-will and patience, attempting, 

on our behalf, however, to keep such uses to a reasonable minimum. 

In part III we cover language constructs such as variables: their decla- 

ration, assignment and contents access; structure expressions and state- 

ments; blocks, and the exit mechanism. With these meta-language features 

we are now able to express composite transformations, respectively state 

compound processes, on objects, respectively state variables. The examp- 

les of this part take on a flavor distinct from that of the examples of 

part II. There the examples were explicitly tied to the individual sub- 

jects being covered. Explicit examples using the constructs formally 

introduced in part III are given already in part II. instead the examp- 

les of part III tend to be rather more comprehensive, illustrating several 

aspects of abstract modeling simultaneously. 

In part IV we wrap up the story on function definitions and abstract 

models. 

This part is not comprehensive. It relies on the subject being already, 

albeit partially covered in parts II &III. Part V ties up loose ends 

concerning elementary data types. 

In addition to the above contents survey we advise the reader to care- 

fully study the contents listing in order to ascertain the logical 

structure of this primer. 



51 

PART II DOMAINS, OBJECTS & OPERATIONS 

Function definitions describe transformations on data objects. As such 

the defined functions apply to a domain of objects and yield objects 

of the range. The specific transformation is expressed, in terms of 

forms (constructors) denoting objects, operators and structured com- 

binators denoting operations on objects. 

The above paragraph serves the purpose of delineating the three cor- 

nerstones of this part: the story on meta-language means of defining 

domains of objects, representing constructed objects and operations on 

objects. Most sections will be structured accordingly. These will have 

basically three subsections. One will outline and exemplify how do- 

mains are defined, i.e. represented by means of so-called logical 

type- (or, as we shall prefer to call them, domain) expressions. 

Another will outline and exemplify how instances of objects of the 

domain are constructed. Finally a third will outline and exemplify 

expressions formed around operators denoting operations on objects. 

This last is split into two subsections: one on primitive operations, 

the other on combinators. 

Each section dealing with a composite abstract data type will be in- 

troduced by examples whose purpose is to capture the essence 

of the objects under discussion, thus motivating you right into the 

rather formally structured parts. And each section will be concluded 

with larger examples. 

In bringing examples we intend to illustrate basic principles of ab- 

stract modeling using the meta-language. The examples take care to use 

the meta-language in "good style". 

[In this way you will also be introduced to representational- & ope- 

rational abstraction; to applicative- & imperative programming; and, 

in a few places, to configurational- & hierarchical abstraction.] 
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The situation which we wish to abstractly define is perhaps rather 

'childish'. We are given a set of classes, each class consisting of a 

set of students. Let students be abstracted by their school registra- 

tion code. Let the domain of all such codes be Student. Then: 

Class = Student-set 

is an abstract syntax rule whose left-hand side is an identifier, and 

whose right-hand side is a domain expression. It describes a class as 

being a set of (distinct) students. The equation gives the name Class 

to a domain, and this domain is defined, by Student-set, to be the do- 

main of finite subsets of Student. 

Let suitably decorated s's and o's denote respectively students and 

classes, i.e.: 

is-Student(s) 

is-Class(e) 

Now: 

{sl,s~,.~.,s n} 

is a set constructor expression. It denotes a class. 

TO test whether a given student, s, attends a given class, c, we write: 

s£a 

-- which we read: s is a member of c. If s is not a member of c, then 

the expression is fals e, otherwise true. If we call the function that 

tests class recordings for is-in-class then: 

is-in-class(s,a) = s £ c 

is a function definition. TO compute the students attending two classes, 

c I and c2, we write: 
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01 n c2 

-- which we read: the intersection of c I and 02, i.e. : the set of stu- 

dents common to both c I and c2.. If no students attend both e I and c2, 

then: 

c I n c 2 = {) 

their intersection is empty. The students following either c I or e 2 or 

both is denoted by: 

e I U c 2 

-- which we read: the union of a I and c 2 . 

diminished by the departure of a student, 

c~{s} or c - {s} 

-- which we read as: the complement of s with respect to {8}, or -- 

which might be more to your liking -- the set c subtracted {s}. We use 

the notation ~ and - interchangeably, although not in this primer, 

where ~ is preferred. To record that a class, 0, is augmented by the 

entry of a student, 8, we write: 

0 u {8} 

The number of students in a class is: 

card c 

-- for cardinality. 

To record that a class, c, is 

8, we write: 
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2.1 Defining Domains of SET Objects 

Let A be the name of a class of objects i.e. a domain. To define the 

class of objects which are finite sets of A objects (i.e. finite sub- 

sets of A), we use the domain expression operator -set: A-set. 

The domain whose objects are finite sets of integers, 

sets of INTG, is definable as: 

i.e. finite sub- 

INTO-set 

Call this domain IS. Then: 

IS = INTO-set 

is an abstract syntax rule formally defining this name. Then the do- 

main whose objects are finite sets of (potentially overlapping) finite 

sets of integers is definable as: 

IS-set, or: (INTG-set)-set 

Let B represent the domain whose objects are abstractions of what, in 

a file system, is otherwise thought of as records. If files of such a 

system are, or can be, unordered, finite collections of distinct records, 

then: 
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R-set 

is an abstraction of the class of files. The domain R-6et, if R is an 

infinite class, is also infinite -- its objects are, however, all fi- 

nite sets. The form R-set is a domain expression. 

The file system thus modeled may seem a bit contrived. That is: you 

may never wish to design such a system. Note that at this stage the 

system has no notion of sequential files or keyed records. The examples, 

when expanded in subsequent sections will, however, appear more 'rea- 

listic' 

2.2 Representing Instances of SET Objects 

2.2.1 Explicit Enumeration 

Given distinct objects al, a2, 

expression: 

{al,a2,...,a n} 

is said to be an explicit enumeration of a set, which denotes an 

object of A-set. 

..., a which are all A objects, the 
n 

-- is denoted by: 

{} 

2.2.2 Implicit Enumeration 

Given a function F: D ~ A, where D denotes some logical type (i.e. an 

arbitrary domain); and a predicate F: D ~ B00L, the expression: 

{F(d) i P(d)} 
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is said to be an implicit set enumeration, and then denotes an object 

of A-set. Since A could be any logical type expression the above de- 

scribes how arbitrary sets may be represented. The implicit set con- 

structor expression can be read as: The set of objects F(d) such that 

the predicate P(d) holds. Thus we read I as 'such that: 

~ ! ~  ~-~-~: 

The constructor expression: 

{{1,s,s, 7,9},{~,~,11,~s,1~} ..... {} . . . .  {~.I,8}} 

denotes an object in (INTG-set)-set whose element sets, in this example, 

are not disjoint. 

denote distinct objects of R, i.e. be abstractions Let r 1, r 2, ..., r n 

of records, then: 

{rl,r2,...,rn } 

is (an abstraction of) a file, i.e. an object in R-set. 

Let F r be a total function from records into records, i.e.: 

type: Fr: R ~ R, and let f denote a file, e.g. the above, then: 

{ Fr(r) I rEf } 

denotes a file derived from f having each of the records of f processed 

by F a • 

2._~3 SE__~TOperations: 

The following special SET operations are defined: 



U 

N 

power 

£ 

card 

union 

Each of these 

It is assumed 

of sets. 

setIUset2 

8etlNset2 

setl~set2 

8etlcs~t2 

setlcset2 

power set 

obj6set 

card set 

union 8etsets 
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union 

intersection 

complement, difference, subtraction 

proper subset 

subset 

powerset 

membership 

cardinality 

distributed union 

(two forms provided) 

will now be individually and quite informally explained. 

below that set, set1, set2 denote sets and setsets a set 

denotes the set of those objects which are either in 

8etl, or in set2, or in both. 

denotes the set of objects which are both in setl and 

set2. 

denotes the set of objects which are in setl but not in 

set2. 

denotes (the BOOLean truth value) true if all members 

of 8etl are in set2 and there is at least one member of 

set2 not in setl, otherwise false. 

denotes (the BOOLean truth value) true if all members 

of set1 are in setS, otherwise false. 

denotes the set of all finite subsets of set. 

denotes (the BOOLean truth value) true if the object de- 

noted by obj is a member of set , otherwise false. 

denotes the (Natural) number of members of set . Read as 

cardinality. 

denotes the set consisting of all the objects of all the 

sets being elements of setsets. 
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The set operations applied to anything other that sets are undefined. 

Let f denote a file, i.e. be in R-set; let r and r. denote records 
Z 

(i.e. both be in R). The operator-operand expressions and constructs: 

(i) f u {r} 

(2) f ~ {r} 

(3) r E f 

(4) card f 

(5) (f~{r}) u {Fr(r)} 

(6) l e t r i E f 

(7) let r. £ f be 8.t.P(r) 
Z 

express typical set manipulations. These pure expressions could be 

used to provide a model of the following typical operations on files: 

(i) writing a (most likely new) record to a file; (2) deleting a re- 

cord -- most likely, but necessarily, contained in a file -- from that 

file; (3) asking whether a given record is in a file; (4) asking for 

the number of records in a file; (5) updating a record in a file to a 

new record, i.e. replacing it -- with the possibility that it might 

not already be in the file, in which case (i~5); (6) reading an arbitra- 

ry record from a file assumed not to be empty; and (7) reading an al- 

most arbitrary record, namely one further satisfying the property ex- 

pressed by the predicate function P. 

Let fl and f2 denote files, i.e. both be in R-set, then: 

(8) fl n f~ 

(9) fl = f2 

(10) fl = f~ 

(ii) fl = f2 

(12) fl ~ f2 
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might be reasonable abstractions of the following, slightly hypothe- 

tical, operations among files: (8) collecting, into a file, the re- 

cords common to two files; (9) asking whether all records of one file 

are contained in another file; (i0) -- and, in addition to (9) -- 

asking whether some records of the latter are not in the former; (ii) 

asking whether two files are identical; or (12) different! 

The expression: 

(13) fl U f2 

is a generalization of (1), in that {r} there denotes a singleton 

file, i.e. a file of exactly one record. (13) can be understood as 

the merge of the records of two files. The type Of the object denoted 

by (13) is a file. 

2.4 SET-oriented Combinators 

The following combinators are applicable to SET objects: 

let obj £ Set 

let obj E Set be s.t. P(obj) 

which you have already seen applications of, and: 

for all obj £ set d__oo S(obj) 

The let clauses occur in expression- or statement blocks: 

(let obj £ Set ..~ in 

C (obj)) 

where C represents either an expression or a statement. The for all 

clause is a statement, and so must S be. 

For the general meaning of let clauses we refer to section 10.1. The 

specific let clauses shown above bind the identifier obj to an arbi- 

trary, etc., member of the set, or domain, Set, anywhere in C where 

obj occurs free. 
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Note that Set in let clauses may either be an expression denoting a 

finite set; or a domain-expression, potentially denoting infinite sets. 

In the for-all statement set must however be restricted to denote a 

finite set, in particular: the expression: set must not be a domain 

expression. 

The meaning of the ~or-all clause is given here, but more systemati- 

cally repeated in section 9.2.5. Let set denote the finite set whose 

n objects we may arbitrarily name: idl,id 2 .... ,idn, where no i~. is 

free in S(id); then: 

I/{S (id I),S (id 2), ... ,S (id n) } 

is a sufficient transliteration of the for-all statement into a quasi- 

parallel 'compound' statement, each of whose statements, S(id), arises 

from S(obj) by replacing all free occurrences of obj in S(obj) by id. 

For the meaning of compound statements rely on your intuition, or look 

it up in section 10.4. Since the set element naming was arbitrary one 

can permute the above statements arbitrarily. 

The constructor expression: 

{ Fr(r) I r£f } 

is an applicative expression -- provided Fa does not rely on any state 

component. An imperative analogue can be achieved by means of the 

for-all statement: 

dcl ~ := ~} type R-set 

(Lot all r 6 f d__oo 

:= e_ ii~ ~ U {Fr(r)}; 
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The above can be seen to be a process-oriented abstraction of parts 

of a file manipulation system architecture. The global variable~ 

is initialized to the empty file, {}, of no records; and fixed to 

contain only finite sets of distinct records (t~pe R-set). File now 

denotes a constant reference, to an R-set object, i.e. an object in 

ref R-set; with ~ denoting the dynamic contents at that refe- 

rence, i.e. value of the file variable. 

2.5 Further Examples 

To sharpen your understanding of set manipulations we now bring 

further examples. 

The problem which we wish to abstractly define is that of recording 

equivalence classes. A set (e.g. sas) consisting of disjoint sets 

(e.g. asl, a82 ..... ash) of (e.g. A) objects is said to define (or, 

which is the same, to 'realize') an equivalence relation. In fact we 

call the member sets (aslj...) for equivalence classes. The set of 

equivalence classes thus is a partitioning of the union of all the 

(A) objects of the equivalence classes. Given one partitioning and 

an (A) object, supposed to be a member of an equivalence class, we 

wish to inquire whether it is indeed in some equivalence class of that 

partitioning. (We call the predicate which tests for this isRecorded.) 

As another subproblem we wish, given a partitioning and two 'recorded' 

~A-) objects, (al,a2) to generate a new partitioning as follows: If 

the two A objects are recorded in the same equivalence class, then 

the result partitioning is the same as the argument partitioning. If 

the two A objects are recorded in distinct equivalence classes, then 

the result partitioning is as the argument partitioning except for 

the collapse (union) into one memberset of the two sets of which al 

and a2 are respective members. (We call the new equivalence class 

generator function for enter). 



i.e.: 

. i  

. i  

E@ = B - s e t  

B = A - s e t  

EQ = ( A - s e t ) - s e t  

is-wf-EQ(sas)= 

(Vasl,as26sas)(as1~a82 = aslNas2={}) 

isReaorded(a, sas)= 

(a £ union 8as) 

isRecorded(a, sas)= 

as £ sas)(a £ as) 

where we gave two versions of isRecorded. 

°i 

.2 

.i 

enter((al,a2),sas)= 

{as J as68as ^ {al,a2}Nas={}} 

U ~ aslUas2 [ (aslEsasJ^(aIEasl)^(as26sas)^(a26as2)} 

equiv((al,a2),sas)= 

(3as6sas)(alEa8 ^ a26as) 

type: i8-wf-EQ: EQ ~ BOOL 

isRecorded: A EQ ~ BOOL 

enter: (A A) EQ ~ EQ 

equiv: (A A) EQ ~ BOOL 

-- annotations: 

i. EQ names a domain of objects. These are finite sets of B objects, 

with the latter being finite sets of A objects -- hence an EQ object 

is a set of sets of A objects. 

2. For such a set to be a partitioning, i.e. to be well-formed as per the 

intentions of defining the domain EQ, no two distinct members (of 

8a8) may have any A objects in common; or, which is the same, all 

membersets must be disjoint. 

3. For an A object, a, to be recorded, shall mean that the object (a) 

is in some memberset, i.e. (3.3) that there is a memberset, as, of 

which it is an element. 



4~ The two lines (4.1 & 4.2) express what was stipulated above: the re- 

sult partitioning is as the argument partitionings (4.1), except 

(4.2) -- etc. 

The t~pe clauses of the functions define the set of the input arguments, 

to the left of the arrows, and those of the results, to the right of the 

arrows. The arrows express that the defined functions are (indeed) (pos- 

sibly partial (3)) functions -- from the argument domains into the re- 

sult domains. 

As in the previous example, we deal with objects: 

S = (A-set)-set 

-- but now not subject to any restrictions. To check whether an S objects 

sas, is a partitioning we apply: 

isDeeomposed(sas) = 

(Vasl,as26sas)(as1~as2~slnas2=~}) 

type: S ~ BOOL 

To decompose an S object, sas, into the coarsest, i.e. smallest, having 

fewest elements, partioning of sas, we apply decompose(sas). 

A possibly incomplete definition of a coarsest partitioning, given a 

set, sas, of potentially overlapping sets, goes as follows: Let sas' be 

the result of decompose(sas). For all al and a2 that are members of 

member-sets of 8a8, al and a2 are in the same member-set of sas' if-and- 

only-if (iff) for any subset, {asl,a82,...,asn} of sas, al is in all asi, 

for i6{l:n}, iff a2 is in all asi (for i£{l:n}); and only such a's are 

in member-sets of 8a8' which are similarly in sas, i.e.: union 8a8 = 

union 8~8 t 
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Sometimes a picture is worth quite a few words: 

TO the left is some 8a8 ({X,V,Z}), to the right is its corresponding 

8as': the digits I-7 index the corresponding forms in the right-hand 

side expression below: 

decompose({X,V,Z}) = {X~(VUZ},V~(XUZ),Z~{VUX), 

(×nV)~Z,(VnZ)~X,(XnZ}~V, 

XNVNZ} 

Here is a formal definition of the function: 

decompose(sa8)= 

i_~ (3asl,as2£sas)((as1~as2)^((asINas2)*{})J 

then (let asl,a82 E 8a8 be 8.t. aslNas2¢{}; 

decompose({asl~as2, as2~asl,aslNa~2}Usas~{asl,as2}) 

else 8a8 

type: S ~ S 
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The problem with which we wish to illustrate, before going into a 

more systematic coverage, the meta-language abstract data type of 

TUPLEs, is perhaps not a very abstract one. We are to compute the 

first k rows of the PASCAL triangle; informally: 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

5 10 10 5 1 

etc.. So we define two functions: one computing the i'th row; another 

putting the first k rows together. The second function invokes the 

first. 
+ 

type: row: N 1 ~ NI+ + 

type: tri: N I ~ N 1 

row takes a positive, non-zero integer, i.e. a natural number larger 

then I, and produces a tuple of such numbers; tri takes a non-zero 

natural number and produces a tuple of as many tuples of natural num- 

bers. N1 + stands for the domain of tuples of natural numbers; N1 ++ 

for tuples of tuples of these numbers. An implicit way of specifying 

row and tri would e.g. define their pre- and post-conditions, i.e. 

the conditions that input (alone) must satisfy, respectively the con- 

ditions that input and output (together) must satisfy: 

type: pre-row: N 1 ~ BOOL 

type: post-row: N 1NI + ~ BOOL 

type: pre-tri: N 1 ~ BOOL 

type: post-tri: N 1NI ++ ~ BOOL 



In particular: 

pre-row(i) = true 

post-row(i,r)= 

cases i: (i 

2 

T 

(r = <I>), 

(r = <I,I>), 

(let riml = row(i-l) in 

(It = i) ^ (r[1]= I = r[lr]) ^ 

(vj £ {2:It-l}) 

(r[j] = riml[j-l]+riml[j]))) 

pre-tri(k) = true 

post-tri(k, rr)= 

(1 rr = k) 

^(Vi 6 {l:k})(rr[i] = row(i)) 

In the notation of the meta-language, tri(6) would be presented as: 

<<1>,<1,1>,<1,2,1>.,<1,3,3,1>,<1,4,6,4,1>,<1,5,10,10,5,1>> 

Giving the above implicit definitions of row and tri almost amounts 

to giving their explicit counterpart. Instead of doing this, let us 

"read" the pre- and post-'s: 

The pre of row is always true (for 5>0). The post of row says: if 

i=1 then the resulting row r is just the tuple of length 1 whose only 

member is a I. If i=2 then r is a 2-tuple both of whose elements are 

l's. In general, the length of r is i, its first and last elements 

are both l's, and, for i>2, the elements of r, i.e. of row(i), are 

related to elements of row(i-l) as follows: let j be any index into 

r exclusive of the first and last, then the j'th element of r is the 

sum of the j-/'st and j'th elements of row(i-l). 

The computation specified below computes tri(k) by imperative means: 
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(dc~,l lr~ := <<I>,<I,I>> type NI++ , 

Row i := <I> t~pe NI+; 

fo r i=~ t_~o k d2 

(let riml : (c_Tr~)[i-1]; 

for j=2 t_~o len riml d_~o 

Row~ := (c Row~)~<rim1[j-1]+riml [j]>; 

Row~ := (cRow~)~<1>; 
T ~  := (o_TrZ)..<£~>); 

re turn(c  Trig ) 

3.1 Defining Domains of TUPLE Objects 

Let A be the name of a class of objects. To define the class of objects 

all of whose members are finite length tuples whose elements are A ob- 

jects we use either of the domain expression operators: ~ or + 

A ~ 

A + 

denotes the infinite domain of finite length tuples all of 

whose elements are in A. The 0-1ength tuple, <> , is in A ~ 

-- for any A! 

denotes the infinite domain of finite non-zero length TUP- 

LEs, all of whose element8 are in A. Thus <> is not in A +. 

Let G denote a class of objects, i.e. a domain, abstracting the fields 

of a record, with records consisting now of a finite number of such 

ordered fields, then: 

G* 

is a domain expression abstracting the class of records. Call this R, 

i.e.: 

R : G ~ 
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Now let files be ordered, finite length sequences of one or more re- 

cords. Then: 

R + or (G~) + 

are equivalent domain expressions abstracting the class of files. In the 

latter expression, the parentheses are solely used for grouping -- 

you could, of course, omit parentheses here: G ~+. If you so wish you 

can likewise name the file domain: 

Ft = R + 

In this example we did not retain the view that files consisted of 

collections of distinct, unordered records. Had we done so: 

FS = R-set 

R = G • 

or: 

FS = (G~)-set, or: Fs = G~-set 

would have been applicable abstractions. 

3.2 Representing Instances o_~f TUPL____~EObjects 

3.2. ! Explicit Enumeration 

Given not necessarily distinct objects al, a2, ..., a n which are all 

in A, the expression: 

<aIJa2, . . . ~an> 

denotes an n-tuple, i.e. an object of, or in: A*, A + (for n>O). 



-- is denoted by: 

<> 

3.2.2. Implici t Enumeration - Part 1 

Given a function F: INTG ~ D the expression: 

< F(i) I 1<i<n > 

denotes an n tuple -- as above~ So does: 

< F(i) I i£{1:n} >, 

< G(d) I i£{m:m+n-1} >, 

and 

etcetera, 

where G: D ~ A. Thus we shall not be too particular about the form 

of the "type-building" predicate as long as it is clear, to the rea- 

ders of your formulae, what the size, i.e. length, of your tuple will 

be. Since G(d) is independent of i the n tuple consists of identical 

G(d) elements. 

Let g1" g2" "''" gm" and gij for varying i,j denote fields of a re- 

cord, i.e. all objects in G, then : 

<gl,g2,...,gm >, 

<<gll,g12,''',glx>,<g21,g22,''',g2y>,.'',<gnl,gn2,...,gnz ~ 

are constructor expressions denoting objects in G ~, respectively R + 

That is: abstractions of (instances of) records, respectively files! 
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Let F@, F r be total functions from fields to fields, respectively 

records to records, i.e.: type: Fg: G ~ G, type: F~: R ~ R; 

and let f,r denote a file, respectively a record; then: 

< F g ( r [ i ] )  I l < i < l  r > 

< F & ( f [ j ] )  I l < j < l f  > 

denotes a record, respectively a file, derived from r, respectively 

f, having all its fields, respectively records, processed -- in any 

order -- by Fg, respectively F&.Although to be dealt with more 

systematically below r[i] denotes the i'th field of record r, with 

I r denoting the length, in terms of not necessarily distinct, 

fields, of record r. 

3.2.3 Element Orderin@ 

Sets are unordered collections of objects. Tuple elements are ordered. 

In: 

<a I~2J . . . ~an> 

a I is the Ist element, a 2 the 2nd,..., and a n the nth element. In: 

< F(i) I i6{m:m+n-Z}> 

the Ist element is F(m), the 2nd element is F(m+1),..., and F(m+k) 

for O<k<n-1 is the k+l-st element. In: 

< G ( d )  I i E { m : m + n - 1 } >  

all elements are alike, and are G(d) -- with n of them~ 

By: 

< obj I obj 6 set > 
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we mean a card set tuple of all distinct members of the assumed 

finite set set -- occurring in arbitrary order. 

In general the form of an implicit tuple building constructor ex- 

pression is : 

< F(i) I 0(i) ^ P(i) > 

where 0(i) is an ordering predicate indicating, mainly through the 

natural ordering of integers i, the order of those elements F(i), for/, 

for which the more general predicate P(i) holds: 

3.2.4 Implicit Enumeration - Part 2: 

Let P: INTG ~ BOOL be a (total function) predicate then the ex- 

pression: 

< F(i) i£int~set ^ P(i) > 

denotes an I tuple : 

< F(il),F(i 2) .... ,F(i l) > 

where : 

{il,i2,...,i l} c intgset 

^ i1<i2< ...<i 1 

^ P(i 1) ^ P(i 2) A ... A P(i l) 

^ (NBi6intgset~{il,i2J .... il})(P(i)) 

In words: The ordering of the resulting tuple elements follow the 

natural ordering of the INTeGers. The length of the tup!e will be 

the cardinality of that subset of the finite integer set, int~set, 

for which P is satisfied. 
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Ex_am_~le 14-15: 

Although not illustrative of abstraction techniques, as we intend them, 

the following examples might help drive home the idea of implicit tuple 

constructions: 

(i) Let fib denote the so-called fibonacci function, ~ :  fib: N O ~ N I 

where NO, N 1 denote the sets of natural numbers larger than or equal to 

0, respectively 1. In particular think of: fib(O)=1, fib(I)=1, with 

fib(i) for i~1 being fib(i-2)+fib(i-1). Then: 

< fib(i) J (re<i< n) A odd fib(i) > 

denotes a tuple of those of the m'th, m+1'st,..., up to, and including 

the n'th fibonacci number provided these are not even numbers, and m,n~O~ 

For m=3 and n=ll you would get: 

<3, 5, 13, 21,55, 89> 

i.e. the tuple of the 3rd, 4th, 6th, 7th, 9th and lO'th fibonacci number. 

The type of the above expressions is : N 1 

(2) The following pure expression constructs the pascal triangle between 

rows 1 and k: 

< row(i) I I < i < k 

^ cases i 

(I 

2 

T 

row(i) = <•>, 

row(i) = <1,1>, 

row(i) = <I> 

~< Crow(i-l)) [j]+ 

(row(i-l)) [j+l ] 

I l<j<lenrow(i-1))> 

. .< I> )  > 

You are invited to compare this formulation with the impure expression- 

block given as the last item of example ii above. 
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3.3 TUPLE Operation s 

The following special TUPLE operations are provided: 

h, hd 

t, tl 

l, len 

elems 

ind 

[i], (i) 

oono 

+ 

[pairwise] concatenation, 

head, 1 
tail, (two forms provided) 

length, 

elements, 

indices, 

index, selection, (two forms provided) 

distributive concatenation (of tupie of tuples), 

replace. 

Each of these operators will now be individually, and quite infor- 

mally explained. It is assumed below that tuple, tuplel, tuple2 

denoted TUPLEs and tuplelist a TUPLE of TUPLEs. 

tuple1~tuple2 

tuple 

t tuple 

I tuple 

elems tupZe 

denotes the TUPLE whose first ~tuplel ele- 

ments are those of tuplel in the given 

order; whose last ~tuple2 elements are those 

of tuple2, and in that order; and whose length 

is exactly the sum of the lengths of tuplel 

and tuple2. 

denotes the Ist element of tuple. Taking the 

head of an empty tuple is undefined. 

denotes the tuple of all but the first ele- 

ment of tuple and otherwise in the same order 

as the elements of tuple. Taking the tail of 

an empty tuple is undefined. 

denotes the length of the tuple, i.e. the Num- 

ber of net necessarily distinct elements of 

tuple. 

denotes the SET of elements contained in the 

tuple. 
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ind tuple denotes the SET of Natural numbers which are 

the indices of tuple. 

tuple[i] denotes the ith element of tuple provided i is 

a Natural number larger than 0 and less than 

or equal to the length of tuple. 

cone tuplelist denotes the TUPLE of elements of the tuples 

which are the immediate elements of tupleliet 

and in the order otherwise given in the unra- 

velled or de-bracketed, element tuples. 

tuple+[i~o] denotes the tuple which is as tuple -- only 

the ith object is not tuple[i] but o. If 

1>i>~ tuple the expression is undefined. 

This last operation is (presently) only defined for a right operand 

singleton map (in N1 m ~ OBJ). 

The tuple operations applied to objects other than tuples are unde- 

fined. 

Ex_am_ples 16-17: 

Let VAL denote the class of values obtained during, i.e. as a result 

of partial, evaluations of expressions of some language, and let 

STACK be an abstraction of stacks of these values. 

STACK = VAL ~ 

can then be considered a not too abstract, yet sufficiently imple- 

mentation-independent, model of the domain of stacks. Let stk£STAGK, 

V£VAL then: 

(i) <v>-st 

(2) hst, i4~t 
(3) k st, t let 

(4) <> 
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are correspondingly reasonable abstractions of the following typical 

operations on or facts about stacks: (i) pushing a new object "on 

top" of, or into the stack; (2) reading the top of the stack; (3) 

the resulting stack after a pop operation -- with (4) not abstract- 

ing any operation but only brought here to exemplify the empty, un- 

used stack . 

Reverting now to our examples around file systems, let possibly 

suitably decorated f, r and g denote files, records and fields respec- 

tively, i.e. objects in F, R and G, then the expressions: 

(5) f~<r> r~<g> 

(6) h_ f , h_dd f h r , hd r 

(7) f[i] r[j] 

( 8 ) f l ~f2 r I ~r 2 

( 9 ) f+ [ i~r ] r+ [j~g ] 

(i0) conaf 

(ii) l f, fen f l r, len r 

are reasonable abstractions of the following typical operations on 

files (left column) [and records (right column)]: (5) writing a re- 

cord [field] to a sequential, even serial file [record]; (6) & (7) 

reading the first, respectively the i'th record [j'th field] of a 

file [record]; (8) chaining two files [records] together to form a 

new file [record]; (9) updating the i'th record [j'th field] of a 

file [record]; (i0) chaining all the records of a file together to 

form a record (~); and (ii) inquiring about the current size of a file 

[record] in terms of its number of records [fields]. 

3.4 TUPLE-oriented Combinators 

The following combinator: 

for i=m to n d__oo S(i) 

is provided for the imperative handling of primarily lists of objects. 

In particular, let t denote a tuple, then: 
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for i=I to fen t do S(t[i]) 

is a typical statement. The integer valued bounds m and n must be 

statically determined. S is any statement. See the doubly nested 

example of a use of the above iterative statement given as the last 

item of example !i. 

The meaning is given by the transcription: 

S(m); S(m+1);...; S(n) 

where S(j) arises from S(i) by substituting all free occurrences of 

i in S(i) by j. Since j is a constant no collision with other free 

variables in S(i) will occur. 

The constructor expression: 

< Fa(f[i]) I 1<i< len f > 

is an applicative expression -- provided F r does not rely on any 

state component. An imperative analog can be achieved by means of 

the for-to-do linearly iterative loop statement: 

dal ~:= <> t~F ~ R~ 

([or i=1 to len f do 

The above can be seen to be a process-oriented abstraction of parts 

of a file handling system specification. The global variable /~ 

is initialized to the null tuple, <> , of no records; and fixed to 

contain only finite length sequences of not necessarily distinct 

records (type R~). ~ now denotes a constant reference to an R~ 

object, i.e. an object of ref R~; with c ~  denoting the dynamic 

contents at that reference. 
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4 MAPs 

As a prelude to a systematic treatment of the subject of maps we are 

in this introductory example going to illustrate the abstraction of 

what could be an operating system direetory in terms of recursively 

nested maps. In this, perhaps hypothetical operating system users 

are partially ordered, i.e. hierarchically structured -- and this is 

reflected in the design of the directory. With each user is associated 

a qualified name consisting of an ordered sequence of zero one or 

more resource identifiers. The overall system directory is a di- 

rectory and a directory consists of a finite non-empty set of unique- 

ly identified resources. A resource is e:g. either a line printer~ a 

card reader~ a display terminal, a file identifier or it is a direc- 

tory. 

Abstractly modeling we write: 

1 DIR = Rid ~ RES 
m 

2 RES = LP J CR f DT i Fid I DIR I 

The resource- and file-identifiers are considered to be further un- 

analyzed, e.g. elementary, objects: 

R i d  = . . . .  F i d  = , . .  

We also do not have here bother to specify what line printers, card 

readers and display terminals are: 

LP = ..., CR = ..., DT = ... 

The above two equations (1,2) are examples of abstract syntax rules. 

The first defines the domain of finite domain maps from resource 

identifiers to resources, and names it DIR; the latter defines the 

domain of resources to be the union (J) domain of the domains listed 

to the right, i.e. in the definiens. Thus a particular resource, i.e. 

an object of the domain RES, is either an object in LP (i.e. a line 

printer), or -- etc. 
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If by suitably decorated lower case letter sequences analogous to 

the above domain names we mean to identify objects of respective 

classes, then the following is an expression of the meta-language 

denoting an object in DIR, i.e. an abstract "snapshot" of a direc- 

tory: 

[rid 1 

rid 2 

rid 3 

Ip I , 

fide, 

[rid 4 

rid 5 

rid 6 

or 4, 

dt 5, 

[rid? ~ Ip?, 

rid 8 ~ [rid 9 ~ Crg], 

rid10 ~ fid10]], 

rid11 ~ lid11, 

rid12 ~ [rid13 ~ dt13]] 

which we could informally picture: 

/ /  
Ipl fid2 / 

id 

cr 4 dt 5 

r' , d r'd12 
ds~r  id 6 lid11 

d r 

tp7 

\ 
J8 ridlo 

\ 
fid10 

rii13 

dt13 

ri9 
cr 9 
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In the above hierarchical structure the labeling of edges (by rids) 

is usually understood to void any 'meaning' you may think that the 

left-to-right ordering of edges have. 

Observe how, from the system~directory the qualified name 

<rid3~rid6,ridT> designates IPT. Qualified names designating direc- 

tories are: <>, <rid3> , <ridl2 >, <rid3,rid6> , <rid3,rid6, rid8> , and 

these are the names associated with users. 

Resources associated with existing users may be allocated or freed: 

Let sys-dir stand for the system directory, qn for a name known to 

designate a direcotry in sys-dir, and let rid and re8 denote respec- 

tively the name by which the resource res is to be known in the di- 

rectory designated by qn. The following function, when invoked by: 

catalog(sys-dir, qn,rid, res) accomplishes this: 

3.0 catalog(dir, q, id, r)= 

.I i_~ q=<> 

.2 then dir U [id~r] 

.3 else dir + [~q~catalog(dir(hq),~q, id, r)] 

type: DIR Rid • Rid RES ~ DIR 

The reader is encouraged to apply this function to the above example. 

The line: "dir U [id~r]" reads: ~'join, or merge, as a new entry, the 

association of id to r, to the map dir". The last line reads: "hq, 

which is an Rid, designates a directory, dir(~ q) , embedded in dir. 

Replace this directory, dir(hqJ , with the one -- 

catalog(dir(hq),~q, id, r) -- obtained by cataloging the resource r 

named id in the subdirectory of dir(hq) designated by ~q I" 

Now it may be that the original qn did not designate a directory in 

sys-dir. Then the above function would go awry. So here is an im- 

proved version: 
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4.0 aatalog(dir, q, id, r)= 

.i i~ q=<> 

.2 then i~ id 6 domdir 

.3 then error 

.4 else dir U [id~r] 

.5 else i_~ hq N£ do___mmdir 

.6 then error 

.7 else (let res = dir(hq) i_~n 

.8 if ~is-DIR(res) 

.9 then error 

.i0 else dir + [hq~catalog(res,~q, id, r)]) 

This function also makes sure that is is not already used in the 

directory designated by q . Thus dom dir denotes the domain, i.e. 

the set of resource identifiers used in dir. Observe finally that 

since a qualified name might designate either nonsense or a resource, 

res, other than a directory, i.e. a DIR, we test, Is-DIR, that res 

is indeed a directory. 

Further experiments with the above abstraction will be exhibited in 

section 4.5. 
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4.1 Defining Domains of MAP Objects 

Let A, B, A. and B. (for i = 1,2,...,n and j = 1,2 ..... l) be class 
J 

names. To define the class of objects which are finite domain maps 

from (subsets of) A, respectively Ai, into B, respectively Bj, we 

use the domain expression operator ~: 
m 

A ~ B, Ai ~ B j 

Let our file system now come of age~ Let the file system consist of 

a set of uniquely named files; and let each file consist of a set of 

uniquely keyed records, i.e. the file may have its records randomly 

accessed by key. Let file names, keys and records presently be further 

unspecified. Then: 

Key ~ REC 

is a domain expression suitably abstracting our notion of files, 

provided Key & REC denote the domains of keys and records. If you 

wish to name this file domain, by e.g. FILE, then: 

FILE = Key ~ REC 

is an example of an abstract syntax rule which lets FILE denote what 

Key ~ REC denotes! Now: 

Fid ~ FILE 
m 

or equally well: 

Fid ~ (Key ~ REC) 

are domain expressions both suitable abstracting our ideas about the 

file system and files, again provided Fid denotes the domain of file 

names. 
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4. I.i Defining MAP Domains -- Continued 

Then the logical type expression: 

(ALIA21... IA n) ~ (BIlB21''' IB l) l>n 

denotesthe class of objects whose members are finite domain maps 

from (subset of) the union class of A1, A2, ...I and A n objects into 

the union class of B 1, B 2, ..°, and B l objects. 

Ex_am_ple 21: 

Now define keys and records to be either integers or characterstrings, 

respectively finite, non-zero length sequences of either integers or 

characterstr~ngs -- presently with no constraints. Then, if INTG and 

QUOT + are suitable abstractions of integers and characterstrings re- 

spectively, we have that: 

(INTGIQ UOT+) ~ (INTG+IQ UOT++) 

is a domain expression which defines any one file to contain both 

integers and characterstrings in its domain, i.e. as its keys; and 

sequences of both of these in its co-domain or range, i.e. as its 

records. Thus e.g. a given file may map 3 into <A,X,H>, <P> into 

<2,4,9,11>, 5 into <3,5,?>, and <Y,Z> into <I,J>. 

4.1.2 Defining MAP Domains -- Continued 

The logical type expression: 

(At M Sl) U_ (A~ M S~) k ..... U_ (A~ M B k) 

denotes the class of objects whose members are finite domain maps as 

above but with the restriction that A I objects, if at all mapped, 

i.e. in the domain, are mapped into B I objects, A 2 objects (...) 

into B 2 objects, .... and A k objects into B k objects. We read the 

U MAP domain operator as a 'merge'-, rather than (as we did for I) 

an 'either'-, union operation. 
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If we wish to constrain integer keys to map into integer field re- 

cords, and characterstring keys into records whose fields are cha- 

racterstrings, then: 

(INTG ~ INTGO U (QUOT + ~ QUOT ++) 
m 

is a domain expression of the right kind for specifying the above: 

Defining MAP Domains -- Terminated 

The logical type expression: 

(A I ~ B1) I (A2 ~ B e ) I ... I (Ak ~ B k) 

denotes a class of objects whose members are finite domain, partial 

maps from A 1 into B1, or A 2 into B2,... , or A k into B k. Thus a given 

member is either an A 1 ~ B 1 object, or an A 2 ~ B 2 object, .... or an 

A k ~ B k object. 

If finally any one file should not mix integers and characterstrings 

in its key domain or record co-domain, then: 

(INTG ~ INTG +) I (INTG ~ QUOT++) I 
m m 

(QUOT + ~ QUOT ++) I (QUOT + ~ INTG +) m 

is a domain expression guaranteeing this: Note that the domain ex- 

pression: 

(INTG]QUOT+) ~ (INTGIQUOT+)+ 

permits any one record to have some fields being integers, others 

being characterstrings. If that is your ideas about records, this is 

a way in which you can so express it! 
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Note: 

A map or a function from subsets of A into B is said to be a partial 

map, respectively partial function. It is quite common to deal with 

partial maps. 

Prg~r _a~nin~ Note: 

Defining a class of functions using the ~ operator shall express 

that such objects have their graph, i.e. argument-value associations, 

computed when defined. This is in contrast to using the ~ and ~ ope- 

rators whose use in defining total and partial functions shall ex- 

press that the objects are implicitly defined through some l-expres- 

sions-like device, about which it can be said that the graph of the 

denoted function is not computed when defined -- in fact: is never 

computed -- and where, in addition, the function domain(s) may be 

infinite. For the story on such functions see section 5. 

4.2 Representing Instances of MAP Objects 

4.2.1 Explicit Enumeration 

Let al, a 2, ..., a d be distinct A objects, ai!, ai2, ..., aid be dis- 

tinct A i objects, b 1, b 2, ..., b d be not necessarily distinct B ob- 

jects, and bjl , bj2, ..., bjd be not necessarily distinct Bj objects, 

then the constructor expressions: 

[al~bl,a2~b2,...,ad~bd ] 

[ail~bjl,ai2~bj2 ..... aid~bjd ] 

and: 

denote maps from (subsets of) A into B, respectively (subsets of) A i 

into Bj, i.e. in: A m ~ B, respectively A i ~ Bj. The constructor ex- 

pression: 
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[a11~b11,a12~b12,~'°Jalm2~blml , 

a21~b21,a22~b22,''',a2m2~b2m2 , 

akl~bkl,ak~bk2,''',akmk~bkmk ] 

denotes a map in: 

(At M BI) _U (A 2 M S~) _U ... _U (A k M S k) 

assuming of course that aij6Ai, bijEB i that is: that first subscript- 

ing index, i, binds to domain A i respectively B i. And: 

[ax1~byl,ax2~by2,...,axm~bym ] 

denotes a map in: 

(ALIA21 .... A n ) ~ (BIlB21'''IB l) 

provided: 

axi6(AlIA21... IA n) and byj£(B lIB21.,. IBl). 

-- is denoted by: 

[] 

Let lid1, lid2,°.. , lid I denote, i.e. be abstractions of, distinct 

file names; let kij etc. denote, i.e. be abstractions of keys distinct 

for fixed i's; and let r.. etc. denote, i.e. be abstractions of not 

necessarily distinct records. Then: 
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[fid 1 

fid8 

. . ,  

lid I 

-' [kl 1"~r11" k12"*r12" " ~ " " klnl~rln I ~" 

-~ [k21-~r21 , k22"~r22 , • . ., k2n2-~rsn2 ], 

[kl1~rll kl2"~rl2 , . . . ,klnm~rlnl 

is a schematized (...) snapshot of an object in Fid ~ (Key ~ REC), 

provided fidi£Fid, kij£Key and rij6REC. 

If Key = INTG and REC = QUOT ++ then: 

[~ ~ <<A, Z, S>, <~, C>, <X,O_,W,E>>, 

5 -~ < < V > > ,  

7 ~ <<E,U,G,2, S_>,<S>>] 

represents a file of three records, with keys 3,5 and ?; etc. Where- 

as keys of any one file need be distinct, records or any two keys 

of respectively distinctly names files need not be distinct: 

[fid e -~ [2-'<3, 4, 5>, 3"<3, 4, 5>], 

lid B -~ [3-~<3,4,5>,2-~<3,4,5>]]; 

in fact, as the above example of a snapshot of a small file system 

shows, distinctly named files need themselves not be distinct. 

4.2.2 Implicit Enumeration 

Dd~A ~B denote partial functions, then : Let F: and G: D r 

[ F(d) ~ @(r) I P(d,r) ] 

is a map constructor expression denoting a map in 

sumed to be a predicate: P: D d D r ~ B00L. 

A -* B. 
m 

P is as- 
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Let Fi, FTn, Gj, GIZ denote partial functions: 

Fi: D d ~ A i, 

FTn: D d -~ (AIIA2~... JAn), 
G,: D ~B. 
J r j 

G11: D r -~ (BIIB21...IB l) 

and : 

for i=1,2, .... n and j=1,2,..o,l. The expressions: 

[FiCd) ~ Gj(r) ! P(d,r)], 

[Fin ~ G1l(r) I P(d,r)] 

and: 

denote maps from (subsets of) respectively A i into Bj~ and 

(ALIA21... IA n) into (BIlB21... IB1). 

The expression: 

[F1(d) ~ G1(r) 
U[F2(d) ~ G2(r) 

U[Fk(d) ~ Gk(r) 

P I (d, r) ] 

P2 (d, r) ] 

Pk (d, r) ] 

where Pi are predicates, as above, denotes a map in: 

~A I M S I) _U ~A 2 M B~) k "- _U CA~ M S~) . 

~!~ ~: 

Let Fr, Ff denote total (for simplicity: pure, applicative) func- 

tions from records into records, respectively files into files. Let 

s denote a file system, f some file, r some record; and, foregoing 

the next subsection (2.3.3) on operations, let dom s and domf de- 

note the set of filenames, respectively the set of keys, of the file 

system -- respectively of a file. Then: 

and : 

[ lid ~ Ff(s(fid)) I fid 6 dom s] 

[ k ~ F~(f(k)) I k E dom f] 

[ fid ~ [ k ~ Fr((s(fid))(k)) 1 kEdom s(fid)] I fid 6dom s ] 
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denotes a file system, a filer and a file system. The former file 

system is derived from a given file system, 8, by transforming each 

of its files; the latter by transforming each of its records indivi- 

dually. The file is derived from a given file, f, by transforming 

each of its records. Thus the above three implicit map constructor 

expressions may be reasonable abstractions of various file 'proces- 

sing' programs. Observe how randomness of record and file 'positions' 

or 'accessing' is preserved by the unorderedness of 'fetching' files 

(lid) respectively records (k, f(k) ..... ), for transformation. 

4.2.3 A Note on Scopes 

We have now seen three distinct meta-language constructs for impli- 

cit object constructions: 

{ F r ( r )  I r 6 f  } 

< F r ( f [ i ] )  1 1 < i <  l f > 

[ k ~ F r C f ( k ) )  I k £ d o m f  ] 

In all three,F r and f were quantities defined outside these expres- 

sions; and r, i and k respectively, were bound variables, being de- 

fined and bound to the right of the builder combinator: I, and with 

a scope extending to the closest embracing pair of { & }, < & >, 

respectively [ & ]. The scope of these bound variables follow rules 

analog to those in ordinary programming languages: thus they extend 

to inner, i.e. nested expressions, including { }, < > and [ ] based 

constructor expressions -- unless redefined in such inner forms, a 

practice which certainly can and should be avoidedl The last file 

system building expression of the previous example section illustrates 

the doubly nested use of bound variables. So does: 

Let: 

A ~ (B ~ C) 

(A B) "+ C 
m 
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be domain expressions where we do not presently bother about A, B 

and C. Then: for suitably decorated, and occasionally distinct, 

a£A, b6B and c6C: 

[ al ~ [bll ~ all,biB ~ c12], 

a2 ~ [b21 ~ c~I,b22 ~ c22~b23 ~ c23] ] 

and 

[ (al,b11) ~ ell, (a1,b12) ~ c12, 

(a2, b21) ~ c21, (a2, b22) ~ c22, (a2, b23) ~ c23] 

are examples of somehow 'equivalently' denoting expressions in that 

functions can be defined which converts between their objects. 

Let, for ease of reference, the first domain be named X, the second 

Y: 

x = AM~MC) 

Y = (A B) ~ C 
m 

then: 

convxy (x )= 

[(a,b)~c I aEdomx A bEdom(x(a)) ^ c=(z(a))(b) ] 

eonvyx(y)= 

[ a~[b~c I (a',b)6dom y ^ a'=a ^ c=y(a,b)] I (a, )6dom y ] 

where: 

type: convxy: X ~ Y 

type: convyx: Y ~ X 

In fact the two functions are each others' inverses. 
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4.3 MAP Operations 

The following special MAP operations are provided: 

U merge, 

+ override, 

(...) apply, 

restrict with, 

l restrict to, 

dom domain, 

rn~ range, 

composition 

Each of these operators will now be individually, and quite infor- 

mally explained: 

maplUmap2 

mapl+map2 

map(a) 

map~wset 

denotes a MAP provided the domains of mapl and map2 

are disjoint, otherwise undefine d . The denoted map 

maps domain elements of mapl into the same range ele- 

ments as does map1, and domain elements of map2 into 

the same range elements as does map2, and maps nothing 

else. 

denotes the MAP which maps domain elements of map2 

into the same range elements as does map2, and maps 

those domain elements of map1 which are not in the 

domain of map2 into the same range elements as does 

mapl, and maps nothing else. 

denotes the range OBJect into which map maps a. If a 

is not in the domain of map the operation is undefined 

denotes the MAP which maps those domain elements of 

map which are not in the set wset into the same range 

elements as does map, and maps nothing else. 



mapltset 

dom map 

rng map 

map I "map 2 
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denotes the MAP which map those domain elements of 

map which are also in tset into the same range ele- 

ments as does map, and maps nothing else. 

denotes the set of objects which are domain elements 

of map. 

denotes the SET of OBJects which are the range ele- 

ments of map. 

denotes a MAP provided the range of map2 is included, 

i.e. contained (~) in the domain of map1, otherwise 

the operation is undefined. The denoted map maps into 

those range elements of mapl which are mapped to by the 

domain elements of map1, mapped into, as range elements 

of map2 from domain elements of map2. More formally, 

and in this case certainly more concisely: 

(mapl"map2)(d) = i~ dEdommap2 

then if map2(d) E dommapl 

then mapl(map2(d)) 

else undefined 

else undefined 

Let s, id, f, r and k stand for abstractions of file systems, file 

names, files, records and keys, then: 

(1) 8 U [ i d o l ]  f U [k-~r] 

(2) s + [id-~f] f + [k-~r] 

(3) s ' . { i d }  f ' . ~ k }  

(4) s(id) f(k) 

(5) id E dora8 k 6 domf 

(6) f 6 r ng8 r 6 rng f 



may be reasonable abstractions of the following typical operations 

on file systems (left column) [and files (right column)]: (i) writing 

an entirely new file [record] into the file system [a file] -- in the 

sense of its name [key] not hitherto being one of a file [record] in 

the system [file]; (2) updating an entire file [a single record] of 

the system [a file]; (3) deleting an entire file [record] named id 

[keyed with k] from the system [a file]; (4) reading an entire file 

[a record]; (5) asking whether a file of a given name [a record with 

a given key] is in the system [a file]; and (6) inquiring whether a 

given file (i.e. its 'value', not name) [record ('value', not key)] 

is in the system [a file]. 

Let suitably decorated id's and k's denote file names, respectively 

keys. Then: 

(7) sl{idl,id 2 ..... id n} f]{kl,k 2 ..... k m} 

seems to be an acceptable abstraction for the operation of restricting 

the files of a system to those of the indicated names -- i.e. deleting 

all other! [respectively deleting all those file records whose keys 

are different from k. (l<i<m)]. 

Combining the above operations: 

(i') 

(2') 

(3') 

(4') 

(5') 

(6') 

(7') 

8 + [ id "~ s(id) U [k-~r] ] 

+ [ id -~ s(id) + [k-~r] ] 

s + [ id-~ (s(id)'-{r} ] 

(s(id) ) (k) 

k 6 dom(s(id)) 

r £ rn~(s (id)) 

s + [ id -* ((s(id))l{kl,k 2 ..... kn}) ] 

we get the right column equivalents, on a file system. 
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4.4 MAP-oriented Combinators 

The same combinator: the for-all-do statement, as was defined for 

processing sets, is available for processes on maps, e.g.: 

for all d 6 dommap do S(map(d)) 

We give the imperative variant of the last of the three implicit, 

applicative map constructions shown in the example 25. 

dal system := [] t,~<e (Fid ~ (Key ~ REC)), 

file := [] t_~ (Key ~ REC); 

(for all fid 6 doms d_~o 

Ci/~ := [] ; 

for all k £ doms(fid) d_~o 

:= (c~) U [ k~ Fr ((s(fid))(k)) ] ; 

:= (c_~) u [ lid ~ Col!{ ~) ])) 

4.5 Further Examples 

Examp!~ ~: 

The introductory example of this section is now continued. We are 

now interested in defining a number of auxiliary functions appli- 

cable to the operating system directory. A function for catalogueing 

new entries, i.e. new resources, has already been shown. The dual 

function of uncatalogueing e.g. takes a directory and a non-null 

resource name and deletes the designated resource -- i.e. returns 

a directory in which the resource name is no longer a valid name: 
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1.0 uncatalcg(dir, q)= 

.I cases q: 

.2 (<id> ~ dir~{id} 

.3 T ~ dir + [ hq ~ uncatalog(dir(hq),~q) ] ) 

t_~: DIE Rid + ~ DIR 

Provided q indeed does designate some resource in dir~ When such is 

the case we can show that: 

uncatalog(catalog(dir, q, id, r) ,q~<id>) = dir 

A function for testing whether a non-null resource name, q, does in- 

deed designate something meaningfull in a directory, dir, is e.g. 

the following: 

isualidrn(dir, q) = q 6 resnms(dir) 

type: DIR Rid + ~ BOOL 

where: 

3.0 

.i 

.2 

.3 

resnms(dir)= 

[ <rid>~rn I rid £ domdir 

^ (is-DIR(dir(rid)) ~ rn6resnms(dir(rid)), 

T ~ rn = <>) } 

type: DIR ~ Rid+-set 

another function would be: 

4.0 isrnok(dir,q)= 

.i (hq 6 dom dir) 

.2 ^(cases t q: 

.3 (<> ~ trues 

.4 T ~ isrnok(dir(~ q),~ q))) 

type: DIR Rid + ~ BOOL 

where we rely on the non-commutativeness, in the meta-language, of 

the boolean ^ and v operators. A function for retrieving a resource 

given its name could e.g. be expressed: 
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5.0 retrieve(dir, q)= 

.i cases q: 

.2 (<id> ~ dir(id)~ 

.3 T ~ retrieve(dir(~q),~q)) 

type: DIR Rid + ~ RES 

RES also defines the void map, [], The domain expression Rid m 

from no resource identifiers to no resources, as part of its domain. 

In some of the above function definitions we have tacitly assumed 

that no (embedded) directory was empty. A predicate function for 

testing this well-formedness criteria not expressed by the domain 

expressions might e.g. look like: 

6.0 is-wf-DIRo(dir)= 

.i (dir~[]) 

.2 A(Vrid 6 dom dir) 

.3 (ia-DIR(dir(rid)) D is-wf-DIR ° 

type: DIR ~ BOOL 

(dir(rid))) 

File identifiers are part of the directory. If we e.g. impose that 

no two distinct resource names, via designated file identifiers, 

"point" to identical files, then the above is-wf-DIR ° must be aug- 

mented: 

7.0 

.i 

.2 

.3 

.4 

.5 

is-wf-DIR(dir)= 

i8-wf-DIRo(ir) 

A(Vrnl,rn 2 6 resnms(dir)) 

((rnl~rn 2 ) 

~(((is-Fid(retrieve(dir, rnl))Ais-Fid(r~trleve(dir, rn2) 

~(retrieve(dir, rn 1) # retrieve(dir, rn2)))) 
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Another ExamR! ~, 30: 

In this example we shall motivate the modeling of the scope-binding 

and variable concepts of block- & procedure-oriented programming lan- 

guages by means of so-called environments, respectively abstract stores. 

In subsequent examples, (31,40,42,61), we shall then illustrate the se- 

mantics modeling of procedures and blocks of such languages. The intro- 

duction, into our realm of abstract modeling concepts, of environments 

and stores will now be argued in a few, short, illustrative, but not 

really complete steps. The notation used in the following for some ar- 

bitrary, realistic source languages notions of begin-end blocks and 

variable declarations and use has been deliberately chosen to coincide 

with the meta-languages notation for the same constructs. These will, 

however, not be formally introduced till section i0. 

The form: 

(dcl v := expr type D; 

C(..,)) 

is taken to represent some source languages block construct (with "(" 

equalling begin, and ")" the end). In the semantics of this source lan- 

guage v, which itself is an identifier, is to denote something constant. 

In fact: in this source-, as well as in our meta-, language, the denota- 

tion of identifiers iS constant over their scope, i.e. does not change! 

The constant denotation of v over the above block, i.e. its defining 

scope, is, rather concretely speaking, taken to be the location (or: 

address) of the storage cell in which are to be held values, ~v, of the 

variable v. Thus, if by LOC, we denote the abstract domain of storage 

locations, and by OBJ, the values which can be held in those locations, 

then the domain of storages can be abstracted as: 

LOC ~ OBJ 
m 

We choose ~ since there will, at any point of execution of our source 
m 

program% only be a finite number of active variables, i.e. of allocated 

storage cells. Thus we abstract storages as unique associations, maps 

from locations to their values. 

To keep track of the location that variable identifiers denote we intro- 

duce, speaking concrete again, a table, henceforth called an environment, 

in which is recorded the associations of variable names to their loca- 

tions. 
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Id ~ LOG 
m 

where e.g. v £ Id. Again the association is functional, and again the 

functional recordings are finite. Before argueing why we do not direct- 

ly model storages as: 

Id ~ .  OBJ 
m 

let us first see that we do indeed need the full use of the meta-lan- 

guage MAP concept, i.e. of the MAP operations. Simultaneously we exem- 

plify 'snapshots' of environments, p, and stores, d. The example is that 

of one simple block, containing the declaration of the variable named i, 

nested in an outer block, also containing the declaration of a identi- 

cally named variable. 

++~ +÷÷e+÷÷++++÷+÷+÷÷÷÷÷++÷÷++++÷++÷+÷+ ( p 0" ~ 0 ) 

( dcl.., i := ...;t÷÷+++÷+++÷÷÷++÷+÷++÷÷(Pl,Ol) 

~+~+÷÷÷÷+÷++÷÷~÷÷+ .......... ÷÷÷C~i, oi') 
( del i :: ...; ... 

A~ 

L÷+++++÷+÷÷+÷÷÷+ ( p ~" ~ 2 ) ... 

• " " $~+÷+++++++++÷÷++÷÷÷÷+÷÷+÷+ ( P 2" ~ 2 ' ) 
,., ) 

• " " [++++++++÷+++÷÷÷÷÷÷+÷÷÷÷ ( P 1" °1 ") 

• " " [÷+÷++++++++++++÷÷÷÷++÷÷÷÷÷÷÷÷+ ( Pl ' ~1 "' ) 
. , . ) 

[+++++++÷+÷+÷+÷÷++÷+++÷+÷++++ ( P O" ~ 0 ' ) 

The environment immediately prior to outer block elaboration is P0 and 

the state is d 0. These are not detailed. Obeying the 'first' declaration 

results in the elaborator claiming a new, fresh storage cell for i, let 

us call its location li I . Thus: 

sl = ~0 u [li I ~ 01 ] 

with: 

Pl = PO + [i -~ li I] 
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Thus we use U as an abstraction of the storage allocation operation -- 

U since li I is new, i.e. not in the domain of 00: li I .~6 dom ~0 ~ But 

we use + as an abstraction of the environment 'update' action -- i may 

namely be already recorded in P0" Observe that we do "fall back" to P0 

when "falling through" this, the outer, block. Similarly: 

~1' = ~0' U [li I -* o1'] 

where the ' on ~0 shall indicate that variables outside this block may 

have had their values updated. Also i may have been updated (o1')! And: 

P2 = Pl + [i -* li 2] = PO + [i -. li 2] 

~2 = a I' U ['li 2 -~ 02 ] = gO' U [li I -~ Ol',li 2 -~ o 2 ] 

That is: the storage claimed for the inner blocks' ~ is also fresh, not 

clashing with the storage for the outer blocks' i. 

Observe how environments, e.g. PI' remain constant in the outer block. 

a 2' = aO" U [li I ~ 01",li 2 ~ 02'] 

01" = ~2'~{li2} = aO" U ['li I ~ 01"] 

01" = SO" U [li I ~ 01" ] 

00' = 01'~{Ii1} = ~0" 

Thus freeing, or deallocation of storage for declared variables follow 

the block structure, i.e.: is performed as part of the block epilogue. 

The MAP operator abstracting deallocation is: ~. 

We now turn to a brief justification for the use of both environments 

and stores. The above example of nested blocks redefining variable names 

is not a sufficiently convincing example. Static renaming of e.g. the 

inner i to e.g. j would permit modeling stores as Id ~ OBJ. If, however, m 
any block was [part of] a recursively defined procedure static renaming 

would not solve the problem of nested activations' i denoting distinct 

locations -- which are the semantics we normally expect! 

In example 31 and onwards we use ENV and sometimes X as follows: 
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ENV = Id ~ LOC 
m 

= LOG ~ OBJ 
m 

Finally, as a last example, we show the modeling of variable referencing, 

value access and of assignment. 

For the elaborator 

modeled (a) as: 

'state' (p,a) elaboration of some V £ dom p is 

v i p(v) 

Accessing the contents of a variable v: 

c v i ~(O(v)) 

and assigning the object (value) o to variable v changes the state d to: 

v := o • ~ + [p(v) ~ o ] .  

The variables of some source language are either of scalar or array 

type with all array objects being scalars. Variable references, however, 

are to scalars only, i.e. not to arrays or array-slices thereof. 

The ££~S~!S ~2~!~ of variable declarations of a block can be modeled 

as a map from variable name identifiers to their type: 

1 Block :: (Id ~ Type) ... Stmt 

with : 

2 Type :: Scalar-type [Expr +] 

i.e. with types having an optional [...] array upper bounds expression 

list, Expr +. If the optional part is absent, i.e. nil, the variable is 

a scalar. 

The corresponding £eman~i~ ~2~5!~ of storages can be modeled as a map 

from scalar locations to scalar values. 
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3 STG = (Bool-loc ~ Bool) U (Int-loc ~ Intg) 
m -- m 

where: 

4 Bool = 

5 Intg = 

BOOL I undefined 

INTG I undefined 

Environments keep track of variable name associations: 

6 ENV = Id ~ LOC 
m 

with : 

7 

8 

LOC = Scalar-Lot i Array-Loc 

Array-Loa = (Nl++÷m Int-Loc) U (Nl+÷÷m Bool-Loc) 

9 Scalar-Loc = Int-Loc I Bool-Loc 

with the constraint that the integer index lists of any given array 

location forms a 'rectangle': 

i0.0 (Vl 6 Array-Loc) 

.i (3il E Nl+)(dom I = rectangle(il)) 

where we informally explain rectangle: 

ii.0 rectangle(<UblJUb2,...,Ubn>) = 

.1 { <il,i2,...,in > I ikE{l:ub k} ^ l<k<n }. 

The il 'picked' is (to be) the tuple, whose length corresponds to the 

array-dimension, and whose k'th element (ub k) is the upper-bound index 

for the k'th dimension, all of whose lower-bounds are 1! 

A particular storage is modeled (here) as a global meta-variab!e, ST G: 

12 dcl STG := [] type STG 

In the block prologue (.1-.2) locations of block declared variables 

are (automatically) allocated, and these are likewise freed (.4-.8) 

in the block epilogue: 
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13 int-Block(mk-Block(dclsj...,stl))(p)= 

.! (let P' : P + [id ~ get-loc(dcls(id))(p) 

.2  i i d  £ d o m d c l s  ] ; 

.3  int-Stmt-list(stl)(p'); 

.4 let loc8 = { p'(id) Iid E domdcl8 } i_~n 

.5 let 81oc8 = { l I ((l£1ocs) ^ is-Scalar-Lot(l)) 

.6 v((1 6 rng al) ^ (al E lots) ^ 

.7 is-Array-Loc(al))} ~n 

. 8  STG := e S l G  ~ sloes) 

with: 

14.0 

.i 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.I0 

.ii 

.12 

.13 

.14 

.15 

.16 

.17 

get-loc(mk-Type(sctp, bdl)) (p)= 

if bdl=nil 

then 

(let 1 6 Scalar-Loc be s.t. (Z~£ domcST__.~G)^ 

1-tp-match(sctp, 1)) 
ST~ := ~STG U [l~undefined]; 

return(1)) 

else 

(let ebdl : < eval-Expr(bdl[i])(p) I 1 < i < lenbdl>; 

if {3i £ {l:len ebdl})(ebdl[i]<1) 

then error 

else 

(let 1 £ Array-Lot be 8.t. 

((sol £ rn~ 1)~ 1-tp-match(sctp, sol)) 

A(dom 1 = rectangle(ebdl)) 

A(Crng I N domc STy) = {}); 

ST G := ~STG U [ sol-undefined I scl £ rn~l]; 

return(l))) 

and 

15.0 

.1 

1-tp-match(tp, 1) = ((tp=BOOL) ~ is-Bool-Loc(1), 

(tp=~NT) ~ is-Int-Loc(1)) 

Assuming that the state, Z, is describable as: 

16 Z = S[G ~ STG 
m 

(i.e. Z is a one-point (ST G) map), the type of the above functions are: 



type: int-Block: 

get-Loc: 

rectangle: 
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Block ~ (E~V ~ (Z ~ Z)) 

Type ~ (ENV ~ (~ ~(X LOC))) 

NI+ ~ (N1+)-set 

5 .  TREEs 

Ex_amples 32-33: 

Blocks of some source language consists of three distinct parts: an 

unordered set of variable declarations, an unordered set of distinct- 

ly named procedures and an ordered sequence of one or more statements. 

(Var-set Id ~ Proc Stmt +) 
m 

The above is a domain expressions. If Var denotes the domain of variable 

identifiers, Id that of procedure identifiers, Proc the domain of pro- 

cedures and Stmt the domain of statements; then the above domain ex- 

pression abstracts a nameless domain of blocks. These are trees, whose 

first subcomponents are sets of variable names, second subcomponents 

are maps from identifiers to procedures, and whose last subcompo- 

nents are tuples of statements. 

If suitably decorated v's, id's, p's and s's stand for variables, 

procedure names, procedures, and statements, then: 

• • >) mk( {V l,V 2, . . ,v v} , [id1~Pl , td2~p 2 , . . . ,idp~pp], <s 1,s 2,.. . ,s 

and: 

({V I,v2,o..,vv }" [idl~p1"id2~p2"" °''idp~Pp]'<Sl"S2"'" "'e8>) 

(the latter constructor expression having dropped the nameless con- 

structor function, mk) represent the way we write down such composite 

objects. If b is a block, or more precisely, if b is an object in the 

domain specified above, then the following meta-language combinators: 

let mk(vs,pm, sl) = b; 

let (re,pro, s1) = b; 
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provide means of decomposing nameless tree structured objects, here 

modelling blocks, into their proper constituents -- here the set of 

variables, vs; the map from procedure names to procedures, pm; and 

the statement list, sl. 

The domain expression: 

(s-Vars:Var-set s-procm:(Id ~ Proc) 
m 

s-stmt l : Stmt +) 

Proc, used only as syntactic deli- (with inner (,)'s, around Id m 

miter) defines the same domain as above, but in addition defines 

three selector functions, here arbitrarily named: s-vars, s-procm~ 

s-stmtl. NOW: 

let vs = s-vars(b), 

pm = s-procm(b), 

sl = s-stmtl(b); 

has the s~ne effect as the previous decomposition combinators. In 

other w o r d s ,  i f  v s  £ V a r - s e t ,  pm 6 I d ~ P r o c ,  s l  £ S t m t  +, t h e n :  
m 

s-vars(mk(vs,pm, sl)) = vs, 

s-procm(mk(vs,pm, sl) ) = pm, 

s-stmtl(mk(vs,pm, sl)) = sl. 

We can give a name to the above block domain, e.g. Block: 

Block :: Vat-set Id ~ Proc Stmt + 
m 

-- note the dropping of (,)'s! With vs, pm and sl as before: 

mk-Block (vs, pm, 81) 

would ~2~ have to be our way of writing down instances of blocks. 

The trees denoted by Block are now named (Block). Also here we could 

introduce selectors: 
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Block :: s-vars:Var-set s-proem: (Id ~ Proc) s-stmtl:Stmt + 
m 

(where the (,)'s, around Id ~ Proc, again are used as syntactic de- 
m 

limiters). And again: 

s-vars(mk-Block(vs,...,...)) = vs 

etc.. A benefit derived from naming the class of constructed tree 

objects, here Block, is that any object can be tested for member- 

ship of the named domain: 

is-Block(b) 

is true provided b is the result of some mk-Block(vs,pm, sl) -- for 

any applicable vs, pm and 81. 

5.1 D efinin~ Domains o_~f TRE___~E Objects 

Two means of defining domains of tree objects exist in the meta- 

language: 

(i) Named: Using the abstract syntax rule definition symbol 

:: to separate definiens from definiendum: 

D :: D I D 2 ... D n 

(2) AnonymOu§: Using the domain expressions operator (...), 

(D 1 D 2 ... D n) 

The former defines named or root labelled trees: 

..°, .(d.) for all i } (i) { mk-D(dl,d 2, d n) I is-D 

The latter defines unnamed trees: 

(2) { mk(dl,d2,...,dn) I is-Di(d i) for all i } 

or, dropping the mk: 
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{ (dl,d 2 .... ,d n) { is-Di(d i) ~or all i }. 

Exam~!~ 34: 

Statements of a source language are either assignment statements, 

while-do statements or if-then statements: 

Stmt = Asgn J While I IfThen 

Asgn :: Id Expr 

While :: Expr Stmt 

IfThen :: Expr Stmt 

Observe how the two last domains: 

{ mk-While(e,s) I is-Expr(e) ^ i8-Stmt(s) } 

{ mk-IfThen(e,8) i is-Expr(e) ^ i8-Stmt(s) } 

are disjoint -- simply because the names of their object make func 

tions, mk-While and mk-IfThen, are distinct: 

5.1.I Tree Constructor Axioms 

For any two D' and D" identifiers being definienses of tree con- 

structing abstract syntax rules: 

objects: 

D' :: A 1A 2 ... A m 

D" :: B 1 B 2 ... B n 

mk-D ' (al, a2, . . ., am), 

mk-D"(b 1, b 2, • . ., b n) 

are identical if and only if (iff) : 
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D' is the same identifier as D"; 

~ ~ n; 

a i = b i f o r  a l l  i ,  

i.e. if A. is the same identifier as B. 

that is, iff the two rules above are the same. 

For any two implicit tree domain denoting expressions: 

(A 1 A 2 ... A m) 

(B 1 B 2 ... B n) 

objects: 

mk(al,a2,...,am) 

mk(bl,b2,...,b n) 

or, which is the same: 

(al,a2,...,a m) 

(bl,b 2 .... ,b n) 

are identical iff: 

m = n, a.=b. and 

A i i s  t h e  s a m e  i d e n t i f i e r  a s  B i f o r  a l l  i .  

Example 35-36: 

The abstract syntax rules: 

CTLG = Fid ~ (Ktp Dtp) m 
Define :: Fid (Kip Dtp) 

are intended to define the s~mantic domain of file description 

CaTaLoGues, respectively thesyntactic domain of file definition 
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commands. To each file, identified by its name (in Fid) is associated, 

in the catalogue, its description -- namely a 'pair' consisting of a 

Key type-, and a Data type- indication, i.e. an object in (Xtp Dtp). 

A file definition command names, say lid, the file to be defined 

(fid 6 Fid), and gives the Key type-, and Data type indication, i.e. 

an object likewise in (Ktp Dtp). In particular a catalog, ctl~, may 

look like: 

[ fid I ~ mk(ktPl,dtPl) , 

fid n ~ mk(ktPn, dtPn) ], 

with a define command looking like: 

mk-Define(fid, mk(ktp, dtp)). 

Dropping the somewhat superfluous mentioning of the otherwise name- 

less mk (prefixing (...)), we get that ctl~, upon execution of the 

define command, is augmented to: 

ctlg U [fid ~ (ktp, dtp)] 

provided, of course lid ~6 dom ctlg] 

As another example of nameless tree constructions let us abstract 

the syntactic domain of pnocedures of some source language : 

Proc :: (Id Tp) ~ Block 

The form (Id Tp) ~ could be written Parm a , i.e.: 

Proc :: Parm ~ Block 

provided: 

Parm :: Id Tp 

In the former case the parameter list is abstracted as a possibly 
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zero-length tuple of parameters, these being abstracted as nameless 

trees, themselves being 'pairs' of formal parameter Identifiers and 

their Types (not being further specified). In the latter case these 

parameters are abstracted as named (Parm) trees. Given that suitably 

decorated id's, tp's and b's denote objects in Id, Tp and Block, re- 

spectively, we get, in the two cases, that: 

mk-Proc ( <( idl, tP l ) , ( id2, tP 2) .... , ( idn, tPn ) >, b) 

respectively: 

mk-Proc ( <mk-Parm (id 1, tP l) , . . . , mk-Parm (idn, tPn)>, b) 

display instances of procedures according to either abstraction. Thus 

observe that the (,)'s in (Id Tp) ~ serve the double function of con- 

structing a domain of anonymous trees, as well as indicating the scope 

of the tuple domain building ~ operator. 

5.2 Representing Instances o_~f TRE___EE Objects 

Given objects oi, 02, ..., o n of not necessarily distinct domains, 

e.g.: DI, D2, ..., Dn, the constructor expressions: 

(oi,o2,...,On), mk(Ol,O2,...o n) 

denote (identical) tree objects of domain: 

(D I D 2 ... D n) 

i.e. an anonymous tree. Given that there exists an abstract syntax 

rule of the form: 

D :: D I D 2 ... D n 

the constructor expression: 

mk-D(Ol,O2,...,o n) 

denotes a tree object of domain D, i.e. a root labelled tree. 
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5.3 TREE Operations: Selector Functions 

The only special operation defined on TREEs is the selector function. 

Names of selector functions are either explicitly, or implicitly, de- 

finable. 

Explicitly Defined Selector Function Names 

In the named tree constructing abstract syntax rule: 

D :: s-nm1:D 1 s-nm2:D 2 ... s-nml:D l 

as well as in the anonymous tree constructing domain expression: 

(s-nm1:D 1 s-nm2:D 2 .~ s-nml:D l) 

the identifiers : 

8-nml, 8-nm 2, ..., s-nm l 

denote selector functions obeying: 

s-nml(mk-D(Ol,O2,° ~.,ol)) = e 1 

8-nm2(mk-D(Ol,O2,...~Ol)) = 0 2 

. . .  

s-nml(mk-D(Ol,O2,...~Ol)) = o l 

respectively 

8-nm1((Ol,O2,...,o l) = o 1 

8-nm2((oi,o2,. • .,o l) = 0 2 

. ° .  

s-nml((ol,o2,. • .,o l) = o l 

for all Ol, 0 2 .... , o I . 

In the above, explicit, selector function name defining forms, it is 

assumed that all identifiers s-nm i and 8-nmj are distinct. You may 

wish to omit any subset of these, including all, as we have done in the 

past. 
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!~!i~!~!Y Defined Selector Function Names 

Assuming uniqueness of D. , for some or all i in {l:l} in: 

D :: D 1D 2 .,. D l 

respectively: 

c ~  D 2 . . .  o~), 

and in particular, assuming that D° is an identifier, the above two tree 

domain constructing forms define the selector function: 

s-D i . 

In the source language Statement syntax rules: 

Stmt = Asgn I While 

Asgn :: Id Expr 

While :: Expr Stmt 

8-Id applies to Asgn objects and yields ~he Id component; s-Expr applies 

to Asgn and While objects and yield the Expr component; and 8-Stmt ap- 

plies to While objects and yield the proper Stmt component. We empha- 

size: 'proper component' since any While object, by the first abstract 

syntax rule, is itself a Stmt object. 

N2nzUni~ue Selector Function Name Convention 

For the common case where two or more identifiers, D i and Dj, of either: 

D :: D 1D 2 ... D 1 

or: 

(D I D 2 ... o l) 

are the same, the following convention is adopted: 
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In the form D 1 D 2 ... D l let there be k distinct occurrences of 

the same identifier, say C, then: 

s-C-I, s-C-2, . . ~ j s-C-k 

are the selector functions which select the Ist, the 2nd,..., 

respectively the kth proper C component -- from left-to-right. 

In the source language Statement syntax rules: 

Stmt = ... ~ For I If 

For :: Id Expr Expr Expr Stmt ~ 

If :: Expr Stmt Stmt 

the selector function s-Expr-lj s-Expr-2 and s-Expr-3 select the same 

For object components as would s-init, s-step and 8-limit in: 

For :: Id s-init:Expr s-step:Expr s-~imit:Expr Stmt*; 

and s-Stmt-i and 8-Stmt-2 selects the same If object components as would 

s-then and s-else in: 

If :: Expr s-then:Stmt s-else:Stmt. 

E~og~_a.~_!n~ Notes 

The meta-language leaves unexplained the names of the implicitly de- 

fined selector functions in such forms as: 

and: 

Block :: Id-set (Id~Prc) Stmt ~ 
m 

For :: s-cv:Id (s-i:Expr s-b:Expr s-t:Expr) + Stmt* 

In the latter form there are only two implicitly defined selector func- 

tions, namely the two selecting the (Expr Expr Expr) + and Stmt ~ tuple 

objects of For objects. 

The reason for introducing explicit selector function names is mostly 

pragmatic. That is: there is, in most cases, no technical need for in- 
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venting names. To see "this, recall that the technical purpose of selec. 

tor functions is to select proper (sub-)components of trees. But this 

could as well be done by a 'reverse' use of the mk function! Let e.g. 

t be an object of 

(D I D 2 ... Dn) , 

then: the let clause: 

let (oi,o2, .... o n ) = t 

so-to-speak decomposes t into its n subcomponents. So would: 

let 01 = S-Dl(t), 

o 2 = 8-O2(t) , 

o.° 

o = s-D (t) 
n n 

provided, of course, all D i were distinct (and) identifiers! Similar 

for D objects t, where: 

leading to: 

etc.. 

D :: D I D 2 ... D n 

let mk-D(Ol,O2,...,o n) = t 
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6 FUNCTIONs 

By a function, we shall -- in a somewhat circular fashion -- under- 

stand an o~e{a~ which, when ~ ! ~  to something, which we shall 

call its ar~_um_en~ ~!~ a certain thing as the value of the function 

for that argument. 

The object to which the function is applicable, i.e. for which it is 

guaranteed to yield a value (defined result), constitutes the domain 

of the function. The yielded values constitute the ~an~e (or: co- 

domain) of the function. 

Two functions are identical iff they (i) have the same domain, (2) 

the same range, and (3) for each argument in the domain the same va- 

lue. FunCTion equality is, however, not a defined operation. 

To denote the value of a function for a given argument we write a 

name of the function, say f, followed by a name of the argument, say 

a; the latter, the former or both possibly enclosed between paren- 

theses: 

fa, f(a), (f)(a)~ (fa), (f}a 

Many functions can more easily be described algorithmically, i.e. by 

a recipe for how to compute the result value given an argument value, 

than by explicit or implicit enumeration. Moreover, some, if not most 

such, functions, which we wish to manipulate (create, pass and apply) f 

have an infinite domain -- and by the pragmatics of MAPs could not be 

constructed as such. Finally: many functions can best be described in 

an implicit, or even recursive, way, which certainly does not conjure 

the image, or thought, of its graph being computed at the time of de- 

finitions. (By the graph of a function we understand the set of all 

argument result 'pairs'.) 

For maps this graph is indeed being computed at "time" of definition, 

whereas we may think of this graph never being computed in connection 

with the kind of function definitions we are interested in in this 

section. 
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Ex_am_ples 39-40: 

The following is a block-expression of the meta-language; its value 

is that of the denotation of f, which is the factorial function: 

(le. ~ f(n) = if n=O then I else nxf(n-1) in 

f) 

Let, as another example, the procedure header -- exclusive of pro- 

cedure name -- and procedure body, of some source language be ab- 

stract syntactically describable as: 

Prc :: Id ~ Block 

Here Prc is the name of the domain of procedure definienses (hea- 

der + body, - name), Id of the domain of formal parameter names, and 

Block of blocks -- as e.g. statement blocks. 

The meaning of a procedure, i.e. the denotation of a procedure name, 

may, according to the school of mathematical semantics, be taken as 

a function from argument lists to the denotation Of blocks. If the 

denotation of these latter are functions from states (Z) to states 

then: 

Prc: ARG ~ ~ (Z ~ Z) 

Given a Pro object, prc, i.e. one of the form mk-Prc(idl, bl), we now 

give the function which itself yields the denotation of prc. Let, as 

a last preparation, procedure denotations be functions of the defining 

rather than calling environment. 

V-prc(mk-Prc(idl, bl))(O)(~) = 

(Set fct(al)(~) = 

(let p' = [ idl[i]~al[i] 

I-Blk(bl)(o+p')(~)) 

fct) 

J 1<i< 1 al ] i_~n 

in 

Observe the following: evaluation of a Procedure denotation takes 

place in a defining environment, p, and state, o. The state is ig- 

nored, and need thus not have been shown. The result of Procedure 
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evaluation is a function, fct. This function is completely described 

in the three-line let clause. The definition given there can be read 

as follows: fct is that function which when applied to some argument 

list, al, and in some state, ~, will yield a new state. This new state 

results from Interpreting the Block b~ in the defining environment 

('slightly') extended -- by the bindings of formal parameter identi- 

fiers, idl[i], to actual, call time, arguments, al[i] -- and in the 

calling state, ~. We do not here display the I-Block elaboration 

function, but see section 6.3. 

6~! ' Definin~ Domains of FunCTion Objects 

Let A and B denote Domains. To define the class of implicitly l-de- 

fined objects which are partial, respectively total functions from 

A into B, we use the domain expression operators ~, respectively ~: 

N 

A -~B, A -~B 

Applying the ability to describe function spaces to the built-in 

operations of the meta-language itself, we can now list the logical 

type of these: 

Sets: type: U: SET SET ~ SET 

N: SET SET ~ SET 

~: SET SET ~ SET 

c: SET SET ~ B00L 

c: SET SET ~ B00L 

power: SET ~ SET 

union: SET ~ SET 

£ OBJ SET ~ BOOL 

a,ard SET ~ N O 
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Tuples: type: ~: TUPLE TUPLE ~ TUPLE 

h, hd: TUPLE ~ OBJ 

t, tl: TUPLE ~ TUPLE 

~, fen: TUPLE ~ N O 

[.]: TUPLE N 1 ~ OBJ 

elems: TUPLE ~ SET 

ind: TUPLE ~ N1-set 

cone: TUPLE ~ TUPLE 

+: TUPLE MAP ~ TUPLE 

~: TUPLE Nl-set ~ TUPLE 

Maps: type: U: MAP MAP ~ MAP 

+: MAP MAP ~ MAP 

~: MAP SET ~ MAP 

I: MAP SET ~ MAP 

(.): MAP OBJ ~ OBJ 

dom: MAP ~ SET 

rn~: MAP ~ SET 

": MAP MAP ~ MAP 

The reason why certain of these operations are partial functions will 

now be explained. The union operation applies to sets of sets, SET 

just expresses: sets of objects. We could get around this by writing 

SET-set whereby: type: union: SET-set ~ SET, i.e. union is total over 

SET-set. hd and tl applies to non-zero length tuples, i.e.: 

type: hd: OBJ + ~ OBJ, t kl: OBJ + ~ OBJ* -- note totality. Indexing, 

[i], must have i lie in the index set of the tuple, otherwise unde- 

fined, conc is to tuples what union is to sets, i.e. 

type: cone: TUPLE ~ ~ TUPLE. Updating (+) tuple elements must have 

MAP in (N I ~ OBJ) with domain elements be in index set of tuple. So 

not even: type: +: TUPLE (N 1 ~ OBJ) ~ TUPLE would make + total 

over defined domain. 

6.2 Representing Instances of FunCTion Objects 

This section is somewhat differently organized than were otherwise 

comparable earlier sections (i.2 for i=2,3,4,5). In a number of subsec 

tions we recount basic aspects of so-called h-expressions. 
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We shall shortly, in a sequence of eight small steps, arrive at an 

understanding of functional abstraction. The idea being to write 

forms which denote functions. One such class of forms were the map 

expressions covered in section 4. Another such form is that of X- 

9 ~ q ~ "  Map expressions are used to define functions whose ar- 

gument-value association is known (i.e. being fixed) at the instance 

of definition, and whose domain-range sets are individually known 

and finite. 

Functional Abstraction 

(0) There are §!~!~ and ~ 2 ~ 2 ~  proper names. 

(1) Simple names are either arbitrarily assigned to denote some- 

thing, or their denotation has been assigned an arbitrary name. 

Composite names express through their structure some analysis 

of the way in which they denote. 

(2) A constant is a proper name having a fixed, or single denotation. 

(3) A variable is a proper name whose denotation may range over a 

set of values. 

(4) An expre§s!on is a name containing other names as proper consti- 

tuents. 

Composite names are expressions. 

(5) A form is either a variable or an expression in which one or 

more proper names have been replaced by variables. 

(6) In order to speak about the function of a free variable that a 

form is we abstract the form by prefixing it with a sequence of 

three symbols: a ~, the free variable and a dot. 

ly.3+y is the function of y that 3+y is; i.e. which increments 

any number by thr£e. 

(7) The passage from a fo_r_m to an associated function is called 

functional abstraction. 
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Functionally abstracting the forms: 3+y, x+y and hy.x into e.g. 

ly.3+y,~x, hy.x+y respectively lx. ly.x results in the increment- 

by-3 function, the addition (of two numbers) function and the 

function from (say) integers (x) to constant functions from (say) 

booleans (y) to that integer x. 

In the above we have employed a rather restricted and not completely 

detailed use of the concepts: names, expressions and forms. The term 

expression shall imply the inclusion of simple constants and variab- 

le (identifier)s. Forms are henceforth expressions. 

~expressions 

Any clause (expression or statement), clause, of the meta-language 

can be functionally abstracted, whether containing free variables or 

not (for free/bound variables, see below). 

Functional abstraction in zero variables is written: 

~ ( ) . c lause 

Writing, in the meta-language, the definition: 

let f = h().clause 

or : 

let f() = clause 

-- which is equivalent -- thus identifies f as a name for the func- 

tion of no variables that clause is. Any subsequent occurrence in the 

scope of the definition, i.e. use in contrast to definition, of f 

without () shall then denote the function, whereas any subsequent 

occurrence in the scope of the definition of f of f() shall denote 

the elaboration of clause. 

If the valuation of clause is dependent on a state -- not shown -- 

then repeated occurrences of f(), elaborated in different states, 

may result in distinct f(), i.e. clause, 'values'. These remarks 
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also apply to functions of several variables 

Functional abstraction in two or more variables is written either: 

or : 

lid I lid 2 .~ hid n o clause 

l(idl,id 2 .... ,idn )" clause 

where n~2, all id's distinct and ... is a shortening ellipsis ex- 

traneous to the meta-language. Let id. range over D. and the values 

of (for suitable substitutions of actual for formal parameters, see 

below) over D, then the denoted function is in the space: 

D 1 ~ (D 2 ~ (... ~ (D n ~ D) ...)) 

respectively: 

D 1 D 2 ... D n ~ D 

The former form corresponds to a so-called "currying" or "sch~n- 

finckeling" of the more familiar, latter, form. The former form also 

permits the application of (strictly) less than, as here, n argu- 

ments, namely the first (from left-to-right, say) k (k<n) arguments. 

Such an application then denotes a function in the space: 

D) )) Dk+ I ~ (Dk+ 2 ~ (... ~ (D n ... 

where k+1 ~ n. [Of course, if D is a itself a functional space, say 

D' ~ D", then application of n arguments will also yield a function.] 

m-ary functions, for m>O, can be identified: 

let f(idl,id2~o.o,idm) = clause 

or : 

le t f = ~(idl~id 2 ..... id m) clause 
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where no two id. and id. are the same. If f occurs free (see below) 

in clause then the denoted function is the so-called minimal fix- 

point solution to the (recursive) equation: 

f(idl,id 2 ..... id m) = clause 

etc. The minimal fix-point finding operation, ¥, will be explained 

subsequently. We could have indicated any such intended recursion by 

instead defining f by: 

letrec f(idl,id2,...,id m) = clause 

respectively: 

let f = ylg. h(idl,id2,...,idm) . clause' 

where clause' arises from clause by substituting all free occurrences 

in clause of f by g. 

[Using g instead of f on the right-hand side is strictly speaking not 

necessary, since -- under the letrec versus let convention -- the 

left hand f is not bound to any of the right-hand f's.] 

We shall, however, always force the user of the meta-language to mean 

recursion when using the defined function identifier in clause. Hence 

we choose to omit the rec suffix on let's and never to use the ¥ recur- 

sion maker. Consequently the only style in which a function can be re- 

cursively defined (inside a conventional function definition, see sec- 

tion 5) is by means of a let definition which also gives name to the 

function, a name whose denotation is known within the scope of the 

meta-language bloc~ in which the let occurred. This is in contrast to 

the form: 

¥hf.h(idlJid2,...,id m) • clause 

which otherwise defines the same function, but does not further iden- 

tify it~ 
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Free and Bound Variables, Scope 

For the purpose of the definition of the concepts of fr§e and b0und 

variables we consider the meta-language programs (or: function defini- 

tions) as made up from the following three expression constructs: 

(i) Variables 

(2) Function Applications 

(3) Function Abstractions 

(i) x is free in x. 

(2) x is ~ee in f(a) if it is ~r£e in either f, or a, or both. 

(3) x is ~ee in ly.clause if x~y (i.e. if x is an identifier dis- 

tinct from y) and x is ~££ in clause. 

(4) Since the non-recursive let definition block: 

(le_~t y = expr i__~n 

se) 

where se is either a meta-language statement or £xpression, can 

be understood to be a syntactic sugaring of: 

( ~ y . s e ) ( e x p r )  

provided ~@llzb~lvalue is used, we see that fre§ness of X in a 

let definition block follows the rules for ~r~§ness of x in an 

application. 

(5) Similar for statement composition: 

( s tmt l ;  

s tmt2)  

only makes sense if s tmt l  and stmt2 both denote functions from 

states, ~, to states, ~P, (stores to stores), hence: 

( s tmt ! ;  s tmt2)~ 

is really to be understood as: 
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(let ~ = S tmt1 (~)  

s t m t 2 ( a ' ) )  

in 

which then reduces to: 

(la '. (strut2 (a '))) (strut1 (a) ) 

A variable is bedrid in some expression if it occurs in the expression 

but is not free. 

It follows then that the formal parameter variables (identifiers) bind 

all of the free occurrences of such identifiers in the ~2~Y, i.e. clause, 

of a l-expression: 

l(idl,id2,...,idm).Clause 

The id.'s are called bound variables. 

The ~2~ of a bound variable is the entire body-part of the l-expres- 

sion to which it belongs, with the specific exception of each properly 

contained l-expression of the body-part having that same bound variable 

identifier. 

Application 

Applying a l-defined function: 

Ivar.clause 

to an argument, arg: 

(Ivar.clause)(arg) 

then means to evaluate the expression clause' which arises from clause 

by ~ ! ~ ! ~  all free occurrences of (the syntactic object) the iden- 

tifier vat in c~ause by the (semantic) object denoted by arg. 

Hence the meta-language only has S~!!zDXzYe!~- 

The above application rule extends to functions of several arguments. 
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Definition versus Application 

To write: 

(let f(a) = clause in 

C(f)) 

means: let f denote the function which satisfies the above equation and 

evaluate or interpret C(f) in such an environment where f is bound to 

that function. It does, e.g., not mean: evaluate clause before proce- 

ding to elaboration of C(f). clause is evaluated iff f is applied and 

then the suitable substituted clause' is evaluated everytime, afresh, 

whenever f is so applied! 

The ~ Operator 

For the benefit of those who are not familiar with the y operator of 

the l-Calculus we now present a development leading up to this operator 

and its purpose. 

Let : 

(let f(x) = F(x,f) in 

.,.) 

define f recursively -- i.e.: the right-hand side occurrence(s) of f 

in F(...) denotes the same as does the left-hand side f. 

Since, in the l-Calculus: 

G = (Ix.G)(x) 

provided x does not occur (free) in G, and since let f(x) = F(x,f) 

is the same as let f = Ix.F(x,f) we get: 

(let f = (Ig. lx. FCx, g))(f) in 

where g does not occur (free) in F(x,f). If we ascribe the name F to 

Ig.lx.F(x,g), i.e. if we let: 
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F = Xg. Xx.F(x,g) 

then the previous can be written: 

(let f = F(f) in 

Now: F is a function, in fact it is a functional. And objects, say w, 

satisfying: 

W = HW 

where H is any function, are said to be ~!~Z~i~ of H. The f we are 

looking for, i.e. defining by the let clause, thus is a fixed-point of 

F. It turns out that there may be many fixed-points of any given func- 

tional -- so, following good practice, we select one which is in some 

way unique; in particular, we choose to let such f's denote the so- 

called minimal fixed-point. This means: that solution, f, (to the equa- 

tion) whose @[a~h is included (E) in any other solution. It then turns 

out that, under suitable and always reasonable constraints (monotonici- 

ty, etc.), there exists a functional, let us name it ¥, which when ap- 

plied to objects, like F, produce their minimal fixed-point! 

This is the ¥ we are referring to. It is the so-called minimal fixed- 

~2!~ ~!~!~ 2 ~ "  Observe the sequence, repeated from above: 

let f(x) = F(x,f) 

let f = hx.F(x,f) 

let f = (lg. hx.F(x,g))(f) 

let f = F(f) 
let f = yF I where : F = lg. lx.F(x,g) 

~et f = ¥~g.~x.F(x,g) 

let f = ylf.~x.F(x,f) 

That is: writing lg.hx.F(x,g) or writing lf. hx.F(x,f) produces identi- 

cal meanings, since the h's shield the right-hand side f from the left- 

hand side f -- they are now, formally speaking, not the same, although 

they denote the same object: 
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6.3 FunCTion Operations 

There is only defined one operation on FunCTion objects: 

(...) apply. 

In the introductory example we illustrated the 'concoction' of proce- 

dure denotations. In the following example we show their application. 

Let: 

1 Block :: Var-set (Id ~ Pro) Stmt ~ 

be an abstract syntax (::-) rule. Block abstracts the domain of the 

blocks of some goto-free source language. They consist of three parts: 

Variable declarations, uniquely named (Id) Procedures, and a Statement 

list. Their semantics is: 

type: I-Block: Block ~ (ENV ~ (E ~ E)) 

where: 

2 ~ = LOC -~ VAL 
m 

3 ENV = Id ~ DEN 
m 

4 DEN : LOC i (ARG ~ ~ (~ ~ E)) 

and : 

5.0 

.I 

.2 

.3 

.4 

.5 

.6 

I-Block(mk-Block(vars, procm, stl))(p)(~)= 

(let (~t,map) = allocate(vars)(~) in 

let p' = P + map 

+ [id ~ V-Prc(procm(id))(p')(s') 

I id £ domprocm ] in 

let o" = I-Stmt-list(stl)(p')(~') in 

~"~rng map) 

Lines .1-.4 constitute the block activation prologue, line .6 the match- 

ing epilogue. The function allocate is given variable names and states 

and produces a new state in which is allocated all the cells correspond- 

ing to the variables, their cell locations is recorded in map which 
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binds variable names to these locations: 

6.0 

.i 

.2 

.3 

.4 

.5 

.6 

allocate(vars)(o)= 

if rare={} 

then [~,[]) 

else (let id £ vats 

let (o',map) = allocate(vare~{id})(s) 

let I 6 LOG be s.t. 1 ~6 dome' 

(s' U [l~undefined],ma p U [idol])) 

type: allocate: Vat-set ~ (£ ~ (£ (Vat ~ LOG))) 
...... m 

and: 

tHpe: [-Stmt-list: Stmt ~ ~ (ENV ~ (X ~ ~)). 

in 

in 

in 

Now a statement could be a call of a procedure: 

7 Stmt = Call I ... 

8 Call :: Id Expr ~ 

and with: 

9.0 1-Stmt-list (stl) (p) (0)= 

.i i_~ stl=<> 

• 2 then o 

.3 else (let o' = ~-Stmt(hstl)(p)(o) 

.4 ~-Stmt-list(t 8tl) (p) (o') ) 

we end up having to explain: 

i0.0 I-Stmt(stmt)(p)(o)= 

.i casee stmt: 

.2 (mk-Call(id, el) 

.3 (let argl = < V-Arg(el[i])(O)(o) 

.4 fct = p(id) 

.5 fct(argl) ) , 

where it is assumed that: 

type: V-Arg: Expr ~ (ENV ~ (~ ~ ARG)) 

in 

i £ ind el >, 

in 
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in other words, that evaluation of the amgument list does not create 

side-effects by changing the state (0). 

Observe now, how the procedure denotation, which is a FunCTion, 

(ARG* ~ (Z ~ Z)), "packed" in the environment p' set up at prologue 

"time", is retrieved (10.4) and applied (10.5) at "calling" time. 

We have completed our task of showing the construction of FunCTion ob- 

jects, the second of the introductory examples of this section; and 

the ~!!Se~!2~ of such objects to their arguments. 

Observe that the apply operator of line .4 above, retrieving fct from 

the MAP object p, is a MAP operation; whereas the apply operator of 

line .5 above, applying the FunCTion object, fct, to its a~gument list, 

is the FunCTion operation of apply. 
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7. ABSTRACT SYNTAX 

Program = 

Stmt = 

Block :: 

Type :: 

Prod :: 

Parm :: 

Named-Stmt :: 

If :: 

For :: 

Call :: 

Goto :: 

Assign :: 

In :: 

Out :: 

Expr = 

Stmt 

Block t If I For I Call I Goto I 

Assign I In I Out I NULL 

(Id ~ Type) Prod-set Named-Stmt ~ 

Scalar-type [(Expr I ~)+] 

Id Parm ~ Stmt 

Id (Type I PROC) 

[Id] Stmt 

Expr Stmt Stmt 

Id Expr Expr Expr Stmt 

Id (Var-ref IId) ~ 

Id 

Var-ref Expr 

Var-ref 

Expr 

Infix-expr I Rhs-ref I Con-var-ref I Const 

The above is an example of an incomplete(d) abstract syntax. It is in- 

tended to define fragments of the syntactic domains of some source lan- 

guage. Before commenting on its use of = and :: rules; and of domain 

operators: l, ~,~, -set and [...], let us, for the sake of instruction, 

annotate the above syntax in the way we believe a formal model should 

render itself more open to inspection by casual readers: 

-- annotation 

A program is a statement . 

A statement is either a block, or an if, or a for, or a call, or a goto, 

or an assign, or an in, or an out, or a null. 

A block has a variable declaration part which to variable identifiers 

uniquely associates the type of the values that can be stored in the 

variable, a set of procedures, and a list of named statements. Thus a 

block has three parts. And either, some, or all, of these may be void. 
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A variable type is either a scalar or an array type. In this model the 

scalar type is modeled whenever the optional [(ExprI~) +] object is 

'absent', i.e. nil. An array type has all array elements being of the 

same scalar type. The dimension of the array is given by the length of 

the present (Expr I ~)+ list. 

A procedure has an identifying name, a parameter specification list, 

and a body which is a statement. 

A parameter specification has an identifying formal parameter name and 

an argument type description. The type of an argument is either that of 

a scalar-, an array- or, a procedure. 

A named statement has two parts: an optional label, which is an identi- 

fier, and a statement. 

Etcetera. 

Comments 

From the above annotations it transpires that the domain expression "I" 

operator stands for "either", the paired operators "[...]" for optiona- 

lity, and "(...)" delimits the scope of the infix ~ in rule 3, the suf- 
m 

fix + in rule 4, the infix i in rule 6, and the suffix ~ in rule 10. 

Next we observe that the above syntax defines e.g. the domain Stmt 

recursively. For example: a statement is (=) an if-then-else statement 

(2); and an if-then-else statex~ent contains both a (then) consequence 

and an (else) alternative (8), both of which are statements. 

Finally we conclude that the domains denoted by the rule left-hand sides 

must constitute some kind of solution to the mutually recursive set of 

equations, whether the definition symbol be "=" or "::" 

7.1 Domains of Abstract Objects 

In the following we shall rely on your returning yourself to the above 

example, as well as to some of the abstract syntax examples previously 

shown. 
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The aim of section 7 is to teach you how to decompose the more general 

task of defining recursive classes of abstract objects. Sections 

2-3-4-5-6 already taught you the more isolated construction of set, 

tuple, map, tree and function domains. 

Motivation: 

The reason why we in general, wish to define arbitrarily compounded 

classes is the following. 

The meta-language is used, primarily, to describe complex software 

architectures: programming languages, data bases, operating system 

command & control language interfaces; and their stepwise realization: 

language processors, etcetera. Just like we ordinarily describe the 

concrete text strings, making up e.g. programs, queries and commands, 

in terms of e.g. BNF grammars -- so we now desire to give abstractions 

of these classes of objects. Likewise: just as we, when coding a higher- 

level language program, a data base data definition, etcetera, define, 

normally as part of variable declarations, the structure of our inter- 

nal, stored objects -- so we now desire to give storage layout-indepen- 

dent abstractions of the more intrinsic of these value classes. 

Syntactic & Semantic Domains: 

In the motivation above, two kinds of abstract object classes were 

singled out. The ones input to the software systems being defined, 

viz.: program texts, data base query & update commands, operating 

system job control language commands, etc. And the ones manipulated, 

and, as we shall take it in general, denoted by these inputs, viz.: 

internal data structures; catalogues, files & records; processes, re- 

sources, ercetera. We shall generally refer to the former object clas- 

ses as being of syntactic nature, and the latter as being semantic. 

Syntactic and semantic domains will, in the meta-language be defined 

using the programming construct of abstract syntax. 

The "programming construct" of BNF grammars or some extended variant 

thereof is usually applied when defining sets of concrete text strings 
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-- i.e. context-free "languages". And the type and mode, definition 

facility of PASCAL, respectively ALGOL 68, is the corresponding pro- 

gramming construct for the internal data structures. In the meta-lan- 

guage the same tool will be applied in the construction of potentially, 

and usually, infinite classes, or as we shall prefer to call them, 

domains of abstract objects. 

Motivation: 

The reason why we apply the same tool and why this tool is neither that 

of e.g. BNF, the PASCAL type definition nor the ALGOL 68 mode defini- 

tion facility, is that we, on one hand, neither want to deal with text 

strings (or corresponding parse trees), nor, on the other hand, are 

concerned about storage space and access-efficient layout of objects. 

Instead we desire to provide what we believe to be appropriate & fit- 

ting representational abstractions. 

Representational Abstractions: 

By representational abstraction is meant the target system (e.g. input/ 

output terminal-, or machine-storage device) independent specification 

of software function concepts, especially objects, emphasizing the 

choice of such abstractions whose, usually composite, (logical) type 

most directly expresses intrinsic, i.e. to our understanding relevant, 

properties of the notions being specified. 

Domain Definitions ~ Compositions 

In order: 

(I) to decompose the task of constructing domains, i.e. of 

composing them from constituent domains, and in order 

(2) to permit the constructions of reflexive domains, i.e. 

composite domains whose objects contain properly em- 

bedded objects of the same kind (-- or domain) 

the meta-language provides~the conventional notion of definitions. 
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Definitions / Rules 

A domain definition consists, as does any definition, of two parts. A 

left- and a right hand side. Other words are lhs, respectively rhs; 

and definiendum ("that ~hich is being defined"), respectively definiens 

("that which defines it"). We shall use the words abstract syntax 

rule synonymously with the concept of a domain definition. 

Abstract syntax rules all have their lhs's being simple names, i.e. 

identifiers. The rhs's are usually compound expressions henceforth 

referred to as logical type, or domain expressions. 

The first point, above, about decomposing the task of defining domains 

is achieved by the ability to use, in the rhs's of some rules, the lhs 

identifier of some other rule. The second point, then, is achieved by 

permitting the use, in the rhs of any rule, of the lhs identifier of 

that (or those) rule(s). 

Compositions / ~2~!~ E~pressions 

In order: 

(3) to model notions of software systems representationally 

abstract, and in order 

(4) to provide a reasonably fitting variety of choices for 

abstracting objects 

the meta-language centers its abstract compound objects around the 

mathematically tractable concepts of sets, ~!~, functions and ~ees 

together with associated, primitive operations. 

Domain Q~erators: 

As a consequence the meta-language provides a number of operations 

which apply to arbitrary (constituent, elementary &/or composite) do- 

mains to denote set-, tuple-, map-, function- and abstract tree domains. 

These operators have already been introduced, and are: 

, + ~ ~ ~ (...) 

the latter ((...)) denoting (implicit or anonymous) tree construction. 
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In the compounding, usually signalled by the implicit, or anonymous, 

tree constructor (..4), of more than one domain: 

(D I D 2 ... D n) n~2 

• t! there is an invisible "cartesian product-llke operator, x. That is, 

you might read the above as: 

(D 1 x D 2 x ... x Dn). 

The point about the use in this meta-language of the cartesian operation 

is that it is only used when domains of trees of two or more subcompo- 

nents are denoted. Not, e.g., when tuple domains are to be constructed. 

These can only be constructed, in this meta-language, using the ~ or + 

operations. Thus, where context permits, we may drop implicit tree 

constructors, as in: 

A -~ B C 

which is taken to be identical to: 

A ~ (B C) 

That is: the precedence of x is higher than any other infix operator, 

but lower than any suffix operator. We usually omit writing the x opera- 

tor. 

The following domain operators assemble not necessarily disjoint do- 

mains into 'unions' of these: 

-- the latter applicable only in connection with map domains, as ex- 

plained in section 4.1. The J operatoz will be further defined below. 

Finally the operators: 

[...] -- optionality 

(...) -- grouping/delimiting 

enables shortness of descriptions. The former: 

[A] ~- A D nil. 
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The latter can easily be confused with the tree construction operator. 

Therefore: when (...) surrounds two or more domain expressions with no 

infix domain operator, other than the cartesian operator, separating 

them, e.g. as in: 

(A ~ B-set C), 

then (...) denotes tree domain construction; otherwise (...) as in : 

(A ~ I (B-set ~ C)) ~, 
M 

serves to indicate, i.e. delimit, the scope of infix or suffix domain 

operators. The corresponding scope rules are the conventional ones. 

Infix Operator C~_mm_u~a~ivi~[ and Associativ!~y 

With infix operators the question of their commutativity and associa- 

tivity arises: 

I , U are commutative 

, ~ , ~ associates to the right. 

The cartesian product operator, x, does not associate~ 

Ex_am_Rles 44-45-46: 

(i) The domains denoted by: 

A i B and B i A 

are identically the same, and so are: 

(A ~ B) U (C ~ D) , and : 

(2) The domains: 

A ~ (B ~ (C ~ D)) , and : 

A ~ B ~ C ~ D 

are identically the same. Writing the former is a clarification of the 
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latter, should you have forgotten the rules of associativity. Thus the 

domain: 

((A ~ B) ~ C) ~ D 

is distinct from the domain denoted by the former expressions. 

(3) The tree domains: 

(A x B x CJj ((A x BJ x C), and (A x (B x CJ) 

are all distinct (in fact, disjoint). Only in this, the 3rd example, 

was (°..) used for tree domain construction. 

Semantics of the I Operatqr 

Of the new domain expression operators ([...]j (...), I) introduced in 

section 7 only the meaning of I remains to be explained. 

Let A and B be domain expressions, denoting A, respectively B. Then: 

A I B 

denotes: 

A U B  

where U is the (potentially infinite set) union operator; i.e. : 

A I B ~ { o ! oE A vo£ B } 

Comment: 

Thus f does not denote the discriminated or disjoint union operation. 

In Scott 76 the disjoint union operator is represented by +, and: 

A + B  ~ { (A__.,aJ I a £ A } U 

{ (B, bJ I 6B} 
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The "tagging" of the A+B domain elements, with a "label" indicating 

the originating domain, is useful whenever (i) domains A and B over- 

lap, and (2) the need arises for testing, say in some function, whether 

an A+B object comes from A or from B. 

Since the I operator does not separate the operand domains it is the 

task of the definer to see to it that J operand domains are disjoint 

whenever some functions applicable to the union domain need ascertain 

originating domain. 

Constructin~ ~!~2!~ Domains 

Let us assume that a union domain, roughly of the type: 

D 1 I D 2 l ... I D n 

is required. Let us further assume that for some, or all, i#j: 

D° is not disjoint from D. 

Since D i and Dj overlap there is no direct way of separating (some) D i 

objects from D.. 
J 

Introducing the abstract syntax tree domain constructing rules: 

and : 

A I :: D 1 

A 2 :: D 2 

w , ,  

A :: D 
n n 

A 1 J A 2 I ... I A n 

(in lieu of D I i D 2 J ... I Dn), effectively corresponds to a distinct 

marking (mk-A1, mk-A 2 .... , mk-An) of respective DI, D 2, .... D n objects 

in the union domain A 1 I A 2 I ~.. I A n . Distinctness is solely achieved 

by distinctness of left-hand side (Ai, Aj ) names. 

Thus we introduce :: abstract syntax rules whenever disjointness is 

desired. 
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7.2 Abstract Syntaxes & Rules 

Abstract Syntaxes 

Abstract-Syntax ::= Rule i 

Rule 2 

Rule 
r 

is an informal "extended" BNF, or BNF-like, syntactical description 

defining an abstract syntax as consisting of a number of rules. Each 

rule: 

Rule ::= 

::= 

Identifier = Domain-Expression 

Identifier:: Domain-Expression 

basically consists of two parts: a left-hand side definiendum, which 

is an identifier; and a right-hand side definiens, which is a domain 

expression. The two rule parts are separated either by an equality (=) 

operator or by the so-called tree domain constructor (::) operator. 

Both the = and the :: operators are definition symbols (like: 

or d~f )" The latter, in addition, 'constructs' trees. Its use in: 

A : : B 1 B 2 . , . B n 

could be taken as an abbreviation for the (intended, reflexive) use of 

:: in: 

A = ::(B 1 B 2 .~. Bn). 

Context Constraint 

In a complete meta-language program there must be no two rules of any 

one or pair of abstract syntaxes with identical definienda, i.e. lhs 

identifiers. 

/s-Function: 

Any abstract syntax rule !~!!S!~!£ introduces, i.e. defines, a predi- 

cate function /s-Identifier: 
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type: is-Identifier: OBJ ~ BOOL 

which applies to any object and yields true if it is an object in the 

domain denoted by Identifier, otherwise false. 

Note: 

We could have chosen to write: 

obj 6 Identifier 

instead of: 

i8-Identifier(obj) 

but, except for a few cases, we reserve the former form for set member- 

ship tests where the set is not one defined as a Domain as defined by 

some abstract syntax. The exceptions are those illustrated by the fol- 

lowing descriptor and quantified expressions (see sections 1.5 & 1.4.1): 

(Ax £ !dentifier)(P(x)) 

(VX 6 Identifier)(F(x)) 

(Hx £ Identifier)(F(x)) 

(B!x £ Identifier)(F(x)) 

Exam~!~ ~Z: 

Given the introductory abstract syntax example, and given: is-Stmt(s), 

i8-ID(id), is-Scalar Type(st), is-Named-Stmt(nsl), is-Named-Stmt(ns2), 

is-Stmt(sl), i8-Stmt(s2), and is-Expr(e) we are able to construct: 

m k-Program (8) 

ink-Block ( [ id-~mk-Type (st, nil) ], { } ~ <n81, ns 2> ) 

ink-Named-Strut (nil, s) 

mk-IfCe, 81,82) 

pr 

bl 

ns 

if 

etc.. Let us call these four objects pr, bl, nB and if. Now: 
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is-Program(pr) 

is-Stmt(pr) 

is-Block(pr) 

i8-Named-Stmt(pr) 

is-If(pr) 

is-Program(he) 

is-Stmt(ns) 

is-Block(he) 

is-Named-Stmt(ns) 

N is-If(he) 
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N is-Program(hi) 

is-Stmt(bl) 

is-Block(hi) 

is-Named-Stmt(bl) 

is-If(bl) 

N is-Program(if) 

is-Stmt(if) 

is-Block(if) 

is-Named-Stmt(if) 

is-If(if) 

Further Context Constraint 

A z-rule, when expressible in the form: 

Identifier = D 1 D 2 ... D n (n~2) 

is identical to the rule: 

Identifier :: D I D 2 ... D n (n~2) 

Semantics of Abstract Syntaxes 

The prescription for computing most of the domains designated by com- 

pound domain expressions has already been given. Allowing now for do- 

main definitions, i.e. rules, in fact for several such, and, in addi- 

tion, for potentially mutually recursive rules, we require a more com- 

prehensive prescription for computing the domains given an arbitrary 

abstract syntax. We shall only do that informally here, relying in 

general on the formal foundations laid by Scott. [Scott 1976]. 

An abstract syntax can, speaking rather formally, be viewed syntacti- 

cally as an equation set. Its meaning is a family of named sets of 

mathematical objects being the minimal, fix-point solution to the equa- 

tion set. That is: to each lhs there corresponds a potentially infinite 

class of finite objects, the domain. These domains are the smallest 

such classes which, when substituted in lieu of their identifying names 
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in the equation lhs and rhs's will, satisfy the equations. The bit 

about the fix-point ~omes into the picture since our equations may be 

mutually recursive. 

The equation: 

D = D-~D 
m 

has the following solution: 

with : 

"adding": 

D: {[],[[]~[]],[[]~[[]~[]]],[[[1~[]]~[]] .... }; 

D = (DMD) J A 

{ [ a  I * [ ] ]  . . . .  

[ a  1 ~ a 1 ] . . . .  

[a I ~ al,a 2 ~ a2,...,a n ~ a n ] .... 

to the above solution. 
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7.3 Abstract Syntax oriented Combinators 

The meta-language (structured-) expression and statement combinators 

specifically complementing the (abstract syntax) domain expression al- 

ternative operator, i, are: 

The McCarth£ Conditional Clause: 

(pe I ~ e 1, 

pe 2 ~ a 2, 

o , ,  

pe n ~ o n) 

The Cases Conditional Clause: 

da8e8 ~0: 

(e I -~ cl, 

e I -~ a2, 

o ° o  

e -~ d ) 
n n 

Here pe i stand for predicate expression, cj for either expressio~ or 

statement, and e k for expressions. A clause is either a statement or an 

expression. If either of the above conditional clauses is (intended to 

be) of the expression type, then all c. are (to be) expressions. Simi- 
J 

larly they are all to be statements if the above clauses are to be 

conditional statements. We refer to the e k expressions as follows: e 0 

as the root expression and ek, for 1~k<__n, as the branch expressions. 

Given the abstract syntax for expressions of some source language: 
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1 Expr = Infix I Rhs-ref f Con-var-ref ~ Const 

2 Infix :: Expr Op Expr 

3 Rhs-ref :: Var-ref 

4 Con-var-ref :: Id 

5 Conet = INTG I BOOL 

6 Var-ref :: Id [Expr +] 

7 Op = Int-Op I Bool-Op I Rel-Op 

We can define a function, ex-tp,-which given a dictionary: 

8 DICT = Id ~ (Type I PROC I ...) 

9 Type :: Scalar-type [(Expr ! ~)+] 

10 Scalar-type = ~Z I BOOL 

computes the Scalar-type of an expression, e: 

ii.0 

.I 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

.ii 

ex-tpCe, dict)= 

case8 e 

(mk-Infix( ,opj ) 

(is-Int-Op(op ) ~ ~NT, 

is-Bool-Op(op) ~ B00~, 

ie-Rel-Op(op) ~ BOOL), 

mk-Rhs-ref(mk-Var-ref(id, )) 

8-Scalar-type(dict(id)), 

mk-Con-var-ref( ) 

i8-B00L(e) ~ BOOL)) 

type: Expr DICT ~ Scalar-type 

Observe how, in this case, we nested the Cases and the McCarthy con- 

structs. Relate the structures of the abstract syntax and the ex-tp 

function, and observe how they "match". Observe next the use of mk- 

constructs in the cases branch expressions. Observe finally that we only 

name those arguments of the mk- functions which we explicitly require. 

-- annotations: 

An expression is either an infix expression, a right-hand-side refe- 

rence, a controlled variable reference or a constant. 
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An infix expression has three parts: two operand expressions and an 

operator. 

A right-hand-side variable reference is a variable reference. 

A controlled variable reference is an identifier. 

A constant is either an integer or a boolean. 

A variable reference has an identifier and, if this identifier denotes 

an array location, then an index list, which is a non-zero, finite 

length expression list, else nil. 

An operator is either an integer (arithmetic) operator, a boolean ope- 

rator, or a relational operator. 

-- comments: 

An expression either denotes an integer or a boolean. Hence the type of 

an expression is (said) either (to be) ~NT or (to be) BOOL. The type of 

an expression -- which is otherwise well-formed -- can be statically as- 

certained. Given that the type with which a variable or formal parame- 

ter is declared: 

12 Block :: (Id ~ Type) Proc-set Named-Stmt 

13 Proc :: Id Parm Stmt 

14 Parm :: Id (Type t PROC_) 

is recorded in some (compile-time) dictionary, also called static en- 

vironment, the function ex-tp computes (at compile-time) the type of 

any expression. 

-- annotations, continued: 

ex-tpis given an expression, et and a dictionary, dict. 

If e (.i) is an infix expression (.2), i.e. if e can be expressed 

as some mk-Infix(el,op, e2), where el,op and e2 become the names of those 

Expr, Op, respectively Expr objects of which e is made up, then the type 

of e is ascertainable from the kind of operator that op is. If op is 

.3) an integer operator, then the type of e is ~NT; if op instead is 

either (.4) a boolean or (.5) a relational (or comparison) operator, 

then the type of e is BO0~. 

If e (.I) is a right-hand side reference (.6), i.e. if e can be 

expressed as some mk-Rhs-ref(vr), where vr is a variable reference 

(meta-)expressible as some mk-Var-ref(id, el), where id and el become 

the names of the Id, respectively [Expr +] objects of which e can be 

made up, then the type of e can be looked up in the dictionary as that 
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of the Scalar-type component of the Type object with which id is asso- 

ciated. 

PART III COMBINATORS 

In part II, i.e. in sections 2-7 inclusive, we dealt with all aspects 

of constructing domains of objects, constructing objects and perform- 

ing primitive, i.e. language-defined operations on objects. 

Certain desired transformations on objects are, however, of a complexi- 

ty which cannot easily be described by some such operator/operand ex- 

pression, regardless of its composition. To that end, and as is quite 

customary in programming, the meta-language provides a number of con- 

structs which facilitate the gradual composition of transformations and 

processes on objects. We call these constructs for combinators. They 

are: 

Variables: Declarations, Assignment & the State 

Structured Clauses 

Blocks: Let & Return 

Exits 

So far we have officially dealt only with the applicative aspects of 

the meta-language. Introducing variables implies introducing imperative 

constructs, i.e. statements. The applicative part of the language, how- 

ever, includes the let constructs of, and hence also, blocks, as well 

as most of the structured clauses. We say, in general, that the appli- 

cative constructs of the language permit the expression of composite 

transformations on objects. The imperative constructs correspondingly 

enable the decomposed, stepwise statement of processes on objects. 
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8. VARIABLES 

Exam~!~ ~: 

The following four function definitions all define ~ to denote the fac 

torial function: 

1 fo(n) = if n=O then i else n*fo(n-1) 

2 fl(n) = (dcl Z := I t~pe N1; 

,i ~0 r i=I t__oo n do 

.2 Z :: (~)*i; 

.3 return(c v)) 

3 f2(n) = (dc l ~ := 1 type N1; 

.i [or all i E {l:n} d~o 

.2 ~ := (S~)*i; 

.3 return(c u)) 

4 f3(n) = (dcl Z := 1 type N1, 

.2 while (ci % O) do 

.3 (Z :: (£i)*(~); 

.4 ~ := (c£) - 1); 

.5 return(c u)) 

The first defines ~ applicatively; the remaining three, imperatively. 

We say that the parenthesized constructs: (dcl ... return(...)) are 

blocks. ~ and, only in the last definition, ~ are (assignable) variab- 

les. They form part or all of the state current in these blocks. If no 

other (externally declared) variables 'exist', then they form all of 

the state. The logical type of the four f's are: 

type: fo: NO ~ NI 
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type: fl,f2,f3: N O ~ (~ ~ (Z NI)) 

where Z denotes the state space. The contributions of ~ and 

the blocks, to this space is: 

~, inside 

z . . . .  k c L # ~ )  k ~ # . ~ o )  

where the ... ellipsis refers to possibly externally declared variables. 

Since none of the f1" f2 nor f3 assign to any such global variables it 

is easy to see that they do not alter any global state, and hence that 

the potential state transformation indicated by: 

is in fact the identity change. Thus the four functions can indeed be 

shown 'equivalent' even when considering a global state. 

8.1 Declarations & The State 

Although the examples above featured block local declarations we shall 

normally not find a need for other than global variables in abstract 

models of higher-level software. 

The meaning of a declaration: 

dol V~r := ... type D 

-- in which we may omit the type D clause -- is that of joining to our 

state, s, a contribution: 

U [~ ~ obj] 

It is understood that Va~ is not already declared, 

In general, the state space, Z, given a collection of 

tions: 

dcl ~I := ... type DI, 

~2 := ... type D2, 

V := ... type Dn; ~n 

i.e. that Va~ ~6dom ~. 

(global) declara- 
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can be defined as: 

= (~I ~ D1) ~ (~2 ~ D2) k "'" ~ (~n ~ Dn) 

The domain expressions: 

(V- i ~ D i) 

are degenerate in that the denoted map domains are singular, i.e. con- 

sist of just one element, the (quotation-like) object ~i which can be 

regarded as denoting itself. 

Our source language example features the ability to input data from an 

(one) external device, to output data to an (one) external device -- 

distinct from the input device, and to declare variables in any (nested) 

block. The relevant syntactic domains, continuing example 31, are: 

Block :: (Id ~ Type) ... Stmt 

Stmt = In I Out I Assign I ... 

In :: Var-ref 

Out :: Expr 

Assign :: Var-ref Expr 

The semantic functions ascribing meaning to these source constructs will 

be based on the following three (global) variables: 

dcl ~ := <...> t~pe (INTGIBOOL) , 

:= <> type (INTGIBOOL) ~, 

ST~ := [] ~ sTa; 

where STG was defined in the last example of section 4.4. 

The state space, Z, of the elaboration functions, is: 

= ( ~  ~ (INTGIBOOL)~) 
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8.2 Variable References 

Prelude 

Recall the introductory examples of section 8. Variable identifiers 

(~) occurred in two contexts: 

The left-hand side occurrence denotes itself, i.e. the meta-storage 

(state) location. The right-hand side occurrence of V likewise denotes 

itself ~ But here we traditionally expect the value kept in the V loca ~ 

tion. The meta-language breaks with this tradition. If you need the 

content, then you are required to perform the c operation to V. 

end-of-Prelude 

If V is the name of a declared variable: 

de___ll V := ... type D 
N 

then V is said to denote itself, or if need arises for more precision, 
N 

to denote a re~D object, i.e. a reference to an object of type D. 

To get at the value 'stored' in ~ apply the contents-of operation de- 

noted by c: 

c V  

V and c V are meta-language expressions. Given the state, ~: 

~ is explained as : 

oc£). 

If V is of type refD , then c V is of type D. That is: c de-referen- 
N m N  -- 

ces ~. Thus ~ denotes a function from state variables and states to 

objects; which we generalize to a function from state-variable and 

states to states 'paired' with objects: 
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c ~ Xu.hs.(s,s(v)) 

c 6 (V ~ (x X (z osJ))) 

8.3 Assignment 

Assignment is a meta-language statement: 

:= expr 

If ~ is of type refD 

i.e. D'qD, e.g. D~D' 

then expr must be of a type D' , included in D, 

The meaning of assignment is as you think it. Formally, however: 

i.e. : 

:= N Xu. Xobj.ha. (~+[v~obj]) 

:= 6 (V ~ (OBJ ~ (X ~ Z))) 

We now conclude the examples of sections 4.4, 6.3 and 8.1. Recall in 

particular the last example of section 4.4. 

The elaboration functions ascribing meaning to the source language In, 

Out and Assign statements will themselves employ,but now, meta-language 

assignments. Since the basic source language means of referring to a 

variable is through: 

Var-ref :: Id [Expr +] 

we define a set of auxiliary functions: 

type: eval-Var-ref: Var-ref ~ (ENV ~ (Z ~ (Z Scalar-loc)) 

contents: Scalar-lot ~ (~ ~ (~ (INTGIBOOL))) 

assign: Scalar-loc (INTGIBOOL) ~ (~ ~ ~) 

eval-Var-ref takes a variable reference, an environment and a state, 

and produces the same state and the scalar location denoted by the 

variable reference. The need for accessing the state arises as a result 
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of potentially evaluating array variable subscripts. Whereas 

eval-Var-ref applies to a syntactic object (Var-ref), and hence needs 

the environment; eontents and assign apply only to semantic objects, 

and hence do not require the environment. Finally: objects assigned 

to storage locations must have their type match the type of the loca- 

tion. Recall that the storage model of the last example of section 4.4 

distinguished between integer- and boolean locations: 

0 

.i 

.2 

v-tp-match(v, sloc)= 

(is-INTG(v) ~ is-Intg-loc(sloc), 

is-BOOL(V) ~ is-Bool-loc(sloc)) 

type: (INTGIBOOL) (Intg-locLBool-loc) ~ BOOL 

Now: 

i. int-In(mk-In(vr)} (p)= 

.2 then error 

.3 else (let sloc: eval-Var-ref(vr)(p), 

.4 iv : hd c ~ ;  

.S i f  v-~p-match(iv, sloc) 

.6 then (In k := tl c ~ ;  

.7 assign(sloe, iv)) 

.8 else error) 

type: In ~ (ENV ~ (E ~ E)) 

2. int-Out(mk-Out(e))(p) = 

.1 (let ov : eval-Expr(e)(p); 

type: Out ~ (ENV ~ (~ ~ E)) 

3. int-Assign(mk-Assign(vr, e))(O) = 

.! (let sloc: eval-Var-ref(vr)(o), 

.2 val : eval-Expr(e)(o); 

.3 assign(sloc,val)) 

type: Assign ~ (ENV ~ (E ~ Z)) 
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The auxiliary functions: 

4. eval-Var-ref(mk-Var-ref(id, ssl))(p)= 

.i if ssl=nil 

.2 then return(o(id)) 

.3 ~ else (let arrloc = p(id) in 

.4 let il : < eval-Expr(ssl[i])(O) l 1 < i < lenssl >; 

.5 if il N6 dom arrloc 

.6 then error 

.7 else return(arrloc~l))) 

5. contents(1)= 

.i (let V : (sSl~)(1); 

• 2 i_~ v=undefined 

• 3 then error 

.4 else return(V)) 

6. assign(l,V)= 

oi STG := aSTG + [l~v] 

-- annotations 

io Interpreting an Input statement proceeds as follows: (.1) If there 

is no more ~nput, then (.2) interpretation halts, otherwise (.3-.8) 

we evaluate (.3) the scalar location denoted by the variable refe- 

rence constituting the Input statement and (.4) retrieve the front 

input stream value. If (.5) the type of this Calue matches that of 

the scalar location then (.6-.7) we proceed to (.6) 'shorten' the 

~nput stream by the element value just retrieved, and (.7) to assign 

this value to the scalar storage location; otherwise interpretation 

halts. 

2. Interpreting an Output statement consists, rather more simply, of 

(.I) evaluating the expression it is composed of and (.2) of append- 

ing the resulting output value to the Output stream. 
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4. 
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for 3., int-Assign. 

Evaluating a variable reference which consists of a possibly void 

array subccript list and the variable identifier proceeds as fol- 

lows: (.i) If the subscript list is absent, then (.2) the identi- 

fier is guaranteed, by well-formedness context conditions not 

shown, to denote a scalar variable, whose location can be obtained 

from the environment directly. (.3-.7) If instead the subscript 

list is present, then (.3) the identifier denotes an array variable 

whose location is kept in the environment. The subscript list is 

guaranteed to consist of proper expressions all yielding integer 

values. Well-formedness context conditions for this are not shown, 

but see [Jones 1978a]. We therefore (.4) evaluate all the subscript 

expressions to obtain an index list. (.5) If this index list is 

not one of the array, then (.6) interpretation fails, otherwise 

the denoted scalar location is obtained by applying the array 

location, which is a map from index lists to scalar locations, to 

the computed index list. 

Comments 

In the above definitions certain 'pairs' of evaluations proceeded in 

"parallel": 1.3-1.4, 3.1-3.2. In [Jones 1978a] the same evaluations 

proceed sequentially, in the order listed. This gives rise to two dis- 

tinct semantics! 

8.4 Derived References 

Section 8.2 dealt only with simple variable references. That is: refer- 

ences denoting the location of an 'entire' variable. In the design and 

use, since 1973, of the meta-language, a need, when abstracting soft- 

ware, has not been registered for easily denoting references to proper 

components of store composite objects. 

When applying the meta-language to lower-level abstractions, i.e. to 

rather more implementation-biased specifications, such a need may arise. 

The following notation is therefore offered. 
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Sub-References to TUPLE Elements 

Given: 

(0) d,c,,1Tu~l~ := < . ' . . >  type D* 

Retrieving the i'th component of ~Tu~ is basically expressible as: 

(i) l ~ ) C i ]  

with the selective update of that tuple position basically expressible 

as: 

(2) ~ :: ~TU~ + [i~d]; 

It is now suggested to let: 

(3) Tu!%,p./~'[i] 

denote the reference to the i'th position of ~ ,  permitting (I) 

to be rewritten: 

(i') ~{~" [i]) 

and (2) as: 

(2') Tu~!£" [i] :: d 

Sub-References t__oo MAp Range Elements 

The forms corresponding to (i,2,3,1',2') above, but for variables of 

type map: 

(0) dcl ~ := [... ] type A ~ D; 
m 

are: 

{i) (0 ~) (a) 

<2) ~ ::_o~ + [a~bJ 

(3) ~" (a) 

(i') s(~" (a)) 

(2') ~'(a) := b 
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-- where a E domc~prior to (2). 

Sub-References to Sub-"TREE"s. 

Given: 

and: 

D :: s-nm1:D 1 8-nm2:D 2 ... s-nml:D 1 

(0) del Tree := mk-D(...) type D. 

The forms corresponding to (1,2,3,1'~2') above are now: 

(I) s-rim. (e Tree) 1<i<l 

(2) (let mk-D(d I ..... d i .... ,d l) := a_Tr~ze. 

lae~£ := mk-D(dl,...,d i',...,dl)) 

where all d .  for j#i are unchanged, i.e. where 
@ 

8-nm. sub-"tree". Now: 

(2) only 'changes' the 

(3) s - n m , ' T r e e  

(i') e ( s - n m . ' T r e g )  

(2') e-nm.'Tree := d.' 

Discussion 

The reader may verify that a similar need for variables containing sets 

does not arise. 

Also: the benefit of the derived reference operation, denoted by " , is 

higher in forms (2') than (i') -- cf. forms (2) and (i), respectively. 

Finally: the semantics of the derived reference operator, " , is fully 

explained by the equivalence of forms (i) and (i'), (2) and (2'), re- 

spectively. 



9 STRUCTURED CLAUSES 

As used in this section a clause is either a statement or an expression. 

It turns out that to each structured statement, and block, see next sec- 

tion, there corresponds a structured expression. The conditional form of 

such clauses syntactically looks verymuch alike, whereas this is not 

the case for the iterative clauses. 

9.1 Overview 

Let in the following 8 and S(...) stand for statements, E(...) and 

suitably decorated e's for expressions, suitably decorated pe's for 

predicate expressions, and suitably decorated c's for clauses. It is 

further assumed that the c's of a given conditional structure are either 

all statements, or all expressions, leading to this conditional in turn 

being a statement, respectively an expression. 

The following presents the various structured clauses in a schematic 

way: 

Conditional Clauses 

(i) if pe then a I else c 2 

(2) (pc I ~ c 1, and  (2 I) (pc I ~ 01, 

pe 2 ~ c 2 , Pe 2 ~ c2, 

• ° °  . . .  

pe n ~ c n) T ~ c n) 

(3) cases CO: and (3') cases eo: 

(e I ~ c I, (e I ~ c 1, 

e 2 ~ c 2, e 2 ~ c 2, 

c ) T ~ c n) en n 
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Iterative Clauses: 

(4) fo r i = m t_~o n d_~o S(i) (4') <E(i) J m<i<n> 

(5') 
(5) for all id6set d_oo S(id) (5") 

(6) while pe do s (6') 

{E(id) I id 6 set} 

lid ~ E(map(id))lid6dommap] 

f(obj)= 

if P(obj) 
then F(obj) 

else G(obj,f(H(obj))) 

where in the last schema ((6')) P, F, G and H are appropriate functions, 

P being a predicate. (4, 5, 6) are statements; (4', 5' 5") , are expres- 

sions, and so is an application of f. 

~5_~_~!~ -- ~: 

Illustrations of the duality between clauses (4) and (4'), respectively 

(5) and (5'), (5"), have already been given -- see sections 3.4, re- 

spectively 2.4, 4.4. 

The duality of the conditional statements and conditional expressions 

need not be further discussed. 

The following examples illustrate the duality of forms (6) and (6'). 

TO sum the elements of a tuple, t, of integers: 

sum := 0 type INTG; 
N ~  

while ' (c ~) ~ <> d_~o 

(SU~ := (c_~) + hdc~; 

return(c sum) ) 

Sum(t)= 

i_ff t = <> 

then 

else hd t + sum(tl t) 

Subsequent elaboration functions will illustrate the power and neatness 

of recursive definitions centered around a simple ~_~f-then-else clause. 



9.2 Detailed Syntax & Semantics 

9.2.1 If-then-else Conditional 

Schema: 

i_f expr 

then clause 

else clause 
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predicate-expression 

consequent 

alternative 

Elaboration of an if-then-else clause proceeds as follows: first the 

premiss- (or test-) predicate expression is evaluated. If it does not 

yield a truth value an error has occurred -- and the meta-language pro- 

gram is in error! If the premiss yields truth then the consequent 

clause is elaborated. Otherwise the alternative clause. Any elaboration 

of either the consequent- or the alternative clause strictly succeeds 

the evaluation of the premiss° 

E~2~ra_n~_!n~ Notes: 

i. Observe that the form : 

i_~ expr then stmt 

is not provided. Instead the programmer, if so forced, is adviced 

to use: 

if expr then stmt else I 

for I see section 1.2. Note that the converse is possible: 

i_~ Nexpr then I else stmt 

and that the 'similar' problem is not relevant for if-then-... 

expressions~ 

2. The premiss sometimes relates as follows to either the consequent 

or alternative clause: 
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i_ff (3x...)(P(x)J 

then (let x be s.t. ~(x); 

cC(xJ) 

else ... 

or, e.g. : 

if~(Bsy...)(p(yjj 

then ... 

else (let z = (Ax)(P(x)); 

~C(z)) 

Whereever the 'connection' is so obvious, then we informally, but 

strictly speaking erroneously, write: 

if (3x...)(P(x)) 

then cC(x) 

else ... 

respectively: 

i_L~(3!x°..)(P(x)) 

then ... 

else aC(x) 

etcetera. The 'shifts' in identifier naming is, of course, immate- 

rial. Thus the x of the latter two premisses (informally) hind as 

far as the entire consequent and alternative clauses. 

9.2.2 McCarth Y Conditional 

Schema: 

(e I ~ esl, 

e 2 -~ es2J 

,o. 

e -~ es ) 
n n 

and: 

n < 2 
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(e I ~ esl, 

e 2 ~ es2, 

.,. 

T ~ es ) 
n 

n>2 

where the T of the latter form is a meta-language keyword only used in 

McCarthy and Cases constructs in the e 'position', i.e. in lieu of e . 
n n 

All e i (1<i<n) are predicate (or propositional) expressions. 

We give the semantics of the above in terms of their transcription into 

the if-then-else form: 

(i_~ e I then es 1 

else 

(if e 2 then es 2 

else 

( ooo 

else 

(if e n the____~n es n 

else error)..°))) 

respectively: 

(i~ e I then es 1 

else 

(i_~ e 2 then 

( .o. 

else esn...))) 

The same remarks concerning informal name binding and scope as for the 

i~.~-then-else c o n s t r u c t ,  a p p l y  w i t h  t h e  c o n s t r a i n t  o f  t h e  s c o p e  o f  a n  

identifier defined in some e i (l<i<n) restricted to the corresponding 

e8 .: 
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( 3 , . , x . . . ) ( P ( x ) )  ~ E S ( x ) ,  

. . ,  

. . .  . . . )  

9.2.3 The Cases Conditional 

Schema: 

and: 

ca8~8 ~0: 

(e I ~ esl, 

e 2 ~ es2, 

~n ~ esn) 

case8 eO: 

(e I ~ e81, 

e 2 ~ e82, 

T ~ es n) 

with f as defined above. The form of e. (l<i<n) is either an ordinary 

expression, i.e. one all of whose free identifiers are bound by/in the 

surrounding context, or it is one of the so-called defining expression 

forms: 

{dl,d2,...,d k} 

<dl,d2,...,dk > 

mk-Nm(dl,d2,..o,d k) 

id, est 

where the d.'s (1<j<k) are of either of these five forms, id represents 
J 

identifiers, cat constants. 

~2~_~ '~_~  ~2~:  

Usually the dj's of an immediate defining expression are identifiers. 
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Some of these may be bound in the containing scope. If all are bound or 

constants, then we have an ordinary expression. 

We first assume ordinary, i.e. bound expressions, and explicate through 

reduction to earlier understood forms: 

(let v 0 : eO; 

if VO=e I then es 1 

else 

(if VO=e 2 then e8 2 

else 

( ,.. 

else 

(if VO=e n then es n 

else error).o.))) 

respectively: 

(let v 0 : eo; 

i_~ Vo=e I then es 1 

else 

(if VO=e 2 then es 2 

else 

( ... 

else es ...))) 
n 

We explain the free identifier, defining expression variants by speci- 

fically presenting an atypical combination and then transcribing it to 

an if-then-else form combined with let blocks. The example assumes all 

branch defining expressions identifiers free and rather casually mixes 

sets, tuples and trees! 
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cases eo: 

({idl,id2,..o,idk} ~ es 1, 

<idl,id2,...,idk> ~ es 2, 

mk-Nm(idl,...,if k) ~ es 3, 

id ~ e84, 

~.. ®,.) 

e.g. transcribes into: 

(let VO: eo; 
if is-SET(V O) ^ cardvo=k 

then (let {idl,id2,...,idk} = v 0 i__nn 

es I ) 

else 

(if is-TUPLE(V O) ^ ~vo=k 

then (let <idl,id 2 .... ,idk> = v 0 i__nn 

es 2) 

else 

(if is-Nm(v O) 

then (let mk-Nm(idl,id2,...,id k) = v 0 i__nn 

es 3 ) 

else (let id = v O i_~n 

es4)))) 

This latter form is now annotated (i.e. commented) referring alterna- 

tively to the former form: 

First the base expression, e 0, is evaluated. The name 4 0 identifies the 

evaluated object. Following the listing given in the cases form we now 

elaborate, in turn, successive branches until a match is found. Speci- 

fically: we first ask whether v 0 is a set and, if so, of cardinality 

k. If a fit is thus found we dissolve the set v 0 into its k elements 

naming these ~dl, ~d2, ..., idk, whereupon the expression- or statement 

clause, esl, is elaborated. This terminates elaboration of the cases 

clause. If v 0 is not a se~ it is then asked whether it is a tuple, and 

if so, of length k. If a fit is thus found .... etc. If v 0 is not a set, 

tuple, nor a tree of type N m then v 0 is renamed id and es 4 is elaborated. 

Thus a free name, as here: id, 'corresponds' to a T-clause -- leading 

to no elaboration ever of succeeding branches. 



The scope of the free identifiers of the branch-expressions is that of 

the corresponding expression, or statement, clause. 

, o o  

And so on: many variations, combinations and permutations (e.g. order- 

ings of free- & bound variables). The above 'schematic' examples have 

attempted to convey the general idea of defining expressions, their 

possible mixture of free- & bound variables and even constants. The 

reader should, from this, be abl~ to extrapolate. The basic point is 

this: since it is an abstraction, i.e. meta-language and since there 

is generally ~2~ to be an interpreter for it, anything sensible and 

context-wise obvious is to be allowed. 

Ex_am_ple 54: 

We shall use the meta-language conditional expressions and recursion 

to exemplify simpler versions of the conditional statements. That is: 

we applicatively define imperative constructs! 

Abstract Syntax: 

The syntactic domains: 

Cond = If I MeG I Case 

If :: Expr Stmt Stmt 

MaC :: ExSt + [Stmt] 

Case :: Expr ExSt + [Stmt] 

ExSt :: Expr Stmt 

where Expr and Stmt are the meta-language expression and statement do- 

mains: 

The semantic domains) first the textual, then the temporal: 

0 £ ENV = Id ~ (LOG °..) 
m 

~ E STG = LOC ~ OBJ 
m 

where Id is the syntactic domain of identifiers, LOC the further un- 

analyzed domain of locations. 



Semantic Functions: 

|84 

Let I and V be names of the generic functions elaborating meta-language 

statements, respectively expressions, i.e.: 

N N N 

type: I: Stmt ~ (ENV ~ (~ ~ ~)) 

type: V: Expr ~ (ENV ~ (~ ~ ~ OBJJ) 

I {8tmtJ (pJ (~)= 

cases stmt: 

(ink-If(p, c, a) 

(let (s',b) = V(p)(p)(o) in 

~b 
then I(c)(p)(~') 

else I(a)(p)(~')), 

mk-McC (es l, t) 

(let mcc(lesJ (~)= 

( (Ise~<>) 

(let (~',b) = V(s-Expr(hlse))(@)(~) in 

if b 

then I(8-Stmt(h lse))(p)(~') 

else mce(t lse)(~')), 

(t~nil) 

I(tJ(pJ(~J, 

T ~ error) in 

mcc (es l) (a J), 

ink-Cases (e, esl, t) 

(let (s',v) = V(e)Cp)(~) in 

let case(lse)(~)= 

((lse~<>) 

(let (~',v') = V(s-Expr(hlse))(p)(~) i_~n 

if V--v ' 

then I(s-Stmt(h lse))(p)(~') 

else case(t lse)(~')), 

(t@nil) 

I(tJ(~J, 

T ~ error) in 

case (es5) (a ')), 

.°o) 
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9.2.4 The Ordered, Iterative For-To-Do Statement 

Schema: 

for id = expr m t_~o expr n d_~o stmt 

id must be free in the surrounding context, expr m and expr n must be 

integer valued expressions. All occurrences of id in 8tmt are free in 

stmt. 

We usually constrain expr m and expr n to be so-called ~k~ ~P~k2~. 

These are expressions whose value can be ascertained statically, with- 

out reference to any computation (e.g. state). As such, static expres- 

sions are usually either constants (viz.: expr m = I) or simple opera- 

tor/operand expressions involving only textual, i.e. syntactic domain 

objects. 

The Controlled Variable 

id is called a, or the,controlled variable. It is not a variable in the 

sense of denoting a REFerence, and thus it cannot be changed in stmt. 

id denotes an integer. 

The first occurrence of id in "for id =..." is the defining occurrence° 

It binds all (free) occurrences of id in stmt. The scope of this con- 

trolled variable is the for statement in which it is defined. 

We first explicate the primarily intended usages of the for statement: 

namely the ones which have expr m and expr n being static expressions 

evaluating to m, respectively n. Let S(id) be another way of alluding 

to stmt. Then: 

fo r id = m to n do S(id) 

SCm)  ; S C m + 1 }  ; .  . . ; S C n - 1 )  ; S C n }  



166 

Thus if m<n then: "for id = m t_~o n d__~o S(id) = "~". Given S(id), S(k) 

means the substitution of all id in S by k. 

We then explain the meaning of for statement whose from and to expres- 

sions, expr m & expr n are expressions of any kind. To this end we apply 

the meta-language itself~ 

Let the for s%aZement syntactic domain specification be: 

For :: Id Expr Expr Stmt 

where IdcTOKEN, and Expr & Stmt denote the class of respectively source- 

language expressions and statements. 

Let the semantic domains pertaining to the interpretation of For State- 

ments be the temporal store: 

q £STG = LOC ~ OBJ 
m 

which maps LOCations to OBjects, and the simplified textual environment: 

p 6ENV = Id ~ (LOCIINTGI...) 

which maps source-language text Identifiers into either LOCations, if 

they are names of declared variables, or to INTeGers, if they are e.g. 

controlled variable names, or .... 

Let V denote the generic expression evaluation function which applies to 

source -language expressions, environments & states/st6res and yields 

state changes & objects -- in this case INTeGers. ~ denotes the generic 

statement interpretation which applies to source-language statements, en 

vironments & states/stores and yields state changes. 
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(mk-For (id, fe, te, sJ ) (p) (~)= 

oi (let (~',f) : V(fe)(p)(~), 

.2 (~",t) = Y(te)(p)(~) in 

°3 let ~"'6{~',S"} in 

o4 let for (p')(~)= 

o5 i_ff P'(id)>t 

.6 then 

o7 else (let ~' = I(s)(g')(~) in 

.8 for (g '+ [id~(k ' (id))+l]) (~ ')); 

.9 for(pU[id~i]) (c5"' )) 

Annotations: 

.1-.2 Both specification expressions, the from expression and the to 

expression, are e~aluated in parallel "," (or in any order), 

and both may lead to implicit state changes (~', respectively 

a") and to the explicitly desired from, f, and to, t, values. 

.3 This line illustrates the problem: which new (or next) state,~' 

or ~", to choose. In this case the problem has been brought 

upon us by our insistance on parallel evaluation of all speci- 

fication expressions. Had our pragmatics" lead us to choose se- 

quentiality of from- and to expressions evaluation there would 

have been no need for a non-deterministic choice. 

.4 A local function, for, is recursively (.4 vs. .8) defined which 

if applied: 

.5 will test whether the controlled variable value (p'(id)) has 

gone beyond the limit (t), 

.6 if so, the final state is the one current when the last invoca- 

tion (.8 or .9) of for was made, i.e. at the end of last itera- 

tion, respectively when for was first called (initialized); 

.7 otherwise the value of the controlled variable is still within 

bounds, and the 'body', s, of the for statement shall be Inter- 

preted, leading to a new state, ~'. 

.8 With this state, and the Wupdated' environment which binds the 

(textual) name of the controlled variable to its incremented 

value the for loop is invoked (recursively). 
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This completes the definition of the auxiliary for function, 

.9 which is first activated with the 'initial' state, ~', and an 

environment which binds the controlled variable to its initial 

value, i. 

i0 Note that the environments are simply extended versions of the 

environment in which the for statemen% is interpreted. 

In summary: the meta-language for loop was conceived of as a means for 

iterating through syntactic tuple structures, tl. Hence the standard 

requirement that expr m and expr n be static expressions, the former 

usually 1, the latter usually ~tl. 

E ~ E ~ E  Ex_am_ples 56 & 57: 

We now illustrate imperative and applicative definitions of the Compound 

Statement source language construct: 

Cmpd :: Stmt* 

The imperative version is basically based on a state: 

Z.  = (STG~,~ ~ ST@) _U ... 

Int-Cmpd(mk-Cmpd(stl))(p) = 

fo r i=I to lstl d_2 int-Stmt(stl[i])(p) 

type: Cmpd ~ (ENV i ~ (~i ~ ~i )) 

The applicative version is similarly based on a state: 

Z :: STG ... 
a 

~-Gmpd(mk-ampd(stl ) ) (p) (0)= 

/f st/=<> 

then 

else (let ~' = I-Stmt(hstl)(p)(e) in 

I-Cmpd ( mk-Cmpd ( t 8 t l ) ) ( p ) ( ~ ')) 

type: Cmpd ~ (ENV a ~ (Z a ~ Xa)) 
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where correspondingly: 

N ~ Zij) type: int-Stmt: Stmt ~ (ENV i ~ (Z i 

N 

type: I-Stmt: Stmt ~ (ENV a ~ (Z a ~ Za)) 

9.2.5 The unordered For-All & Parallel Statements 

The For-All Statement 

Schema: 

fPr all def 6 set d__oo stmt 

where def and stmt pairwise are of the forms: 

id 

(cd 1, cd 2, • . ., cd n} 

<cd I, ad 2, • . ., Cdn> 

mk-Nm (ed I ..... edn) 

N S (id) 

S ( idl, id2, . . . , idm) 

where a proper subset of cdl, ed2, .... cd n may be constants, otherwise 

of either of the above four listed forms, usually identifiers, id! 

These must all be distinct. And where idl, id2, ..., id m are the iden- 

tifiers of def free in the containing context. All such must be free 

in S. It must be statically decidable that eet denotes a set. And if 

either of the latter three def forms are used, then it must be static- 

ally decidable that set is of a logical type, Y, such that either some 

X-eetj X ~Or Nm is contained in Y; viz.: X-set c Y, X ~ c Y or: Nm c Y~ 

The Controlled Variables 

The identifiers of def free in the containing context are the controlled 

variables. Again, as in section 9.2.4 they are not assignable but di- 

rectly denotes non-REFerence OBJects. 

The identifier occurrences in def  free in the containing context are 

defining occurrences. They bind all their (free) occurrences in Stmt 

The scope of these controlled variables is the for statement in which 

they are defined. 

(S).  
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In this section we only explicate the semantics of the for-all state- 

ment for the simple case of static set expressions and simple identi- 

fier def's -- this is also the most common case. Let set denote a set 

of k objects, and name these idl,id2, .... id k. That is set N {idl,id2 , 

...,idk}: 

~or all idE{idl,id2, .... id k} d_~o S(id) 

// {~idl),S(id 2) ..... S(idk)} 

The Parallel Statement 

Schema: 

//{stmtl,stmt2,...,stmtn} n>2 

Sea~i~ : 

Elaboration of the statements stmtl, stmt2, ..., 8tmt proceeds in 
n 

parallel, "independently" of each other. Elaboration of this collateral 

clause terminates as a result of all statements having been elaborated. 

E_x~!es _5_8-_S2 

We now illustrate the semantics of a source language statement similar 

to the parallel statement. Instead of elaborating the statements in 

parallel, they are just executed in any, arbitrary order: 

All : : Strut-set 

is the syntactic domain specification. The definition is kept applica- 

tive 

)- :: o.. 
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I-All(mk-All(stmts))(O)(~)= 

if stmts={} 

then 

elee (let s £ 8tmts in 

let a' = I-Stmt(s)(g)(s) in 

I-All(mk-All(stmts~{s} ) ) (p) (a ')) 

type: All ~ (EN~ ~ (~ ~ ~)) 

A for-all source language construct could be given the following defi- 

nition: 

ForAll :: Id Expr Stmt 

:: ... 

I-ForAll(mk-ForAll(id, e, s) ) (g) (~)= 

(let (s',set) = V-Expr(e)(O)(s) in 

let all(coll)(~)= 

if coll={} 

then 

else (let obj 6 toll in 

let ~' = I-Stmt(s)(p+[id~obj])(~) in 

all(coll~{obj}) (~ ')) 

all (set) (s ')) 

type: ForAll ~ (ENV ~ (Z ~ ~)) 

in 

where it is assumed that the evaluation function, which elaborates id, 

finds the meaning of id just by looking up in the environment~ 

type: I-Stmt: Stmt ~ (ENV ~ (Z ~ X)) 

t~pe: V-Expr: Expr ~ (ENV ~ (Z ~ (Z OBJ))) 

9.2.6 The While-Do Statement 

Schema: 

while expr do stmt 

where it is statically decidable that expr is a truth-valued expression. 



172 

expr is usually an impure expression, i.e. one whose value depends on 

the current state. The state is, of course, potentially being changed 

by stmt.~ 

As you might expect it -- but here is an applicatively expressed forma 

lization of the imperative while construct. 

_~x~!e _6_0: 

Abstract Syntax: 

Wh :: Expr Stmt 

for the syntactic domain. And: 

£ STG = LOG ~ OBJ 
m 

p £ ENV = Id ~ (LOCI...) 

for the semantic domains. 

I (mk-Wh(e, s)) (p) (~)= 

(let wh(~)= 

Clet (~',b) = V(e)(p)(~) i_~n 

ifb 
then (let 6" = I(s)(p)(~') in 

wh(~")) 

else ~') 

wh(~) ) 

type: I : Wh ~ (ENV ~ (~ ~ ~) ) 

type: wh: ~ ~ £ 

in 
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Dijkstra's Guarded, Repetitive Construct [Di~kstra 75 ]: 

rg E RepGuard :: (Expr Stmt)-set 

with STG and ENV as above, has the following 'informal' semantics: 

Execute rg as long as evaluation of at least one expression in the un= 

ordered set of pairs of Expression-Statements zields true: 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.i0 

~(mk-RepGuard(ese))(p)(a)= 

(let gwh(ses)(~) = 

/_Z se~={} 
then 

else (let (e,s) E see 

gwh(ess)(e)) 

in 

let (~',b) =V(e)(o)(~) in 

~b 
then (let ~" = I(s)(p)(~') in 

gwh(ess) (~") ) 

else gwh(ses~{(e~s)})(~)) 

t,,~Pe: RepGuard ~ (ENV ~ (~ ~ Z)) 

in 

In this definition, evaluation of guards (e) may cause side-effects, 

i.e.: ~ goes to ~'. Thus repeated evaluations of some (one) guard, in = 

itially yielding falsity, might eventually produce truth -- had we not 

passed the initial state (~, subsequently ~) onto alternative evalua= 

tions (.9). Doing so also secures Dijkstra's requirement that if some 

guard is chosen, then it was true in the 'initial ~ state (~, subse= 

quently ~). 

The non-deterministic aspect of this construct is exhibited by the ar= 

bitrary set element selection of line .4. 

The reader may verify that this command is a (sledge-hammer ?) general= 

ization of the while do construct above~ 
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10. BLOCKS 

A compound statement: 

(stmtl; stmt2; .,. ; stmt n) 

is a sequence of two or more statements. The semicolon, 

the combinator here. 

";", acts as 

A block: 

(let id = expr d i__nn expr b 

(let id : exprd; expr b) 

(dcl vr := exprd; expr b) 

) (let id = expr in stmt) 

(~et id : expr; stmt) 

(dcl vr := expr; stmt) 

consists of a (let) definition of a constant, non-re_~erence object, or 

a (dcl) declaration (of a variable) -- on one hand --, compounded with 

an expression, or a statement (-sequence) -- on the other hand. The com= 

binators here are either the semicolon, ";", or the "in" symbol. 

This section will not bring very many examples. Previous sections abound 

with examples of blocks. We leave it to the reader to look these up for 

re-confirmation: 

Reference to block-exam~!e~: 

Parenthesized numerals refer to example numbers, the i.j-k trailing 

these refer to formulae (i) and line number (j-k) sequences. 

Applicative expression blocks: 

(0)11.3-8, (0)11.6-8, (0)16.1-6, 

(0)18.8-21, (0) 20.3-11 .... 

(0) 17.3-7, (0)18.3-21, 

Imperative expression blocks: 

(31) 14.3-6, (31)14.12-17, 

(52) 5.1-4, ... 

(50) 2.0-3, (50) 3.0-3, (52) 4.3-7, 

Statement blocks: 

(31) 13.1-8, (52) 1.3-8, (52)2.1-2, (52) 3.1-3, ... 
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The Block Concept 

The block concept of the meta-language essentially deals with the no- 

tion of scope. Blocks are of the forms: 

(let id = expr in 

clause) 

and: 

(let id : expr; 

clause). 

We have, however, in past examples, also permitted ourselves to intro- 

duce local variables: 

(del id := expr }Epe D; 

clause). 

In all three cases id stands for a locally, i.e. a block, defined, con- 

stant quantity. We say that the scope of id is the block: (...) in which 

it is defined. Only in this textual part, may it be referred to. In the 

first two blocks id denotes the value of expr upon block entry. In the 

last case id denotes the location of a meta-storage cell, i.e. an ob- 

ject in the domain of Z: 

z . . . .  u (zd ~ D) 

In particular: 

-- . . .  u [ i  ! - ,  o b j ]  

where id is the denotation of id, and obj is the value of expr upon 

block entry. 

The let (or dcl) definitions of id are said to bind any free occurrences 

of id in clause. Thus the scope of id extends to inner, nested blocks 

in which id is not redefined. 

clause may be a meta-language expression or a sequence of one or more 

statements. 
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10.1 Let Constructs 

Observe the two distinct cases of let constructs: 

The §£nta~!c, o~ a~!!cative let construct: 

(let id = expr i__nn 

clause) 

If expr is a ~e S~£~!2~, i.e. an expression whose evaluation does 

not require access to any state components, then we use "=" and "i~n" 

as delimiters. 

The semantic, or ~£~!Z2 let construct: 

(let id : expr; 

clause) 

If, on the other hand, evaluation of expr requires access to the state, 

i.e. if expr is an !~!Y~, or !~ES, ~P~!2~ , then we use .... 

and ";" as delimiters. 

Assume id to occur free in clause, i.e. think of clause as C(id). Then 

the meaning of the syntactic let clause block is C(expr), i.e. can be 

obtained by substituting expr for all free occurrences of id in clause. 

Note that the substitution could be done on the syntactic level, i.e. 

by ~!~S!~S texts. The meaning, however, of the semantic let clause 

block is C(val), where val is the value of expr upon block entry. That 

is: the meaning can be obtained by e~£kik~ki~ values of expr for all 

free occurrences of id in clause. 

Let Construct Variants 

A very useful let variant is: 

(let obj £ D be s.t. 

clause) 

P(obj); 
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which we understand as: let obj be an object in the domain or set D 

such that it satisfies the predicate P. Other variants, which are simple 

cases of the above are: 

(Set obj 6 Set; 

clause) 

and: 

(let obj be s.t. P(obj); 

clause) 

The above three variants were indicated, by the ";" separating the let 

construct from the block body clause, to be of the semantic type. Simi- 

lar, but syntactic constructs would instead of the infix ";" use an in- 

fix "in". 

Composite Object Let , Decomposition 

The following are useful, so-called composite let constructs: 

(let mk-D(dl,d2,.~,d n) = expr d i__nn 

clause) 

(let <dl,d2,...,dn> = expr t in 

clause) 

and: 

let ~dl,d2,...,d n} = expr s i~n 

clause) 

Their respective meanings are: 

expr d must evaluate to a D tree object, with: 

D :: D 1D 2 .o. D n 

then the above "is equivalent to: 
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Cle__~t tree = expr d i_nn 

(!~t d I = s-D1(tree), 

d 2 = s-D2(tree) , 

= s-D (tree) in dn n 
clause)). 

expr t must evaluate to an n-tuple: 

(let tuple = expr t inn 

(let d I = tuple[1], 

d 2 = tuple[2], 

d n = tuple[n] __in 

clause)). 

expr s must evaluate to a set of cardinality n. The 'assignment' of set 

objects to d i is arbitrary: 

(let set = expr s in 

(let d I E set i_~n 

(~t d 2 E set~{d I} i__nn 

(let d s 6 set~(dl,d 2} i__nn 

(let d n E 8et~{dl,d 2 .... ,dn_ I} in 

clause)...)))) 

Simultaneous & Recursive Let Definitions 

The form: 

(let d I = el, 

d 2 = e2, 

o l .  

= e n in d n 

clause) 

(nz2) 

simultaneously defines the objects d l , d 2 , . . . , d  n. They are, in general, 

tO be the ("smallest" such) objects which satisfy the (above set of 

simultaneous) equations. This description permits djWs to occur recur- 

.'s might be composite constructs, sively in the equation set. The dj 
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introduced in the previous subsection, in which case we mean that the 

constituent (free) identifiers (ultimately occurring in dj) may occur 

recursively in the equation set. 

For the story on recursive definitions of functions we refer to section 

6.2. 

Notational Conventions 

The form: 

let d I = e I i_nn 

let d 2 = e 2 i_nn 

let d = e in 
....... ~ n -- 

clause) 

is a short-hand for: 

(Zet d I = e I ~n 

(let d 2 = e~ i~n 

(o,° 

(let d = e in 

clause)...))) 

The form : 

(let mk-A( ,c, ) = e in 
a 

clause) 

where e.g.: 

A :: B C D, 

is a short-hand for: 

(let mk-A(b,c,d) = e in 
a -- 

clause) 
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It is used to alert the reader to the non-use of the B and D components 

of the A tree denoted by e . 

Similarly for anonymous trees; and: 

(let <x~ ,z, > = e t i__nn 

clause) 

which is the same as: 

(let t = e t i_~n 

let x = t[1], 

z = t[3] in 

clause ) . 

10.2 Pure & Impure Expressions 

A ~ure (or applicative) S ~ ! 2 ~  is one whose evaluation never re- 

quires access to the state. 

An !mR~re (or imperative) ~£S££!2~ is one whose evaluation potentially 

requires access to the state. 

Given that X. denotes the state space of an imperative (global variable 

only) model we can say that the type of the denotation of an impure ex- 

pression is either of the form: 

xi ~ (£i OBJ) 

or of the form: 

x. ~ oBJ 

The former type hints that evaluation of the meta-language expression 

potentially leads to a (side-effect) state-change, whereas the latter 

type only expresses that the state is accessed in order to compose the 

resulting OBJect value. 
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The choice of forming an expression either as a pure-, or as an impure, 

expression, is solely determined by the kind of object to be denoted. 

That is: even though some abstract model is primarily centered around 

global state variables, some objects may still be denotable by pure 

expressions. 

If at least one target expressions of a conditional expression is im- 

pure, then all such target expressions are to be impure. This require- 

ment is further motivated in [Jones 1978a]. To render an otherwise pure 

expression impure prefix it with the operator return. See section 10.6. 

10.3 The ";" Combinator 

The ";" is a combinator. Its use can be explained in two ways: syntac- 

tically, and semantically. Syntactically speaking, ";" separates impe- 

rative clauses: statements; semantic let clauses; a semantic l~t clause 

from a statement; and a statement from an impure expression: 

(... 8tmtl; 8tmt 2 ...) 

(... let x I : exprl; let x2: expr2; ...) 

(... let x: expr; iexpr) 

(... 8tmt; iexpr) 

Semantically speaking ";" denotes functional composition. Since the type 

of the denotation of a meta-language semantic let clause, let, or state- 

ment, stmt, is: 

let, stmt: Z. ~ Z. 

The construct: 

(ci;e2) 

where (ci,c2) are either (semantic lets, statements) or (statements, 

statements), means: 

Xs.(e2(cI(s))) 

where ai is the meaning of ei (i=1,2). Thus: 
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lal . ha2. hs. (c2 (ci Ca))) 

(Z ~ Z) * ((Z ~ Z) * (Z~Z)) 

10.4 ComPound Statements & Statement Sequences 

The meta-language permits any statement to be a compound statement: 

(stmtl; stmt2; ..~ ; stmt n) 

The body of a (statement-) block, i.e. the syntactic construct referred 

to as clause in e.g. section 10.1, may be a statement sequence: 

stmtl; 8tmt2; ...; 8tmt n 

There is no semantic difference between these two constructs. We omit 

parenthesizing the latter since it is always superfluous. 

The formal meaning is: 

X~.stmtn(Stmtn_1(.. .(stmt2(stmt1(~))). . .))  

where stmt° is the meaning of stmt.. 

We refer to [Jones 1978a] for a further l-definition of the meanings 

of the basic statements. 

The informal meaning is as you would expect it to be. 

10.5 Statement- & Expression Blocks 

A statement-block is a statement. The block, when interpreted, effects 

a state-change. An expression-block is an expression. The block, when 

evaluated, may effect a state-change, but always, in addition, delivers 

a value: 

N 

stmt-block: X. * X. 

expr-block: Z i ~ (E i OBJ) 

A statement block consists of a sequence of one or more syntactic and/or 
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semantic let clauses followed by a sequence of one or more statements. 

An expression block is either a pure- or an impure- (i.e. an applica- 

tive-, respectively an imperative-) expression. A pure expression block 

consists of one or more syntactic let clauses followed by a pure ex- 

pression. An impure expression block consists of a non-zero length se- 

quence of zero, one or more syntactic- or semantic let clauses followed 

either by an impure expression or a statement all of whose syntactically 

possible execution paths end with an impure expression. Since only well- 

structured statements are permitted the test for this latter is quite 

simple. 

10.6 Return 

From the explanation of"/" it follows that if a statement sequence, of 

an expression block, is to be followed by an expression, then the type 

of this expression must be: 

Z -~ (X OBJ) 

i.e. impure. 

In general, if the context determines that an expression be impure, and 

the value to be yielded can be denoted by a pure expression, e, then we 

need to render e impure. This is the purpose of the monadic expression 

operator return. 

return 

return 

E x~!es 

N kobj. h<~. (~, obj) 

6 (OBJ ~ (~ ~ (~ OBJ))) 

See examples: (31) 14.6, (31) 14.17, (50) 2.3, (50) 3.3, (50) 4.5. 
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ii. EXITs 

Even though the meta-language has imperative constructs, it lacks the 

conventional GOTO construct. Hence it lacks labels. 

The exit mechanisms, in many ways, replace the GOT0 construct. You may 

say, without being grossly wrong, that exit provides a structured GOTO, 

albeit, in general, to a dynamically determined, and -- in any case -- 

unlabelled, program point. 

We use the exit mechanism when modeling the GOTO concept of our running 

example source language! Therefore: in the following read carefully. 

Observe the distinction between s0~6e- and meta-language constructs, 

in particular the block constructs. 

1 Block :: (Id ~ Type) ... Named-Stmt* 

2 Named-Stmt :: [Lbl] Stmt 

3 Stmt = Block I Gore t ... 

In this source language Gotos may not go into phrase structures. That is: 

Gotos may e.g. go from one statement of a Named-Statement list to another 

statement of the same list, or out of the containing Block to a statement 

of the Named-Statement list of the next embracing Block, in fact it may 

go out of any such number of nested levels. Each time a Block activation 

is left, whether through (normal) epilogue due to all statements having 

been executed, or whether due to a global Goto, the same 'clean-up' epi- 

logue actions -- as were illustrated in e.g. example 31, section 4.5 -- 

must first take place: 

4 int-Block(mk-Block(dcls,procs,nstl) ) (p, ca)= 

.i (let aid 6 AID be s.t. aid ~c ca in 

.2 let p' : p+[ lbl ~ mk-LAB(aid, lbl) J lbl £ Labels(nstl) 

.3 +[ v ~ get-loc(dcls(v))(p) i v £ domdcls ] 

.4 +[ s-ID(p) ~ eval-Proc(p)(p') I p 6 procs ]; 

.5 always 

.6 (let loce = {p'(v) I v 6 domdcle} i_~n 

.7 Set sloes = { ... see example 31 ... } i_nn 

.8 ST~ := c~slo~) 

.9 in int-Named-Stmt-list(nstl)(p, caU{aid},aid)) 

tRpe: Block ~ ((ENV AID) ~ (X ~ ~)) 
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.4 eval-Proc is the imperative version of example 40's V-Pro, as used 

in example 42 (section 6, respectively 6.3)° 

.2 The denotation of a label is in the domain: 

LAB :: AID Lbl 

The AID component serves to keep track of active source language 

block activations. 

.i The prologue action of a Block selects an activation identifier not 

in the set of (identifiers selected by all) current activations. 

o2 The block environment associates all Labels of its named statement 

list with this (unique) activation (identifier). 

.4 Since procedures may be recursive, and -- independently thereof -- 

since gotos may occur from within a procedure (activation) to the 

named statement lists of any of its embracing, including defining, 

blocks, the environment passed to eval-Proc is the environment being 

(thus recursively) defined. 

We shall return to lines .5-~9, which -- on the whole -- resemble 

lines .4-.8 & .3 of int-Block of example 31, section 4.5. 

5 int-Named-Stmt-list (nstl) (g, aa, aid)= 

.i (tixe [ mk-LAB(aid, 1) ~ cue-int-Named-Stmt-list(ijnstl)(p, ca) 

.2 i 1 < i < len nstl ^ 8-Lbl(nstl[i] = l ~ nil ] 

.3 i_~n cue-int-Named-Stmt-list(1,nstl)(p, ca)) 

6 cue-int-Named-Stmt-list(i,nstl)(p, ca))= 

.i for j=i to lennetl d_~o int-stmt(s-Stmt(nstl[j]))(p, ca) 

7 int-Stmt(stmt)(p, ca)= 

.1 case8 stmt: 

.2 (mk-Goto(lbl) ~ exi~(o(lbl)) , 

.3 mk-Block(.°.) ~ int-Block(stm~J(p, ca), 

.. °..) 

-- annotations: 

5.0 Interpreting a named statement list is the same as: 
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5.3 interpreting that list as from its Ist statement. 

6.0 

6.1 

That is: the tixe (exit spelled in Polish) clause of lines 5.1-5.2 

is not 'executed' by the meta-language elaborator when first en ~ 

tering the int-Named-Stmt-list functions. We shall subsequently 

'discover' the purpose of the tixe clause. 

Having cued this function with i, i.e. having given it the start- 

word i, interpretation of the statements of the (named) statement 

list 

proceeds linearly, as from the cued, ith, statement until the last 

-- provided, of course, meta-elaboration is not re-directed. 

When & how this occurs will presently be uncovered. 

7.1 If the interpreted statement is 

7.2 

5.1 

6-7 

a Goto, then an exit is performed. It is given an argument. This 

argument is the LABel denotation, mk-LAB(aid, lbl), by which this 

label is known in the environment. 

Meta-elaboration of an exit dynamically 'unravels' the meta-lan- 

guage block invocations. That is: we retrace our steps, back to 

(here) the most recent meta-language block having a tixe clause. 

We say that the tixe clause stops the exit. 

The tixe clause we backtrack to, is the one associated with the 

named statement list of which the 'offending' Goto was an immediate 

statement. 

The tixe clause is to be understood as follows: if the argument 

passed back with the exit (7.2) is equal to some mk-LAB(aid, l) 

of the "map" component of the tixe clause, then the corresponding 

cue-int-Named-Stmt-list, with the appropriate cue position (i), is 

invoked; otherwise the despatching exit is not stopped here, but 

passed out to the next embracing tixe clause -- i.e. the Goto is 

to an embracing Block. 

In now (re-)interpreting the (same) named statement list, but, 

possibly, as from another, cued, position, new Gotos may occur. 

5.1 These are stopped, thus recursively, by the 'same' tixe clause. 
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7.1 If the interpreted statement is instead, in contrast to annotations 

7.1-7.3 above, 

7.3 a Block, the~ that, nested, Block is interpreted. 

And so on. exits are always stopped by an alway8 clause before being 

passed on (4.5-4.8). 

Comments 

The "maps" of tixe clauses may, as we have done in the above annotations, 

be considered ~2~ to be "computed" when the meta-language elaborator en- 

ters a meta-language block having a tixe clause. The domains of such 

"maps" are constrained to be statically determinable, and finite. Since, 

in the cue-int-.., elaboration function, nstl is a static (i.e. fixed) 

object, this constraint is satisfied. 

You may in fact view the domain of the "map" of the tixe clause as being 

'computed' upon entry to the meta-language block of which it is part. 

Now, for this source language, the test for whether the "returned" argu- 

ment of an exit belongs to such a "map" is likewise 'statically' deci- 

dable since only Gotos with constant Label designators were permitted. 

II.i The Exit Mechanisms 

In the following the language constructs, dealt with and mentioned, are 

those of the meta-language~ and not constructs of a ~0~cz language 

being modeled. 

Variables presuppose declarations, and declarations define a state. 

Statements are requests for state changes, and denote state transfor- 

mers, i.e. functions from states to states. The serial statement compo- 

sition operator ";" (semicolon) thus denotes functional composition . 

In compound expressions all component sub-expressions are (usually) 

completely evaluated before any result value is yielded. 

In this section we shall describe the only statement- and expression 

construct available for changing the meta-language statement interpre- 
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tation-, respectively controlling the expression evaluation-, part. 

The exit mechanism now to be explained offers -- in the context of 

statements -- in one sense a restricted form of, or alternative to 

conventional gotos. In particular: instead of providing, in the meta- 

language, gotos to (arbitrary or phrase-structure constrained) labelled 

statements exits provide such gotos to statement-block or block-expres- 

sion "ends". 

In the context of an applicative language it is an altogether new con- 

struct. 

The meta-language provides two kinds of exit designators: 

1,2 exit, exit(expr) 

and three kinds of exit stopping constructs: 

3.0 (alway8 F ( . . . )  

.i in C(...)) 

4.0 (tra£ exit(def) with F(def) 

.I in C(...)) 

5.0 (tixe [ G(def) ~ F(def) I P(def) ] 

.i in C(...)) 

Lines 3.0, 4.0 and 5.0 schematize the stopping clauses. Any clause, 

C(...), prefixed by a stopping construct becomes a block. 

Clauses 1 or 2 can occur where meta-language statements or expressions 

may occur. Thus the exit mechanism is an imperative, as well as an ap- 

plicative construct -- see [Bj~rner 77e]. The use of the always stop- 

ping clause, as will be seen, is, however, restricted to imperative 

blocks. 

The forms def can be of either of the forms: 

{ dl,d2,...,d n } 

< dl,d 2, . . . ,d n > 

mk-D(dl,d 2, • . . ,dn) , 

id, 

c~t 

(d 1,d 2, •.., d n) , 
or 
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where id stand for (free or bound) identifiers, cst for constants (li- 

terals), d i for forms of the above kind, and where the def form need 

not contain any free identifiers. 

11.2 Pragmatics & Semantics of the Exit Mechanism 

The exit concept is based on the following four principles: 

(I) The first basic principle of exit is to permit goto-like transfer 

of elaboration (statement interpretation, respectively expression 

evaluation) control to block boundaries -- i.e. to just outside 

their terminating part. 

In particular: elaboration of any exit not definitively stopped 

in a block properly contained in C(...) will result in immediate 

termination of any further parts of C(...) , this to be followed 

by elaboration of some F(...). 

(if) The second basic principle of exit is to permit the user to (im- 

plicitly) specify which (dynamically enclosing) block end the 

exits go tO: 

A block with no stopping clause is said to not definitively stop 

any exit. A tra P exit unit whose elaboration may result in an exit 

is likewise said to not definitively stop an arbitrary exit. Fi- 

nally: if an elaboration of P(.°.) is completed with no exit then 

the exit is said to be definitively trapped. In that case elabo- 

ration of the block consists of elaboration of the part of C(...) 

up to the exit followed by elaboration of the P(...). The potential 

state transformation yielded by an imperative block is in this case 

the serial composition of the two net effects. For the case the 

block is a block-expression P(...) must in this case, namely that 

of definitive entrapment, yield a value. 

~II) The third basic principle of exit is to permit the meta-language 

programmer to specify that certain actions be taken at any stopping 

block end. 

The stop clauses serves this purpose, exits from multiply nested 

blocks may cause successive stopping actions, one per block (inside- 

out), and each being terminated by an exit to the next enclosing 

block. 
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An exit not definitively stopped by a stop clause of the (outer- 

most) block of a function definition is dynamically passed to the 

immediately embracing block in which the actual reference to the 

function, i.e. "to this function definition", occurred. 

The always stop clause unconditionally filters any exit, its 

F(...) is elaborated, and the exit passed on to outer blocks. 

In consequence: exits of one function definition may, depending 

on dynamic calling patterns, be trapped by a multitude of stop 

clauses of blocks contained in various (other) function defini- 

tions. An exit of an activation of a recursively defined function 

may thus be stopped by a prior, temporarily suspended activation 

of that "same" function. 

(IV) The fourth basic principle of the exit mechanism, i.e. the joint 

use of exits and stopping clauses is finally to communicate infor- 

mation from the (usually only dynamically determinable) point of 

exit to trap exit and tixe stop clauses' F(.o.). The idea being to 

let the elaboration of F(...) depend on exit "returned" data. 

In particular: the value, v, of the expr of exit(expr) is obtained; 

the proper stop clause is found; and v is substituted for all free 

occurrences of that unit's formal parameter def in that unit's 

F(...) resulting in F'(...)o Then F'(...) is elaborated. 

Scope Rules 

An alternative way of describing some of the linguistic properties (of 

the exit mechanism) is now presented. 

Two scope aspects are important: A syntactic (or static), and a seman- 

tic (or dynamic). 

The ~£~!~ ~ 2 ~  ~!~ ±S concerned with the scope of identifiers 

occurring in the def form of the trap exit clause. Identifiers of def, 

free in the embracing context, bind free occurrences of these identi- 

fiers in the corresponding F(def). The static scope rules of the tixe 

"map" are the same as those of any implicit map (set or tuple) construc- 

tion. 

The semantic scope rule is concerned with the scope of the alway,s, tra~ 

exit and tixe clauses. 
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The dynamic scope rules of the always and tra~ exit clauses is the text 

C(...); whereas the dynamic scope rule of the tixe clause includes both 

the tixe "map" and the text C(...)! 

Thus: an exit 'occurring' as a result of elaborating F(def), of 3.0 or 

4.0, if not stopped in F(...), is ~2~ stopped by this (3.0, respectively 

4.0) instance of the always, respectively tra P exit clause. Instead it 

is passed out to possibly embracing meta-blocks. 

An exit 'occurring' as a result of elaborating some F(def) of 5.0, i.eo 

of a tixe "map", if not trapped in F(...), is trapped by this tixe 

clause (5.0). Thus the tixe clause is said to apply ~S~!E~!£! 

Some Equivalence Transformations 

The always stop clause in: 

(always F(...) 

in C(...)) 

is semantically equivalent to: 

(.trap exit(id) with (F(.~.); exit(id)) 

in C(...)) 

In general a block with no stopping clause: 

(let x : E(...); 

C(...)) 

is identical to a block with the simple gate: 

(tra~ exit(id) with exit(id) 

in (let : E(...); 

C(...))). 

When no block termination actions are needed in an imperative block, 

then we write: 

(trap exit with I 

in C(...)) 
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Correspondingly, when the value passed back (by the exit) unconditio- 

nally is to become the result of the block, we write: 

or: 

(trap exit(id) with id 

in C(...)) 

(trap exit(id) with return(id) 

in C(...)) 

dependent on whether the block (-expression) is pure or impure. 

Finally: 'mixed', nested uses of exit(e) and exit, and thus e.g. 

(trap exit with V(.o.) i_~n C(...)) and (tra P exit(id) with F(id) i__nn C(...)) 

do not make sense: 

(tra~ exit(id) with F1(id) 

in (...) 

(trap exit with F2(...) 

in (... 

exit(expr) 

...)) 

Etcetera~ 

Continuing our directory example, from examples 19 & 29, we recall: 

DIR = Rid ~ RES 
m 

RES = VAL i DIR 

with: 

retrieve-res(dir, ridl)= 

((ridl = <>) ~ dir, 

T ~ (let rid = hdridl in 

if rid E dora dir 

then retrieve-res(dir(rid),t_klridl) 

else undefined)) 
N 

RES t~pe: DIR Rid ~ 
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Users of the system directory each have their qualified name, uid in 

Rid*, otherwise guaranteed to designate a DIR object: 

is-DIR (re trieve-res ( Di r , ui d) ) 

Users issue resource names, rid in Rid + , designating values in the gio= 

bal directory, Dir, as follo~s: let dir be the directory designated 

by uid : 

let dir = retrieve-res(Dir, uid) 

If rid is some <rid> then either rid names an entry in dir, and we are 

through, the result is dir(rid). Or rid does not name an entry in dir. 

We now chop off the last Rid element of uid-- to resume the search as 

from the directory designated by the resulting ('remaining') uid,. 

If rid is some <ridl,rid2,...,ridn> forn>l, then rid I either names a 

DIR entry in di~, and we search as from the designated directory, with 

resQurce name: <~id2,...,ridn>, or rid I does not name a DIR entry, and 

we 'back' up the directory hierarchy, to a level one higher, i.e. nearer 

the root, than that at which we originally started , or at which the 

search which just failed took place. We complete the above incomplete 

description by giving the formal definition of the proper search algo= 

rithm: 

search(uid, vid)(updown)(Dir)= 

.i (let dir = retrieve-res(Dir, uid) in 

2 (trap exit with 

3 if updown = DOW~ 
4 then exit 

5 else if uid= <> 

6 then undefined 

7 else search(fst(uid),vid)(UP)(Dir) i_~n 

.9 then if hdvid 6domdir 

.10 then dir(hdvid) 

.ll else exit 

.12 else if h_ddvid~6 dom dir 

.13 then exit 

.14 else search(uid~<hdvid>,tlvid)(DOWN)(Dir))) 

type: Rid* Rid + ~ ((UPIDOWN) ~ (DIR ~ RES)) 
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where: 

fst(ridl) = <ridl[i] I I <i < (lenridl) -1 > 

Given the global directory, Dir, which we could omit as a parameter, 

and a 'relative' resource name, rid, we initially invoke the above 

search function with the users identification and the updown marker 

set to UP. 

We may tie up any loose ends in your understanding of the search algo= 

rithm, by the following, alternative characterization: uid designates 

a node, N, in the directory hierarchy (or: "tree", see example 19). 

There are now three possibilities for rid. Either there is a d~wnward 

path, towards the leaves, from N whose sequence of edge labels is rid. 

Then rid designates the object 'hanging' on to the other end of this 

path (as seen from N). If there is no such path, starting at N, then 

rid might still designate an object in the hierarchy, but now as from 

a node N', between the root of the overall directory and N. Search 

starts with the node N' immediately above N. 

The purpose of the u~down marker is to guidethe ~a~ mechanism in backing 

up beyond already searched 'subtrees'. 

The third possibility, for rid, is that there is no resource, relative 

to uid, that is named by it. 

The Zahn Event Mechanism [Zahn 7h, Knu%h 74~ Hal&s 75, Bj~rner YTd] sche= 

matically looks like: 

l o _ _ ~ s t m t l O  

u n t i l  e i d l  do s t m t l l ,  

e id2 do s t m t l 2 ,  

, ° ,  

e idn  do s t m t l n  

pool 

An abstract syntax is: 
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Zahn :: Stmt + (Eid ~ Stmt +) 
m 

No statement in any stmtl i (1<i<_n) may name any event: 

e v e n t  e id  

on any eidj (1<_j<n). With: 

Event : : Eid 

as a statement, i.e. with: 

Stmt = Event i Zahn i o.. 

the static well-formedness criteria can be completely specified: 

is-wf-Stmt(8 ) ( eids )= 

.i cases 8: 

• 2 (mk-Event(eid) ~ side eids, 

.3 mk-Zahn(stlO, esm) ~ (¥c E elem8 stlO) 

.4 is-wf-Stmt(c) (eids U dom esm) 

.5 ^(reid E dom esm) 

.6 (Vc E elem8 (esm(eid) ) ) 

.7 is-wf-Stmt (c) (eids~dom esm), 

.8 . . . ~ . . .) 

The informal, incomplete semantics is: ~tmtlO is repeatedly interpreted. 

If an event is interpreted in $tmtlO then interpretation of stmtlO is 

terminated. If the event names some eid~ (15~k< n), then the corresponding 

stmtl k is interpreted. This terminates interpretation of the mechanism. 

If the event names some properly containing mechanisms' Zidl, then its 

Stmtl£ is obeyed, ..., etc. Formally, we can capture things much more 

succinctly: 

Assuming : 

Z = (STG ~ STG)U( ....... 

we get an imperative formulation: 

t~pe: int-stmt: strut ~ (ENV ~ (Z ~ Z)) 
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int-Stmt(s) (env)= 

~8e8 8 : 

(ink-Event ( ei d) 

exit(eid) , 

mk-Zahn (8 t l, esm) 

(tixe [eid ~ int-Stmt-list(esm(eid))(env) 

in 

while true do int-Stmt-list(stl)(env)), 

I eid 6 dom esm] 

int-Stmt-list(stl)(env.)= 

for i=I to lenstl do int-Stmt(stl[i])(env) 

It is thus we observe that the tixe construct closely parallels the 

Zahn event mechanism. The reader is,however, well-adviced to study 

[Jones 78a,ySb] in order to discover the neatness of the h-calculus 

semantics given there for this meta-language combinator. 
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PART IV ABSTRACT MODELS 

Part I exemplified a complete, abstract model. Its components were: (1) 

abstract syntaxes for both syntactic & semantic domains; (2) [static and 

dynamic] consistency constraints on objects of these domains -- called 

is-wf-.., functions; (3) semantic elaboration- , and (4) auxiliary func- 

tion definitions. 

In part II, sections 2.1, 3.1, 4.1, 5.1, 6.1 and 7 taught the notation 

for, and techniques of, defining domains. Sections 2.2, 3.2, 4.2, 5.2 

and 6.2 taught the notation for representing objects of these domains. 

Sections 2.3, 3.3, 4.3, 5.3 and 6.3 finally taught the notation for, 

and techniques of, expressing transformations on objects. 

Part III generally taught the notation for, and techniques of, stating 

processes, respectively composite transformations, on objects. 

Part IV finally closes the story on the meta-language. With the bits and 

pieces of the meta-language introduced formally, and also heavily exem- 

plified in parts II &III, we can now formally introduce the notion of 

function definitions. Function definitions have, however, already been 

extensively exemplified. Section 12 will therefore wrap-up our tutorial 

on the meta-language. The section can best be understood if you fre- 

quently compare the formal information and schematized "examples" with 

examples 0-63~ That is: we do n~ present comprehensive, abstract mo- 

dels involving function definitions, although those are its prime sub- 

jects! 
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12 Function Definitions & Abstract Models 

In section 5 we introduced the notation for denoting domains of FunCTion 

objects, for representing FunCTion objects, and for operations on 

FunCTion objects. In a sense we are here continuing the story we started 

giving there. 

Recall the abstract models of e.g. examples 0,19,29,42,51-52,54-55,58- 

59-60,61. On one hand we gave abstract syntaxes for syntactic domains, 

on the other we gave abstract syntaxes for semantic domains. The meaning 

of a syntactic object was a semantic object. The meaning of a Proce- 

dure, i.e. an object in Prc (example 40), is an object in ARG~(Z~). 

The "thing" which takes a Pro object and yields its denotation, i.e. 

an ARG~(X~) object, we call a semantic elaboration function (V-Prc). 

It is a function. This function, like all the FunCTion objects of sec- 

tion 5, is described by the meta-language construct we call a function 

definition. 

12.1 The Syntax of Function Definitions 

A function definition consists of three parts: 

a header: fid(dl,d2,...,dk)(dk+1)...(dn )= 

a body: C(...) 

a type clause: type: D 1 D 2 ... D k ~ (Dk+ I ~ (... -~ (P ~ D ' ) . . . )  
n 

The body is any statement or expression clause you choose. The d i for 

1<i<n are usually formal parameter identifiers. They, or any identifiers 

occurring in d.'s, and the function name, lid, bind free occurrences of 

these identifiers in C(...). The D.'s and D are domain expressions. 

°'s of the formal parameter Observe the following relations between the d 

.'s of the ~F$ clause. list and the D 

( i )  If d i is of the form <dil,di2,...,d~m >, the D~ is either an identi- 

fier, and is then either the name of a domain defined by some 

abstract syntax rule: 
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D. = D*, D. = D + or 

D. c D*; 

or D i is (directly) either D* or D + -- for some D. 

(2) If d i is of the form {dil,di2,...,dim} then: 

D. = D-set 

etcetera. 

(3) If d i is of the form mk-~(dil,di2,...,dim), then there is an ab- 

stract syntax rule: 

D i :: Dil Di2 ... Dim 

(4) If d i is of the form (dil,di2,...,dim) , respectively 

mk(di2, di2 .... ,dim), then D i is of the form : 

(Dil Di2 ... Dim) 

We do not presently see a need for writing di's in forms other than 

..'s end up as identifiers, or letting the above, where ultimately d j 

the di's be identifiers. In the latter case Di's may be any appro- 

priate domain expression, not just an identifier. Experience shows 

forms (1)-(2) to rarely Occur. 

This continues example 40. Now, let: 

PROC = ARG ~ ~ (Z ~ Z) 

Prc :: Id ~ Block 

and: 

ENV = Id ~ DEN 

DEN = LOCI PROC 

With these prerequisites we could also write the V-Prc elaboration 

function definition in this way: 



200 

or 

V-Pro(p) (p)= 

(let mk-Pro(idl, bl) = p 

let fct(al)(~)= 

• • . ) in 

fat) ) 

type: Pro ~ (ENV ~ PROC) 

in 

type: Prc ~ ((Id ~ DEN) ~ (ARG* ~ (Z ~ Z))) 

Relating the last type clause to the formal parameter list ((p)(p)) 

we observe that p is of type Pro, p of type (Id~DEN), and the result 

yielded by V-Pro is whatever remains to the right of the arrow after 

the ENV specificationl 

The form of D remains to be constrained. 

(5) If the body, C(...), of the function definition is a statement 

(-block), then D is of the form: 

Z ~ Z, or: I ~ Z 

where Z is the state resulting from global variable declarations. 

(6) If the body, C(...), is instead an impure expression (-block), 

then D is of the form: 

Z ~ (Z D'), or: X ~ (Z D') 

where D' denotes the domain of results yielded by C(...) with Z 

as in (5). 

(7) If finally C(...) is a pure expression, D is any domain expression 

(etcetera -- concerning relation to C(...))° 

Observe that D of e.g. the pure (applicative) I-Block, I-Stmt-list, and 

I-Stmt, definitions of example 42, were all Z. But £hen the X was not 
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that of any global variable state space -- since there was none --, but 

explicitly defined in example 42 formula 2! 

end-of-example 

Sch~nfinckeling/Currying 

The "back-to-back" ("dos-~-dos") parentheses, ")(", of the formal para- 

meter list, e.g. to the left of di, may be replaced, starting with 

i=k+l , by commas "," -- provided we simultaneoursly delete the "~ (" 

in the type clause, to the left of the corresponding Di, and delete a 

(matching) right parentheses (")"). 

Formal Ex_am_~!es 

f(a)(b)(e)(d) = C(...) 

is one way, 

f(a, b) (c) (d) 

is another way, 

f(a, b, c) (d) 

and: 

type: A--(B--(C~(D--E))) 

= C(..,) type: A B - (C-(D~E)) 

= C(...) ~ :  A S C . (D-E) 

f(a,b,c,d) = C(...) type: A B C D - E 

is a final way of following the so-called de-Sch~nfincke!ing or de- 

Currying rule given above. 

The form: 

f'(a)(b,e)(d) = C(...) type A-((B C)-(D--E)) 

is, however, not a curryi'ng of f's definition above. De-Currying f' 

would lead to: 

f'(a,(b,e),d) = C(...) type A (B C) D - E 

The conclusion to be drawn from the last example is that the type clause: 

type: g': (D 1 D 2 ... D n) -- D 

is altogether distinct from: 

t_~: g": D 1 D 2 ... D n " D 
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Although we might (sloppily) write: 

g'(dl,d2,...,d n) 

where, more correctly, we should write: 

g'((dl,d ~ .... ,dn)) 

to distinguish it from the (correct): 

g"(dl,d2,...,d n) 

end-of-formal-examples 

The rule for removing ")("s etc. can be used in reverse -- and this was 

covered in section 6.2 (see subsection on l-Expressions). In 6.2 we 

"Curry", whereas here we "de-Curry". As implied by the last, formal, 

example above, we must observe the dual role of parentheses: delimiting 

and anonymous tree domain & tree object constructionl If your keyboard 

has an extra pair of bracket/brace/parenthesis delimiters (other than 

our {}, <>, (), [], then use them to distinguish! 

The Currying/de-Currying Rule is one form of syntactic transformation 

on function definitions. It involved the header~type-clause 'pair'. Se- 

mantics remained invariant! 

Formal Parameter Syntactic Transformations 

Another kind of syntactic transformation rule involves the header/body 

'pair'. It can most simply be dealt with by listing the following se- 

mantic identities: 

( i )  
f(<dil,di2 .... ,dim > ) = C(...) 

f(d) = Clet <dil,di2 ..... dim > = d i__nn C(...)) 

(2) 

f(mk-Di(dil,di2 ..... dim)) = C(o..) 
=_ 

f(d) = (let mk-Di(dil,di2,...,dim) = d i_~n C(...)) 

etc.. It is here assumed that d is not free in C(...). 
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12.2 The Semantics of Function Definitions & Abstract Models 

The identifiers occurring in the header of a function definition bind 

all their (free) occurrences in the body~ Usually there is no need to 

re-define identifiers in any block. 

General 

An abstract model consists of a set of function definitions, a set of 

abstract syntaxes, and possibly also a set of variable declarations. 

All names of defined functions, domains and variables are globally known. 

The function denoted by any such, global function definition headers' 

first identifier, i.e. by the function identifier, ~d, is the one you 

would expect. Formally: it is the least fix-point solution to the equa- 

tion set that the function definitions form. 

Informally we observe that an abstract model is all definitions -- and 

no real "action"~ Nobody really invokes any of the specified functions. 

An abstract model defines a class of systems. 

Example 0 defined the structure and possible behavioral patterns of a 

class of grocery stores. 

Examples 3-8, 12-13, 17-18, 20-25, 27-28 & 35 defined fragments of 

classes and manipulations of file systems. 

Examples 19,29&62 defined the structure and operations on a class of 

operating system directories. 

Examples 30-34, 36-38,40,42-43,47,49,61,63,70 defined fragments of struc- 

tures and meaning of some class of programs, i.e. a source language. 

If you come with a particular grocery store, or a particular file sy- 

stem, or a particular directory and a corresponding action (e.g. put- 
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chase, read, respectively catalog), then the definitions, i.e. the mo- 

dels, tell you what to expect happening. If you come with a particular 

state configuration and a program then the model will compute you a re- 

sult. 

However, you need not come with a semantic and a syntactic object. Come 

just with a syntactic object. And the model will produce the answer: 

this syntactic object denotes such-and-such a function from semantic 

objects to semantic objects. 

If you are asking for the meaning of say a Purchase, example 0, then 

"stick" your mk-Purchase(...) object into the Elab-Purchase semantic 

function. That is: ~2~ decide which part of your model to concentrate 

on. Therefore we, the model builders, do not tell you which one seman- 

tic function is the most important, i.e. which one should always be in- 

voked first when "starting up" a model! 

end-of-exam~! 2 

A Note on Input/Output 

Based on the discussion (of example 69) it should now be easy to under- 

stand why the meta-language has no input~output constructs. 

A program in the meta-language defines a function. The meaning function 

from syntactic objects to semantic objects. The prime means for expres- 

sing this function is the set of function definitions. The abstract syn 

taxes describe the domain and range of this meaning function: the class 

of syntactic objects, and the class of semantic objects. 

PART V: MISCELLANEAE 

There remains only to formally introduce the elementary domains used 

in examples throughout this tutorial. 
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13 ELEMentary Data Types 

Usually a programming language comes ready-made, equipped with a set of 

basic data types. 

A number of such have been employed in the examples given so far. These 

are: 

.i Rational NUMbers, INTeGers (...,-2,-I,0,1,2,...), Natural numbers 

--with the operations: +, -, ~, ~, <, <, =, ~j >, >, exponentia- 

tion, ceil~ floor ~ etc. 

.2 BOOLeans (true, false) -- with the operations: ~, v, ^, D, m. 

.3 QUOTations (8, ~, ~ .... ) -- with the operations: =, #. 

.4 TOKENs (-- for which no representation is required --) -- with 

the operations: =, #. 

Other elementary data types could be considered. 

(A data type is a set of objects and a set of operations. For a data 

type to be elementary its objects must all be considered elementary, i.e. 

having no structure. 

The data types so far formally introduced were: 

SET; TUPLE; MAP, FCT; TREE 

They were all COMPosite. Thus the 0BJects of the meta-language satisfy: 

OBJ = ELEM j COMP 

COMP = SET I TUPLE I MAP I FCT I TREE 

where the five sub-domains of COMP are all considered disjoint. 

In this tutorial we take ELEM to be: 

ELEM = NUM i BOOL I QUOT J TOKEN 

The following relations apply: 
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N 1 c N O c INTG c NUM 

Otherwise the ELEM sub-domains are considered disjoint.) 

If you need to introduce further objects or domains of objects -- by 

almost all means~ At least as long as they are in keeping with the prin- 

ciples of abstractions (exemplified), and thus of the meta-language° 

13.1 Rational NUMbers 

Useful domains are: 

NUM Rational numbers, i.e. the numbers that arise as the 

result of integer (non-zero) divisions. 

INTG Integers 

N O Natural numbers, in particular the positive integers 

including 0. 

N I Natural numbers larger than or equal to i. 

We only find a need to represent the integers: 

O, 1, 2, 3, ... 

+ addition 

- subtraction 

multiplication 

/ division: integer division leaving quotient voiding 

remainder, if INTG (No, or N I) result is 

expected. 

etc. If you would like to use: 

ceil r smallest integer larger than or equal to its only operand, 

floor r largest integer smaller than or equal to its only operand, 

i j the exponentiation of i by j 

. . . ,  - 3 ,  - 2 ,  - 1 ,  

Useful operators/operations are: 
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etc.s then we see no problem in you doing so. Etcetera -- for the intro- 

duction and proper explanation of your own operators (mod, ln, rmd, 

sgn .... ). 

Programming Note 

We abstract numerals by the numbers they denote. Thus in example 49 con- 

stants of expressions are INTeGers (and B00Leans). 

13.2 BOOLeans & Logic Expressions 

We name the domain in question: 

B00L Booleans values 

In this tutorial we count on it having just two objects which we repre- 

sent: 

Useful operators/operations are: 

N negation~ 

v or, 

^, & and (two forms provided), and 

=, ~ implication (two forms provided). 

In order to compact formulae we take the ^, v, m operators as non-com- 

mutative! Thus if in blAbZ bl is false, b~ is never evaluated. Likewise 

if bl in blvb2 is true. 

Predicate Expressions 

Besides the propositional expressions which can be formed using expres- 

sions denoting booleans and the above, conventional operators, proper 

use of the meta-language heavily relies on the possibility of forming 

quantified expressions: 
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(VxJ(P(xJ) 

(3x)CP(xJ) 

(3!xJ(P(xJ) 

(Wx £ Set)(P(x)) 

(3x 6 Set)(P(x)) 

(B'x E Set)(P(x)) 

We 'read' the above expressions: "for all x the predicate P(x) is true", 

"for all x in the set Set the predicate P(x) is true", "there exists an 

x for which the predicate P(x) is true", "there exists an x in the set 

Set for which the predicate P(x) is true", "there exists a unique x for 

which P(x) holds", and "there exists a unique x in the set Set for which 

P(x) holds". In your reading the formulae 'aloud' you can e.g. vary as 

we did in the last two forms -- and you can instead of 'x' say 'objects 

x' or 'object x', etc. 

We refer to examples 0, 9, i0, ii, 31 (i0), etc. 

Comments: 

For the case where 

Set = {Ol,O2,...,On} 

the quantified expressions can be simply transliterated: 

(Vx £ SetJ(P(x)) 

P(o I) ^ P(o 2) ^ .,. ^ P(o n) 

(Bx E Set)(P(x)) 

P(o I) v P(o 2) v ... v P(o n) 

(3!x E Set)(P(x)) 

if (3x 6 Set)(P(x)) 

then (let o£Set be s.t. P(o) in 

(¥x 6 Set~{o})(~P(x))) 

else false, 

Also: 



-(3x) (P(x) ) =- 

-(3x 6 Set)(P(x)) =- 
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(¥x) (~P(x) ) 

{,Vx E Set)(~P(x)) 

13.3 QUOTations 

The subject domain is here named: 

QUOT 

Quotations are objects whose representations can be said to denote them- 

selves. They are not to be confused with characters and characterstrings 

of conventional languages. We choose under-dashed sequences of (prefer- 

ably) upper-case letters, and (rarely) other symbols: 

G ~ ..... ~, ~, ~ ..... ~, ~, ~ ..... ~ .... , ~-.-~ .... 

The only two operations intended are: 

= equality 

# non-equality 

(Quotations correspond to the enumerated type objects of PASCAL, but we 

define no ordering on them.) If you wish to use quotations to model 

characters then observe that ABC is indivisible; and if you wish to use 

these modeling strings, then make tuples of quotations! 

The following formulae may complete the syntax of example 49: 

~oo~-Op = ~E~ I o~ I £~Z 

Re 1-Op = LARG I LAEQ I EQ I NEQ I SMALI SMEQ 

An evaluation function for the expressions of example 49 might use 

these quotations: 
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eval-Expr(e)(p)= 

dace8 e: 

(ink-Infix ( le , op , re ) 

(let Iv : eval-Expr(le)(p), 

rv : eval-Expr(re)(p); 

o~8e8 op: 

...) 

type : 

(ADD ~ return(lv+rv), 

SUB ~ return(lv-rv), 

° . ,  

AND ~ return(lvArv), 

OR ~ return(lvvrv), 

LARG ~ return(lv>rv), 

SMEQ ~ return(Iv<rv))), 

Expr ~ (ENV ~ (Z ~ (X VALJJ) 

Here it was assumed that IV and rv were of the appropriate type. Suppose 

the language is statically type checkable, then: 

ie-wf-Expr(e)(dict)= 

(mk-Infix(le,op, re) 

(i8-wf-Expr(le)^ 

is-wf-Expr(re)^ 

(let ~t = e-tp(le)(dict), 

rt = e-tp(re)(dict); 

(is-Bool-Op(op) ~ It = BOOL = rt, 

T ~ It = INT = rt))), 

°..) 

type: Expr ~ (DICT ~ BOOL) 

where: 

DICT = Id ~ (INTIBOOL) 

13.4 TOKENs 

The subject domain is named: 
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TOKEN 

Tokens are objects for which we seek no representation. 

The only two operations provided are: 

= equality 

in-equality 

When modeling the identifiers of software systems (e.g. the operating 

system directory, examples 19 & 29; the file system file identifiers, 

examples 20, 24-25, 27-28 & 36; the source language variable procedure 

and formal parameter identifers, examples 30-31-32-33, 36 etcetera), 

when modeling labels of a goto language (example 61), or when modeling 

storage addresses, or as we call them: Locations (example 30-31) we use 

TOKENs. That is: 

Rid = TOKEN (exs. 19!, 

Fid = TOKEN (exs. 20), 

Id = TOKEN (exs. 30-33, 36,...), 

Lbl = TOKEN (ex. 61), 

LOC = TOKEN (ex. 30), and 

Scalar-Loc = TOKEN (ex. 31). 

When in e.g. examples 24-25 & 27 we write suitably decorated fid~s, 

these are meta-language identifiers naming otherwise unrepresented Fid 

objects. 

When in example 31 we need to 'generate' new Sealar-Locations, then we 

"pull them out of the Scalar-Lot bag": 

(let sloc E Scalar-Loc be 8.t. P(sloc) 

o..) 

81oc names a TOKEN object. We need not know "what it looks like": 
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PART VI: POSTLUDE 

This completes the informal introduction to the meta-language. 
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