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MULTIPLICATIVE CO~PLEXITY OF A PAIR OF BILINEAR FORMS 

AND OF THE POLYNOMIAL ~LTIPLICATION 

D. Yu. Grigsriev 

Leningrad Branch of ~athematical Institute of Academy 

of Science, Fontanka 27, Leningrad, 191011, 

USSR 

The report contains some new bounds on computational complexity 

of straight-line computations - a known model of computing ([I], [2] ). 

This model well simulates usual computation procedures with branching 

and cycling instructions depending only on the size of the initial 

data. This model is also convenient for studying complexity properties 

of parallel computations - "width" is the minimal number of proces- 

sors on which the given computation can be realized with the minimal 

time equal to the "depth". Many well known procedures for algebraic 

calculations (e.g. multiplication of polynomials, matrices) can be 

described as straight-line computations. Prom the technical viewpoint 

the model under consideration permits to apply for achieving of bounds 

of computational cor@lexity with its help different algebraic appara- 

In the present report we'll consider a problem of computation of a 

set of bilinear forms over noncommutative indeterminates ~C~ ~ 

considered earlier in literature ([I] ,[5], [6] ). Straight-line~ ~J computa-~euJ 

tions will use 4 t~o-argument arithmetic operations an~[ one-argument 

operations of multiplications by elements of some field ~ (further 

we'll mean it as the main field). We fix the following measure of 

complexity. By multiplicative complexity (or simply complexity) of a 

straight-line computation we'll mean a number of two-argument multi- 

plications and divisions in it ([3],[43,[6]). The complexity of a 

given set ~ is defined as usually as the minimal complexity of 

stralght-line computations which compute S . Using the results of 

[5], [6], we can bound ourselves (without increasing the bounds of 

complexity) only by straight-line computations of the following kind 

(bilinear chain): at the first stage - computation of some linear 

forms~(fii~C;,_~ ~ ~ -- r~,~v ~ at the second stage - execution of 

two-argument multiplications of the klnd(~l. I.g~I:!~) (~ ~ ~) 
C~ K ~ N) ; at the last stage - computation of some linear combi- 

nations of bilinear forms achieved at the second stage (N - is the 

complexity of the bilinear chain). 
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The complexity of a set of bilinear forms is equal to the rang of 

a set of its matrices of coefficients (the rang of a set of matrices 

is defined as the minimal number of matrices of rang 1 linear cover 

of which contains the given set of matrices). Analogously can be de- 

fined the rang of tensor [6j, the rang of an algebra as the rang of 

its structure tensor and the rang of a group G over a field F 

as the rang of its group algebra F ~G) ([ 6)). The rang of one matrix 

in the above-mentioned definition is equal to its usual rang. 

In this report the following results are presented: the explicit 

formula for the rang of a pair of matrices over an algebraically- 

closed field (theorem I) and some its corollaries; the new upper 

bound on the multiplicative complexity over a finite field of the po- 

lynomial multiplication (theorem 2); the explicit form of the group 

of all rang-unchanging linear nonpeculiar transformations of the space 

of tensors of any given dimension (theorem 3); two effective methods 

of constructing of son~ tensors of rang non less that critical - such 

number that "almost every" tensor is of rang equal to this number 

(lemma 4.1 and theorem 4); some bounds on the critical rang (state- 

merit 4.2). 

1. Pot any pair A,B of the square matrices we define the relation 

BgA<=> z,~ (A,B)- z~ (A) 
Lemma 1.1. The relation B.~A is equivalent to the existence of 

such a matrix C that 

I)B=AC; 
2) C is of the simple spectrum; 

3) Ke~ C-  ~ Ket B -  ~ k'e't A 
~'e define the relative rang of the matrix ~ relatively to the 

matrix A as follows: 

(B/A)  = m nc4 A z4 (B-C) 
Lemma 1.2. ~or every pair A~B of the square matrices 

(A,B) = (A/+ (B/A) 
(The proof of these two lemmas in the particular case when the mat- 

rix A is a unit one can be found in [7]). We assume further in this 

item that the main field F is algebraically-closed. 

Corollary 1.3. For the fixed hi ~ (~I- L n)the rang of a pair of ~1×h 

matrices is equal to mLn~ ~,~ ~} everywhere outside some Zarisski- 

closed set of the dimension less than 2~In. 
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If the square matrices C~ are nonpeculiar then ~9(A,B)=~ 
(CA~,C~9),so i t , s  sufficient to find the rang o f  a pair o f  the matrices 

in the canonical Weierstrass-Y~eonecker form ([8], oh.12). According 

to the Kronecker's theorem every pair A ,B of I"IIXI"I matrices (over 

an algebraically~closed field) by the mentioned transformation can 

be reduced to the following quasidiagonal form: 

A= 

0 Lc L 
I , 

I~I~ I . 
n-p 

] 

m-p 

P 
E 

E 
P 

I-I o 
" . l  

B = 

0 
Lr~ t . 

" -  I 

KS, 

rl-p 

m-p 

P 
1 l-lz'~ HX2. 

P "'E.. 

At the table all the possible kinds of the blocks are presented 

(the matrices in any pair of the corresponding in A and ~ blocks 

are of the same dimensions). 

Singular blocks GX(G+J)of the kind L : LCL z 
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Singular blocks(6+~)X 

Regular blocks ~XS of the kind ~ : 

Regular square blocks of the kind O<D 

Theorem I. Let a pair A~ of the matrlces over an algebralcally 

closed field in its canonical ~Yeierstrass-Kronecker form contains: 

L -(Lal ,L  I 1 ) ' ' ' ' '  L' a) g blocks of the kind ~ (LG~ , la ~); 

b) K blocks of the kind ~ :(Kg,~1 K~I)'*"'gKSK~ Ka ); 
C) for every~ d~Lblocks each of the kind X and of the~d~-mension 

non less than 2x2 (may be ~-oo) and let~-mG~ ~ ~, and all the 

regular blocks in both A and B form the square ~ M p matrices. 

Then 

~ (A,B)= ~L:~(aL+'~)+ ~ j_ ~ (~i+~)+p +d- 
The lemmas 1.1 and 1.2 are used in the proof of the theorem. 

Corollary 1.4. For nq X~(m~n)matrices over an algebraically- 

closed field 

(here and further [ ~ ]  - is entier of 3~, t~/- -L-~J ). 
2. In the second item the new upper bound on the multiplicative 

complexity over the finite field F of the polynomial multiplication 

is proved. 
The achieved upper bound has the form R'~q (D) where q is the 

characteristic of the fleld" F and the func~icn" ~q (N) grows 

(about f~ ) slowly than any fixed iteration of logarithm. It's better 

(in the sense of the multiplicative complexity) than earlier known 

upper bounds [9]-[12] (in [12] the bound C-R'~IR,~n is present- 

ed). 
The multiplicative complexity over the field F of the multiplica- 

tion of two polynomials both of degree N (we denote this number by 

~F (Pn)) is equal to the rang (or multiplicative complexity) over 

the field ~ of the following set of bilinear forms: 

-- ~-- ":I'b L~K-{,>O-~K~'~Iq~ over the noncommutative ZK O~i,,K_i Ln 
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inde terminate s ~(OC • ~ , (~  ~ } • $ 
Let F(qS)be~t~eJfield consisting of fl elements, Z o be the 

cyclic group of the order n . 
Lenuna 2. I. For every r[ 

~0~ F (Zn)-z''z'~ F ( Prl-I ) -~ ' ~F  " Z 2n-,1 

~Fcq) (F(fln))~-~ rcq)(Pn ~ )~- ~F(q) (F(fl2n'~)) 
In the more general form these inequalities were proved in the 

recently published [13]. 
Lemma 2.2. Let ~=~DI ~ . Then there is the following decomposition 

at the direct sum: 
KC) 

F(q)(Z~)- ~ ~L • F (q 
where K L J m  f o r  every ~ ( c e r t a i n l y , ~ C K ~ =  ~ !. 

Let's define the ftmction ~ n (R) in the follo~lug man~. We 

define ~O(2)z~o(~) z 9q(~)-~ ~M~. If rD>4 is equal to[(q -I)/2J+~ 
I w7 n for some integer ~ ~ then we define qg(m)=2q,gq(g).:~rrt>4 a 

for some integer ~ the following ineq{alities are fulfiled: 

[( qS)/2 ]<Rq% [(9£+1)/2],then we define ~9(111)=~9([((~S)/2]+~ ). 
Theorem 2. ~or every 

½F(q)(pn_~ )_~ n.~q(n) 
We use the #~duction on t'1. • Let for l'1 ~ ~(~>~4)the inequality is 

true. We set ~=~-~ and using in succession the first inequality 

from the lemma 2.1, the lemma 2.2 and the inequality ~I~ @~) 
(~) I-Z~(~) for any algebras ~, ~ (~]), the second inequa- 

lity from the lemma 2.1, the induction conjecture, again lemma 2.2 

and the monotony about 
chain of inequalities: 

~F(q; (P[(~-~)/2] 

n of the function ~q Ch) , we obtain a 

)~- ~F (q ) (Z t  )4- ~L ~F(q )  (F(qKL))-~ 

~L~IFIq)(PK~ 1) -< ~LK~gg(K~ )<- Z tq(S) ° 
Let n ~ 4  an~ [ (qS -~ ) / 2 ]<  rt ~-[Cqb/2].  ~sing = suo esoion the 

monotony about n of the func t i on  t~Rq)(Pn), t~e inequality proved, 
the definition of the function ~@(Of and its monotony about n , we 
obtain a chain of inequalities completing the proof of the theorem: 
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F(Cl)(Pn-i )-< 
]+1).cdq n. q(n) 

Let's remark that the function ~^(~) is inverse to some function 

3of Grzegorczy~ o~H _,_,~ "e a s y ([14]). from the class t~\ hl r r h 

3. The following two kinds of transformations of the tensorproduct 

space UI~... ~ UK of the vector spaces UI~...~K doesn't change the 
rang of the tensors: 

1) a nonpeculiar linear transformation in any componentO;(1-~L6K);- - -- 

2) if for some L~ j the mappingf:UL--~U J is an isomorphism~--of 

the vector spaces, then the rang is unchanged under the following 

transformat ion: 
-I 

Theorem 3. The group of all nonpeculiar linear transformations of 

the space ~I~.,-~UK, mapping the tensors of the rang 1 to the ten- 

sors of the rang I, coincides with the group generated by the trans- 

formations of the kinds I), 2). 

4. Henceforth we assume that the main field ~ of the characte- 

ristic ~ is algebraically-closed, and let ~q be the primitive 

field of the characteristic ~ ( ~ is prime or equal to zero). 
i 

Lemma 4.1. There exist such primitive-recursive functions 

~:q:~qCnt,..., nK) , d:d, Cnl,...~nK) ~ M:  M (h1~..., nK) 
that the rang of any tensor from the space Flqfl~)...~)FtlK is equal 

to ~q(n1~...~DK)(the critical rang) everT~there on some nonempty 

Zarisski-open see, and the coefficients of any tensor which rang is 

less than ~q satisfy some algebraic equation with the coefficients 

from ~O , of degree less than d and with the sum of the modules 

of the "coefficients (in the case when ~ =0 ) less~ than 

The functions M~ can be found in the class ~S of Grzegorczyk's 

hie rarchy. 

Theorem 4~j I) I~t~.,*~EFq~ --. --~ _ (~=N1.'°',D~be. ,. some elements, of. the 
degrees d 2 ~"',~2 over ~q , and~Elet_ ~I~'"~ ~ be the. coefflclents. 

(in any order) of some tensor FnnI(E)...@F'GrIK. ~enZ~(~)~'~ 
2) Let~=1 .... ~+~=M(ff~(g+1))~d+1 ~jl i. be the~o~efficients 

(in any order) of the integer tensor~1®... ~ ~-~ K • Then 
~(~)~to(the numbers ~ q ~  are taken from the lemma 4.1). 
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~he idea of constructing %ensors of the rang non less the critical 

in the theorem 4 is like the idea of Strassen [4] for constructing 

the polynomials which are hard to compute, but our idea (in applying 

to the problem under consideration) gives some more strong lower 

bound (the critical rang), using unfortunately very fast-growing 

functions ~,~. 

In conclusion we bound the value of the critical rang. 

Statement 4.2. For every ~ ~.--~ ~ 
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