
AN EXPERIMENT IN COMPUTER AIDED INFORMATION SYSTEMS DEVELOPMENT

PER AANSTAD

TROND JOHANSEN

GEIR SKYLSTAD

COMPUTING CENTER OF THE UNIVERSITY

OF TRONDHEIM (RUNIT)

NORWAY

ARNE S~LVBERG

DIVISION OF COMPUTING SCIENCE

THE NORWEGIAN INSTITUTE OF TECHNOLOGY

THE UNIVERSITY OF TRONDHEIM

NORWAY

ABSTRACT

During the last decade there has been a growing interest in the use of computers

to assist systems analysts and designers in the development of systems speci-

fications and in the implementation of program systems consistent with these speci-

fications. [i, 2].

An experimental software system, CASCADE/2, was developed at the Norwegian Insti-

tute of Technology in 1972-74 for this purpose. CASCADE/2 has been used in several

software development projects. Experience with three cases is described. Further

research and development are discussed both from a short term and long point of

view.

1. THE SOFTWARE PROJECT PROBLEM

Development and operation of a software system proceed through phases, commonly

called the system life cycle. Starting with a problem definition and analysis of

user needs, crude requirement specifications are massaged into an information

system design specification. Man/machine interfaces are agreed upon, equipment is

ordered, software is produced, testing schemes are developed, manuals are written

and users are trained. The resulting software product is put into operation, and

the long, tedious process of changes, adjustment, tuning and user-correction pro-

ceeds~

The general charateristics of the software engineering project do not differ from

those of engineering design projects in genereal. The project staff must be managed

and the product specification reviwed and approved. The product must be tested for

correctness and quality, costs must be controlled and the product must benefit the

buyer.

250

Beneath the surface, however, there are distinct differences between software engi-

neering and "engineering engineering". The skill and the knowledge of the software

development staff are manifested, not in the shape of a physical structure like a

bridge, an aeroplane or a telephone switchboard, but in a rather abstract se~ of

rules governing the transfer and creation of data in a computer. This collection

of rules, i.e. the computer program and its documentation, is the product.

The behaviour of physical structures is governed by the laws of nature. The behavi-

our of software products is governed by the laws of computer manufacturers (as mani-

fested in operating systems, compilers, database systems, etc.) and by the behavi-

our of the persons who interact with the software.

The properties of physical structures can be specified in formal models which are

consistens with the laws of nature. Formal calculations may be made to see if a

proposed physical structure is feasible and to see if the proposed designs behave

properly. If this ~was not so, our industrial societies would be based on craftman-

ship alone, not on technical science and craftmanship.

There is, so far, no generally accepted model whichcapture the relevant features

of a software product, both with regard to the behaviour of computer resources,

and with regard to the behaviour of the user con~unity in which the software pro-

duct is used.

There is an increasing volume of research concerned with the problem of information

systems modelling. The modelling problem is attacked from different angles, such

as data semantics, systems analysis, theorem proving, operating systems modelling,

computer performance modelling, human engineering, etc.

In this paper, we shall describe one specific experiment in computer assisted in-

formation system development. The project has been carried out at the Norwegian

Institute of Technology, Trondheim, Norwa~ in a joint venture between the univerity

computing centre and the computing science division. The research effort started

in 1969-1970.

We shall describe the system models which have been used and a systems documenta-

tion package (CASCADE/2) which has been developed to support these models [3,4,5].

We shall give an account of some real-life software development projects where

CASCADE/2 has been used. Experiences with these experiments will be discussed.

251

2. MODELS FOR INFORMATION SYSTEMS SPECIFICATION

A complete specification model should provide concepts which enable the software

engineer to capture and formally state the relevant features of any information

system. The model should be so rich that all life cycle phases are covered, start-

ing with the requirement definition and proceeding through design to implementation,

operation and maintenance.

The infor~lation systems specifications are used for different purposes in different

phases of the life-cycle. During requirement definition the most important use of

the specifications is to enhance communication between the systems development

staff and the user community so that the project group can get the requirements

right before proceeding with implementation. The requirements specification is the

information systems design at a crude level. The requirement specification there-

fore contains the basic design of the software system to be produced. During the

subsequent phases of the lifecycle this basic software system specification is

enriched by more and more detail. There is a shift en emphasis in the use of the

systems specifications, from co~riunicating with the user on the users terms, to

communicating with the computer on the computers terms. This shift in emphasis is

reflected by a change in the need for modelling concepts. The terminology and struc-

ture of progran~ming languages, operating systems, comJnunication networks etc., must

be reflected in the systems model, if such a model is to enable the software engi-

neer to specify the relevant properties of his software product.

One basic property of a high quality product is that is consistent with the speci-

fications of that product. A complete information system specification model should

provide opportunity for testing the consistency between the detailed software speci-

fication and the requirement specification. The modelling concepts of the software

specification must be consistent with the modelling concepts of the requirement

specification.

We have so far not manaqed to solve this modellinq problem completely. Our models

should therefore be regarded as a step in this direction, rather than as a porposal

for a final solution.

Our basic modelling concepts are object classes, binary relations between object

classes and attributes of object classes. A model is characterized by its object

classes, relations and attributes. T~ee different kinds of models have been used:

One software model, one information system model and one organisation model.

_An information system is a part of a larger system called the total system. The

information system model contains the specification of requirements to the software

system. The organization model represents other relevant parts of the total system

which might interact with the software system, i.e. the information system environ-

252

ment. The software system model represents an implementation which satisfies the

requirement specification.

The organization model and the information system model are developed in collabor-

ation with user representatives and must therefore reflect user terminology. The

software model is developed by computing professionals and must reflect computer

terminology.

2,1 The Information System Model

The basic object classes of our information system model are

INF objects representing information which is produced and used in the

total system, e.g. transactions, documents, archives.

IPS objects representing information processing such as production, use,

transmission, retrieval of information.

SIG objects representing the flow of control in the information system,

the sequencing of IPS-objects.

The basic model relations are

I the input relation, I c INF X IPS, relating information objects to

those IPS-objects which use the information objects.

0 the output relation, 0 c IPS X INF, relating IPS-ob]ects to those INF-

objects which are produced by the IPS-object.

C - the component relation,

C c (IPS X IPS) U (INF X INF),

relating an object to its components. The C-relation is used to re-

present the hierarchical decomposition of processes and information

respectively.

N - the entry relation, N c SIG X IPS, relating the initiating control

signal to the IPS-object to be activated.

X - the exit relation, X c IPS X SIG, relating IPS-objects to those control

signals which are produced when the IPS-object leave their active

state.

The basic information system model is an 8-tuple

(INF, IPS, SIG, I, O, C, N, X)

The 4-tupe

The 4-tuple

(IPS, INF, I, 0) represents the flow of information between proces-

ses.

(IPS, SIG, N, X) represents the flow of control between processes.

253

The tuple (IPS, C) represents the hierarchical decomposition of processes.

The tuple (INF, C) represents the hierarchical decomposition of information

objects.

The leaf-nodes of an information tree are called TERMs (abbreviation: TR) analog-

ously to the data item concept in database system terminology.

An auxiliary model concept is the information-type concept (abbreviation: INFTY).

Information objects of the same INFTY appear several places in the information

system description. The type-concepts is used to decrease the amount of writing

associated with a systems description by permitting equivalent information struc-

tures to share the same structural definition, i.e. be declared to be of the same

information type.

2.2 The Organization Model

The information system is part of a larger system, which we call the total system.

To enhance the possibility of proper requirement definition the information system

should be discussed in the total system context. The organization model is intended

to describe those parts of the total system which do not belong to the information

system but which are relevant to the requirements definition.

No general organization model, in terms of predefined object classes, relations and

attributes, may be prescribed. This is so because the total system characteristics

may be very different from case to case. The information system may in one case be

a process control system for a chemical reactor, in another case it may be an acc-

ounting system in a retail business, or a project planning system in a shipyard.

The organization model is intended to describe the information system environment

and must therefore be defined from case to case. The modelling concepts are object

classes, binary relations and attributes.

One model that has been used to describe a civil service system <6>, consists of:

Object classes

LEGISLATION - laws and ruled that regulate the behaviour of public bureau-

cracy.

ORGANIZATION - bureaucratic units which are responsible for performing/

supervising certain civil service tasks.

TASK - functions which the civil service have according to laws

and regulations imposed by government/parliament.

254

Model relations

RESPONSIBILITY C ORGANIZATION X TASK

a certain organizational unit has responsibility for super-

vising, controlling, performing certain tasks.

LEGAL RIGHT c LEGISLATION X (ORGANIZATION U TASK)

an organizational unit exists because of some piece of legi-

slation, a task is to be performed because of some piece of

legislation.

COMPONENT c LEGISLATION X LEGISLATION

U ORGANIZATION X ORGANIZATION

U TASK X TASK

the component relation is used to represent the hierarchical

decomposition of legislation, organization and tasks.

The organization model and the information model are interrelated by two binary

relations:

SOLUTION c TASK X IPS

information processing systems represent the solution of

tasks defined by legislation.

SUPERVISION c IPS X ORGANIZATION

an information system is supervised and controlled by an

organizational unit.

The organization model and the infoz~ation system model give the formal framework

for requirement specifications development.

2.3 The Software Model

The basic object classes are

PROGRAM - objects representing computer programs.

SUBR - objects representing subroutine-type programs.

FILE - objects representing data files.

RCL - objects representing record classes.

EM - objects representing error messages from PROGPJ~4-objects.

The basic model relations are

REF c PROGRAM X SUBR U SUBR X SUBR

which is used to represent the reference structure (sub-

routine call-structure) in the software system.

255

MEM c RCL X RCL, the membership relation,

which represent the owner/member relationship in a database

network structure.

DBOp = FEND U GET U DELETE U STORE U MODIFY,

the database operation relations,

DBOP c SUBR X RCL, which represent the kind of database

operations the SUBR-objects perform on RCL-objects.

The model contains additional facilities for representing how records consist of

data items. The software model facilities also contain an object class called PROC,

which represents chunks of declaration statements for subroutines, and one object

class INLINE which represents chunks of active statements for subroutines. Object

classes PROC and INLINE are related to SUBR-objects by REF-relations.

Several attributes, e.g. program size, number of records, record size, are defined

in the software model and are used to represent properties of software objects.

The software model and the information system model are interrelated by the rela-

t/on.

IMPL c IPS X PROGRAM U INF X FILE which represents how IPS-objects

are implemented by programs and how INF-objects are imple-

mented by files.

3. THE SOFTWARE PACKAGE CASCADE/2

The CASC~DE/2 program system has functions for systems description, system presen-

tation and computer program generation. CASCADE/2 is designed for interactive use,

but can also be operated in batch mode. It was developed for the UNIVAC ii00 series

in Fortran IV. A Honeywell Bull 6000 Series version is now also available.

3.1 The mo~t Important Design Criterion was Flexibility

The CASCADE/2 software package was developed to support research in the area of

systems analysis and design. A major design criterion has been flexibility, to pre-

vent rigidity in the software support making impossible experiments with new

system model propositions.

A system is represented as a set of interrelated objects. Properties of objects

and relations are described by attributes. CASCADE/2 has functions for storing,

manipulating and presenting system descriptions based on this "object-relations-

attribute" model. New kinds of objects, relations and attributed can be introduced

ad lib. Consequently, CASCADE/2 is a very flexible tool for the investigations of

svstems models.

256

3.2 Free Format Input Language

CASCADE/2 has a free format input command language which reflects the object-rela-

tion-attribute concept.

In figure 3-1 is shown a very simple system where a process P (IPS) has A and B as

input related objects (INF) and Q as output related object (INF).

This structure is described in the command language as

IPS: P I
INF: A,B,Q or eqvivalent IPS:P / I=INF:A,B O=INF:Q /

I(P): A,B

0(P) : Q

Figure 3-I. A SIMPLE SYSTEM~

In general, the user gives names to the system objects, and indicates to which

object class they belong. Two (or more) objects are related by specifying the name

of the (binary) relationship, and the name of the objects which participate in the

relation.

The standard repertoire of CASCADE/2 contains 49 different object classes, 36 types

of relationships and i0 types of attributes.

Relations are directed and the inverse relationships are automatically maintained

by CASCADE/2.

3.3 The User May Defind His Own Models

CASCADE/2 is designed such that the user is free to define his own models. This is

done by introducing the new object classes, relationships and attributes in the

CASCADE/2 databasel

Objects are denoted by different naming systems: By unique (global) names or by

qualified names. Three different naming mechanisms give the user a wide choice in

selecting object names.

257

3.4 Simple Report Generator

A simple report generator has been developed to present the system description,

which is stored in the CASCADE/2 database, in different ways.

The report specification language is closely related to the object-relation-attri-

bute concept. The user specifies the contents of a report by referring to the rele-

vant object classes, relations and attributes. The report formats are lists, cross

reference lists, structure lists and tables.

There is also a facility for ' " the "navigatlng through stored description. The

"route" is specified by a sequence of objects/relations/attributes selections. This

navigation facility may be used to answer questions like "Which of the outputs from

subsystem A have any influence on system B?".

3.5 Model-dependent Functions

The facilities which are mentioned so far are independent of the actual systems de-

scription models which are being used. Some features of CASCADE/2 are model-depen-

dent:

An automatic digramming facility is available for system descriptions based on the

information system model of chapter 2.1. The user specifies those parts of the de-

scription of which he wants a diagram. There is a choice of six different types of

diagrams. The diagrams focus attention on different aspects of the structure by ig-

noring others. Examples of diagrams are systems flowcharts, process flowcharts and

activity charts.

A top-down decomposition means that the same system is described on different levels

of detail. If the information system model (chapter 2.1) is used, CASCADE/2 contains

facilities for testing the consistency of descriptions on two different levels of

detail, as shown in figure 3-2.

/ Consistlncy
Figure 3-2. CONSISTENCY TEST.

258

3.5.3 Automatic Software Generation

By using the information system model, a system may be specified to a level of de-

tail where processes are described either by Fortran code or decision tables. From

this type of specifications, CASCADE/2 offers the possibility of generating Fortran

source code from the detailed requirement specifications. The facility is called

APG (= Automatic Program Generator).

4. EXPERIMENTS OF USE IN SOFTWARE PROJECTS

CASCADE/2 has been used in several projects of different character, ranging from

projects concerned with organizational analysis and problem definition alone, to

projects with the main emphasis on software implementation aspects. We shall in

this paper concentrate on application projects at our own organization. This is

partly because we know the projects very well, but also because a major emphasis in

th~se projects has been on developing operational software, based on formal regui-

rement specifications. Three software development projects have given especially

valuable experience.

4.1 Three Development Projects

The experience presented in this paper are mainly based on the following three

software development projects carried out by RUNIT.

BIB-SYS: Automation of university libraries.

This is a multi user, CRT-terminal oriented transaction system.

It contains subsystems for document acquisition, cataloguing and

borrowing and lending transactions. Ca. 60.000 program statements.

SAPO: An accounting and planning system.

This system was developed for a research organization with project-

oriented activities. It contains subsystems for project accounting,

invoicing, resource and financial accounting. Ca. 40.000 program

statements.

DOLS: A desentralized banking and information distribution system.

This is a pilot project aiming at a decentralization of the dp

tasks in the accounting and personnel section of a nation-wide

banking and information distribution system. The system contains

subsystems for off-line registration of bank and money orders,

accounting system, and payroll system for regional offices. Ca.

40.000 program statements.

The three projects have been under tight budgetary and performance control, so the

experimental use of CASCADE/2 has been restricted by cost/benefit considerations.

259

The first project was initiated in 1971, the last project in 1975. The CASCADE/2

software has been substantially developed over this period, so there has been dif-

ferent degrees of sophistication in the projects' use of CASCADE/2.

4.2 The Use of CASCADE/2 for Requirement Specification

The use of CASCADE/2 has been somewhat different in the three projects. In the lib-

rary project CASCADE/2 was to be used for requirement specification purposes only.

No software specification facilitites had been developed when the library project

started. The Automatic Program Generator (A~G) was developed in parallel with the

library project. Because APG was not operational at the start of the proramming

phase of that project, it was only used to a limited extent. The libraries, repre-

sented by librarians with little or no knowledge of data processing, played an

active role in the development of the formal requirement specifications.

In the SAPO project, the use of CASCADE/2 was advanced another step towards auto-

matic software production. The crude design specifications were decomposed to the

program statement level. The APG facilities were used for software production as a

matter of routine.

In the DOLS-project a new software specification model (chapter 2.3) was used. This

model reflects computer programming terminology more accurately than the informa-

tion systems model which was used in the two other projects. The requirement speci-

fication in the DOLS project was perceivable, and a manual documentation within the

framework of the information systems model was used instead of computer assisted

documentation.

4.3 Software Specification in the DOLS-project

The need for computer assisted documentation increased in the programming phase.

Up to that point, the amount of "manual" documentation concerning the requirement

specification was managable.

More persons were added to the project staff. The n~ber of programs and subrou-

tines increased rapidly. It became necessary to have up-to-date documentation to

answer questions like:

- Is the name of the subroutine which is to be programmed used before?

- If I change the layout of a record in a file, which programs are then

affected and who is to be informed of this?

- Which subroutine(s) writes a certain error message?

Development of dialogue systems add some special demands for docun~entation. Because

many seprate transaction programs operate on the database, it was necessary to have

detailed documentation on the database command level.

260

To store, maintain and present this kind of documentation, data about the software

must be entered into the CASCADE/2 database: Descriptions of programs, subroutines,

record-classes and so on. The project's programming secretary performed this oper-

ation.

The reports which were produced by CASCADE/2 supplementd the "manually" produced

requirement specification and software specification, which consisted of text and

flow diagrams.

Three main groups of report types was produced: overview lists, cross reference

reports and deviation reports. A detailed specification of the three groups of

reports is as follows:

Overview lists

transaction orders, error messages, transaction system tables,

source programs, data fields, data field-types, file structure,

record class descriptions.

- Cross reference reports between

subroutines and transaction orders, PROCs and subroutines, record

classes and subroutines, data field and record class, data field-

type and data fields.

- Deviation reports

not referenced subroutines, transaction orders not attached to a

sub-system, record classes only read (not created/modified), re-

cord classes not referenced.

The project library contained an updated set of all CASCADE/2 documentation reports.

5. EXPERIENCES AND GENERAL CONCLUSIONS

Our objective in this research project has been to develop a basis for an integra-

ted software development tool for all phases of the system lifecycle.

We hav e been reasonably successful in mastering the requirement definition part of

the d~velopment project. We are not, however, satisfied with our results in the for-

mal interfacing of the requirement specification to the programming and operation

phases of the system lifecycle. Even if we can use our computerized documentation

package in each separate phase we have not been able to integrate the formal speci-

fications of the different project phases.

Because our research objectives have been ambitious, and because we have very thor-

ougly tested our software support tools, we feel that our experiences can be of

general value for further research in this area.

26l

In all of the three reported projects of chapter 4, formal requirement specifica-

tions were developed. The requirement specifications were developed in several

steps:

- Systems knowledge was gained through analysis and description of the exist-

ing administrative systems in all three cases.

- Decisions were made regarding which parts of the exisiting system to reorga-

nize and automate.

- An overall design of the new organization was made, including specifications

of response times, man/machine interaction, implementation cost, computer

system architecture.

So the requirement specification included both organizational design and baseline

software system design.

In the formal specification, main empasis was put on the use of the information

system model of chapter 2. The organizational environment was not formally speci-

fied in any of the projects.

5.1 Experience s in Automatic Programming

In two of the projects, basic software system design specifications were detailed

to a program statement level using the information system model. Suitable "chunks"

of code (on the average 15-30 statements for each "chunk") and decision tables were

linked together by the Automatic Program Generator (APG) of CASCADE/2, and program

modules were produced. Computer programs were produced from the design specifica-

tion. ~uring debugging we found, t~ nobod~s surprise, that programmers want to do

their "firefightinq" on the programs where the bugs are discovered. They resisted

going back to the design specification, correcting the bu~ producing a program with

a slightly unfamiliar pattern, and starting all over again to get accustomed to the

pattern of the new program.

One basic problem is to keep track of the changes in the software product and the

software specifications at the same time, so that a change in the software product

(e.g. because of debugging), is reflected in the software specifications, and vice

versa. If the software specifications do not reflect the changes of the software

product (i.e. the program system), the value of the specifications are rapidly

so seriously degraded that the benefit of developing a detailed specification may

be seriously questioned when comparing the benefits with the costs involved.

5.2 Separation of Requirement Specification and Software Specification

Because we did not succeed in solving the automatic software generating problem in

our first trial we chose to separate the requirement specification and program

specification in our last project (DOLS). The basic reason for this decision was

262

that we at that time, did not have any facilities to ensure consistency between the

program product and the software specification.

The software system model of chapter 2.3 was used for the program specification and

the information system model of chapter 2.1 was used for requirement specification.

For the reasons mentioned above, we did not try to relate the two specifications

such that the software specification could be formally tested against the require-

ment specification for completeness and consistency. The requirement specification

therefore tended to serve as a body of basic systems knowledge, rather than a for-

malization of system constraints and objectives against which the software could

be formally tested.

The use of computer assistance during the requirement definition had consequently

to be decided on different criteria than in the SAPO-project. Because the volume

of the requirement specification was moderate, and the project staff experienced,

the project staff chose to use manual methods for documentation purposes. Computer

assistance was, however, used for software specification purposes, where the docu-

mentatiom volume is larger.

5.3 Experiences from the Requirement Specification Phase

One of the most pleasant experiences has been the way that the projects have man-

aged to get the users involved. Use of the information systems model of chapter 2.1,

combined with functional decomposition to handle systems complexity, has had a pro-

found diciplining consequence on the project staff and their user contacts and

collaborators. Of special value was the hierarchical consistency test of CASCADE/2

(chapter 3.5.2).

The automatic flowcharting facilities of CASCADE/2 proved to be of considerable

value in enhancing communication between project staff and users. The data diction-

ary facilitites proved to be useful also from a project management point of view,

both concerninq integration aspects and control of Droject vocabulary.

Most of the positive effects can be obtained by using manual documentation methods.

The decision to use a computer tool like CASCADE/2 is dependent on two points. The

first point is the size and complexity of the information system. CASCADE-like

tools tend to be more useful for large and complex systems than for small systems,

even if computer assistance is used only for requirement definition as a separate

task. The second point is the degree of formal integration between the requirement

specification and the software product via the software specification. A high de-

gree of formal integration means that formal requirement specifications can be

used directly for checking the consistency and completeness of software specifi-

cations and software products. Consequently the benefits of a thorough requirements

specifications might easier outweigh£ the cost of establishing the formal specifi-

263

cation.

5.4 Experiences from the Software Specification Phase

We have earlier in this paper pointed out that we did not succeed in establishing

a workable automatic programming environment from a cost/benefit point of view.

In the DOLS-project, where the software specification was separated from the re-

quirement specification, CASCADE/2 was used mainly as a simple data dictionary

system. Ou r general experience is that the CASCADE/2 produced documentation is

valuable for development and especially for maintenance of the software product.

Cross reference reports have been very valuable. These give a satisfactory overview

of the consequences of specification changes.

Automatic control of consistency between the documentation and the software system

is impossible with the present system. It is left to the user to ensure that all

alterations of the program code also involve the corresponding updata of the

CASCADE/2 documentation. This is a weak point with our present system. To have the

full benefit of the software specification, the consistency between product and

specification must be maintained. A part of a solution might be to develop a "Data

Division" generator such that any change in the datatype specifications would ini-

tiate a genereation of new Data Division and a subsecuent recomDilation of the pro-

gram which used those Data Divisions. We are aware that some Data Dictionary sys-

tems, which are currently marketed, provide this kind of facility.

5.5 Conclusions

CASCADE/2 is a prototype. It was designed to support research primarily in the sys-

tems analysis and design phases of the life cycle. We had reasona success in

supporting the development of requirement specifications. Our appetite grew and we

tried to use CASCADE/2 for software specification and software production by adding

new facilities to our package.

CASCADE/2 is general in the way that it supports a wide variety of systems models.

This generality has to be paid for in terms of computational efficiency. If we

abandon the idea of integrating the documentation of the different life cycle phases,

tailormade software support for each type if specification might bring down com-

puter costs to a more pleasant level. The drawback of aiminq at separate sDecifica ~

tions is that what is documented in one phase will not be directly usable in subse-

quent phases except as a general body of knowledge about the system.

There is a consideraDle cost associated with a formalization of systems specifica-

tions. Without short term benefits from the formalized system specification which

are comparable to the costs of formalizing the project staff will be reluctant

accept the idea of developing formal specifications. Only if a development project

is so large that controlling and maintaining the requirement specification becomes

264

a serious problem will the idea of computer aided systems develol~ment be appealing

to the project management.

DesDite the difficulties we have mentioned in this oaDer, we want to point out that

the production rate in the projects which have used CASCADE/2, measured in lines

of code/man vear, competes verv favourablv with production rates reported in the

literature [?]. What we do not know is if this should be attributed to the use

of CASCADE/2, to the use of formal systems models, to high competence in the pro-

ject staff or to a combination of these factors.

We also want to make explicit, that incompetent project management can blow any

project, despite the quality of development techniques which are used.

We have in this research project shown that information systems specifications can

be formalized, that the formal specifications can be handled by a computer and that

there is some benefit associated with doing so.

There i~ room for substantial improvements in this technique. One of the major

long term problems will be to interface the different kinds of specifications to

the software product such that automatic programming is realized on a practical

scale and such that product changes are automatically reflected at the software-

and requirement-specification level.

The alternative of developing tailormade software tools for each phase seen in iso-

lation has already been mentioned.

There is a lack of theoretical knowledge in the field of systems development. We

believe that a substantial improvement of the state-of-the-art is dependent on a

solution of some problems which still belong to basic research. We still lack a

workable definition of the concept of information. We also have problems concerning

concepts like consistency, completeness and flexibility, just to mention a few.

A theory of software design still seems to be quite far away.

The state-of-the-art of information systems development, based on formal specifi-

cation technique, is dependent on the level of knowledge of these subproblems.

When comparing with the progress in the solution of important subproblems over

the last few years, we are convinced that our general framework for comouter aided

information systems development will Drove to be valid in the years to come.

[z]

[2]

[3]

[4]

[5]

Is]

[7]

265

REFERENCES

2nd International Conference on Software Engineering. 13-15 Oct. 1976.

San Fransisco, California. Proceedinas.

Bubenko. Lanaefors, S¢lvbera (eds):

"Computer Aided Information Systems Analysis and Desian",

Lund, Sweden, 1971.

Aanstad, Skylstad, S~lvberg:

"CASCADE - A Computer Based DocUmentation System", In [2]

Augl~nd, s~lvberg:

"A Technique for Computerized Graphical Presentation of Information

Systems to be Used in Systems Design",

In: "Approaches to Systems Design", National Computing Center, England.

S¢lvberg:

"The Use of Models and Associated Software in the Design of Wicked Systems"

In: Grochla, Szyperski: "Information Systems and Organizational Structure",

de'Gruyter, Berlin, 1975.

Fredriksen, K:

"Brukererfaringer CASCADE",

In: Proceedings, Nord Data 75, Oslo 23-26 juni 1975, (in Norwegian}

C.E. Walston, C.P. Felix:

"A Method of Program~ling Measurement and Estimation",

IBM Systems Journal, No. i, 1977, pp 54-72.

